
Predictive Display Models for Tele-Manipulation from Uncalibrated
Camera-capture of Scene Geometry and Appearance

Keith Yerex, Dana Cobzas and Martin Jagersand
Computing Science, University of Alberta, Canada

www.cs.ualberta.ca/˜ fkeith,dana,jag g

Abstract— In tele-robotics delayed visual feedback to the hu-
man operator can degrade task performance significantly. To im-
prove this, predictive display, uses a scene model to estimate and
render immediate visual feedback based on the operator’s control
commands. Traditional predictive display involves the calibration
and overlay of an a-priori model with the delayed real video feed-
back. In this paper we present an image-based method where the
scene geometry and appearance is captured using structure-from-
motion by an uncalibrated eye-in-hand camera mounted on the
remote robot. The model is then compressed and transmitted to
the operator site, where it is used to generate immediate feedback
in response to the operators movements. Calibration problems are
avoided since the model is captured by the same scene camera as
is being simulated in the predictive display. We show experiments
where we capture the appearance of a robot hand and transmit
it over the network to the operator site where the model renders
scene appearance change in response to operator viewpoint mo-
tion.

I. I NTRODUCTION

An important problem in tele-robotics is to provide high fidelity
visual feedback from the remote scene to the human operator.
However, limitations in terms of delays are inherent to trans-
mission over a distance. Typical round-trip delays using e.g.
NASA satellite links are in the order of seconds [11]. Using
low cost alternatives such as the internet introduces additional
unpredictability in the time delay and instantaneous bandwidth.
It has been shown that as little as half a second delay causes
operators to lose direct connection between their controlling
movements and the visual display [8]. Instead of performing
smooth motions, inefficient “move, then wait and see” strate-
gies are adopted.

In predictive display the delay problem is eliminated by
computer-synthesizing an estimated visual feedbackimmedi-
atelyin response to the operator’s movements. In most systems
a CAD based line drawing of the object is rendered and over-
laid on the delayed real video using an a-priori calibrated trans-
form. For a survey, see [14]. However, important applications
of tele-robotics are in non-engineered settings, where precise
models of objects and environments are difficult to obtain (e.g.
remote exploration, emergency response, waste cleanup, space
robotics). In a recent system, predictive display for a mobile
robot is provided by geometrically warping the delayed video
using a computer vision line-based model[1]. While a mobile
robot is typically controlled using 2 dimensional steering and

������

��
��
��
��

x

Images

(delayed)

Synthetic, Predicted

Visual Feedback (real time)

Tele−Manipulation site

Control
Viewpoint

Manipulator Control

site
Operator

Fig. 1. Remote tele-manipulation setup.

velocity commands we develop vision-controlled robot arm and
dexterous hand based tele-robotic systems[9], where the con-
trol space is from 6 to 20 dimensional, see Fig. 1. Our new
technique accomodate larger viewpoint change than the case
we solved before[10] by combining geometric and image-based
techniques. Our main contributions include:

� We show how to merge previous work in geometry-based
scene modeling[1], [15], [3], with image-based methods
which generalize view-based textures from a discrete set
of example textures to a continuousdynamic texturesyn-
thesis [2].

� We derive a new formulation of residual intensity varia-
tion capturing discrepancies between between the geomet-
ric model and the real scene and use this to compute the
dynamic texturebasis.

� We develop a HW accelerated OpenGL implementation
wich allows cost-effective systems based on standard PC’s
and graphics cards, and in the experiments demonstrate
real time model capture and predictive rendering on these.

Our method decomposes the problem of modeling the image
change due to camera motion into two stages. In the first real-
time visual tracking is used to capture a non-Euclidean model.
The model represents an approximation of the true scene struc-
ture, and is used to approximately stabilize texture patches dur-
ing tracking. Second, using image statistics, a spatial basis is
constructed which captures the residual intensity variation in
the stabilized texture. Both the geometry and texture basis are
parameterized in pose to enable rendering of new poses. From
this model, predicted images from new camera poses are ren-
dered to the operator by warping the modulated texture to the
projected geometry. The advantage of our approach is that it
decomposes the difficult problem of exactly capturing geome-

try and aligning it with texture images into two simpler simpler
tasks where the strengths and weaknesses of each of the two
sub-methods complement each other.

II. T HEORY

Consider a tele-robotics setup as in Figure1, where an operator
controls a remote robot. The remote scene is viewed by camera
mounted on the robot. The scene images are shown to the oper-
ator using e.g. a video screen or head mounted display (HMD).

Let (x1;x2; : : : ;xi; : : :) be a sequence of viewpoint motion
commands12 by the tele-operator. Assuming a round-trip de-
lay d, the operator will not see the results of the current motion
xi until time i + d. We present a method where instead an
estimated imagêI from scene viewpointxi is rendered imme-
diately from an image-based modelM . The model is generated
using a sequence of (previous) images from the remote scene
(I1; I2 : : : Im) as training data.

1) Geometry and image-based model:In terms of geometry,
image-based-rendering (IBR) techniques relate the pixel-wise
correspondence between sample imagesI1:::m and a synthe-
sized desired new vieŵI . This can be formulated using a warp
functionwt to relateIt(wt) = Î . If It � Î thenw is close to
the identity function. However, to relate arbitrary viewpoints,
w can be quite complex, and current IBR methods generally
require carefully calibrated cameras in order to have a precise
geometric knowledge of the ray set [5], [12].

In our method the approximate texture image stabilization
achieved using a coarse geometric model reduces the difficulty
of applying IBR techniques. The residual intensity (texture)
variability can then be coded as a linear combination of a set
of spatial filters (Figure 2). More precisely, given a training
sequence of imagesIt; t 2 1 : : :m and tracked image points
[ut;vt], a simplified geometric structureP of the scene and a
set of motion parametersxt = (Rt; at; bt) that uniquely char-
acterize each frame is estimated from the tracked points using
affine structure from motion (Section II-B). The re-projection
of the structure given a set of motion parametersx = (R; a; b)
is obtained by �

u

v

�
= RP +

�
a

b

�
(1)

From the training imageIt and the tracked points[ut;vt], we
flattern the triangulated image into a canonical textureIwt

Iwt = It(w(ut;vt)) (2)

Using the method described in Section II-A we then compute
a variability basisB that captures the intensity variation caused
by geometric approximations and illumination changes and the
set of corresponding blending coefficientsy t.

Iwt = Byt + �I (3)

1We detail the parameterization of camera viewpoints in Section II-B
2We write scalars plain, vectors bold and matrices in upper case. Images

flattened into column vectors are written bold upper case

2) Predictive view synthesis:To synthesize a new predicted
view Î we first estimate the projection of the structureP in
the desired view (specified by motion parameters of the current
operator viewpointx in Equation 1). Then, texture modulation
coefficientsy are computed and a texture corresponding to the
new view is blended (Equation 3). Finally the texture is warped
to the projected structure (inverse of Equation 2). The following
sections describe this process in detail.

A. Dynamic textures

The purpose of thedynamic textureis to allow for a non-
geometric modeling and view-dependent synthesis of texture
intensity variation during animation of a captured model. To
motivate our development of a time varying texture, consider
that using the standard optic flow constraints we can write trans-
lational image variability as the modulation of two basis func-
tions: I = I0 +

@I

@u
�u+ @I

@v
�v. Here the image derivatives @I

@u

and @I

@v
form a spatial basis.

Below we first extend this to 6 parameter warps representing
texture transforms, with depth, non-rigidity and lighting com-
pensation, and then we show how to stably estimate this basis
from actual image variability.

1) Parameterizing image variability:Formally, consider an
image stabilization problem. Under an image constancy as-
sumption the light intensity from an object pointP is indepen-
dent of the viewing angle[6]. LetIt be an image (patch) at time
t, andIw a stabilized (canonical) representation for the same
image. In general, then there exists some coordinate remapping
w s.t.

Iw(p) = I(w(p); t) (4)

wherep is the image plane projection ofP. Hence,Iw repre-
sents the image from some hypothetical viewing direction, and
w is a function describing the rearrangement of the ray set from
the current imageIt to Iw. In principlew could be found if
accurate models are available for the scene, camera and their
relative geometry.

In practice, at best an approximate functionŵ can be found,
which may be parameterized in time (e.g. in movie compres-
sion) or pose (e.g. in structure from motion and pose track-
ing). Below we develop mathematically the effects of this ap-
proximation. In particular we, study the residual image vari-
ability introduced by the imperfect stabilization achieved byŵ,
�It = It(ŵ)� Iw. Let ŵ = w+�w and rewrite as an approx-
imate image variability to the first order (dropping t):

�I = I(w +�w) � Iw = I(f) + @

@w
I(f)�w � Iw =

@

@w
I(w)�w

(5)
The above equation expresses an optic flow type constraint in
an abstract formulation without committing to a particular form
or parameterization ofw. In practice, the functionw is usu-
ally discretized using e.g. triangular or quadrilateral mesh el-
ements. Next we give examples of how to concretely express
image variability from these discrete representations.

New desired pose

Model Predicted image of new view

I1 It

y y
1 t

(R a b)t t t(R a b)
1 1 1

=(R,a,b)x

= =

Texture coefficients
Warped texture

Texture
basis

Structure
P

+ +

Motion parameters

Remote site model acquisition

Fig. 2. A sequence of training imagesI1 � � � It is decomposed into geometric shape information and dynamic texture for a set of triangular patches. The scene
structureP and motion(r; s; a; b) is determined from the projection of the structure using a factorization algorithm. The dynamic texture is decomposed into
its projectiony on an estimated basisB. For a given desired position, a novel imageÎ is predicted by warping new texture synthesized from the basisB on the
projected structure.

2) Structural image variability: Under a weak perspective
(or orthographic) camera geometry, plane-to-plane transforms
are expressed using an affine transform of the form:

�
uw
vw

�
= wa(p; a) =

�
a3 a4
a5 a6

�
p+

�
a1
a2

�
(6)

This is also the standard image-to-image warp supported in
OpenGL. Now we can rewrite the image variability Eq. 5 re-
sulting from variations in the six affine warp parameters as:

�Ia =
P

6

i=1

@

@ai
Iw�ai =�

@I

@u
; @I
@v

� � @u

@a1
� � � @u

@a6
@v

@a1
� � � @v

@a6

�
�[a1 : : : a6]

T
(7)

Let fIgdiscr = I be a discretized image flattened along the
column into a vector, and let ’�u’ and ’�v’ indicate point-wise
multiplication with column flattened camera coordinateu and
v index vectors. Calculating the partial derivatives (Jacobian)
of Eq. 6 we get a closed for Eq. 7 as:

�Ia =
�
@I

@u
; @I
@v

� � 1 0 �u 0 �v 0
0 1 0 �u 0 �v

�
[y1; : : : ; y6]

T =

[B1 : : :B6][y1; : : : ; y6]
T = Baya

(8)

where[B1 : : :B6] can be interpreted as a variability basis for
the affine transform.

Similarly, a two dimensional spatial basisBd can be derived
to account (to a first order) for parallax due to scene depth varia-
tion when model triangles do not perfectly correspond to physi-
cal planes. It has also been shown that a low dimensional inten-
sity subspaceBl (5-9 dimensions) is sufficient for representing
the light variation of most natural scenes [13], [6].
Statistical image variability In a real, imperfectly stabilized
image sequence we can expect all of the above types of image
variation, as well as unmodeled effects and noise�Ie. Hence,
total residual image variability can be written as:

�I = �Ia +�Id +�Il +�Ie =
Baya +Bdyd +Blyl +�Ie = By +�Ie

(9)

In principleBa can be derived from images alone using Eq. 8,
whileBd requires dense and accurate object depth information.
In practice, we instead estimate both from actual statistics in the
training sequence using PCA. This yields a transformed basis
B̂ and set of modulation vectors for each training imagey k

which captures (up to a linear coordinate transform) the actually
occurring image variation in the trueB (Eq. 9).

To estimate the texture mixing coefficients for intermediate
poses, we first apply n-dimensional Delaunay triangulation over

the sampled posesxt. Then given any new posex we deter-
mine which simplex the new pose is contained in, and estimate
the new texture mixing coefficientŝy by linearly interpolating
the mixing coefficients of the corner points of the containing
simplex. Finally, a novel texture image is generated by adding
the dynamic texture variation to the reference (mean) image
Iw = �I +Bŷ.

B. Geometric model

A structure-from-motion algorithm starts with a set of corre-
sponding features (point, lines) in a sequence of images of a
scene and recovers the coordinates of these features and the
cameras poses relative to this representation (see Figure 3). Dif-
ferent algorithm have been developed depending on the camera
model [4]. If the camera is approximated with an affine camera,
the problem can be linearized and solved using factorization
[16]. Here we extended the classical Tomasi-Kanade factoriza-
tion to a weak perspective camera inspired by [17].

Structure
from motion

algorithm

poses

+

tracked points

structure

Fig. 3. A general structure from motion algorithm extracts the structure and
camera poses from a set of tracked points.

First, the algorithm recovers affine structure from a sequence
of uncalibrated images. Then, a relation between the affine
structure and camera coordinates is established. This is used
to transform the estimated scene structure to an orthogonal co-
ordinate frame. Finally, using similarity transforms expressed
in metric rotations and translations, the structure can be repro-
jected into new, physically correct poses. Since we use only im-
age information our metric unit of measure is pixel coordinates.
We next describe a more detailed mathematical formulation of
the problem.
Affine structure from motion Under weak perspective projec-
tion, a pointPi = (Xi;Yi;Zi)

T is related to the corresponding
pointpti = (uti; vti)

T in image frameIt by the following affine
transformation:

uti = sti
T
t Pi + at

vti = stj
T
t Pi + bt

(10)

whereit andjt are the components along the camera rows and
columns of the rotationRt , st is a scale factor and(at; bt) are
the first componentst1t of the translationtt. Rewriting Eq. 10
for multiple points (n) tracked in several frames (m)

W = RP + t1 (11)

whereW is a2m� n matrix contains image measurements,R

represents both scaling and rotation,P is the shape andt1 is
the translation in the image plane [17].

If the image points are registered with respect to their cen-
troid in the image plane and the center of the world coordinate
frame is the centroid of the shape points, the projection equa-
tion becomes:

Ŵ = RP where Ŵ =W � t1 (12)

Following [16], in the absence of noise we haverank(Ŵ) =
3. Under most viewing conditions with a real camera the effec-
tive rank is 3. Considering the singular value decomposition of
Ŵ = O1�O2 we form

R̂ = O0

1
; P̂ = �0O0

2
(13)

whereO0

1;�
0; O0

2 are respectively defined by the first three
columns ofO1, the first3 � 3 matrix of � and the first three
rows ofO2 (assuming the singular values are ordered in de-
creasing order).
Metric constraints The matricesR̂ and P̂ are a linear trans-
formation of the metric scaled rotation matrixR and the metric
shape matrixP . More specifically there exist a3� 3 matrixQ
such that:

R = R̂Q P = Q�1P̂ (14)

Q can be determined by imposing constraints on the compo-
nents of the scaled rotation matrixR:

îTt QQ
T ît = ĵTt QQ

T ĵt (= s2t)

îT
t
QQT ĵt = 0 t 2 f1::mg

(15)

whereR̂ = [̂i1 � � � îmĵ1 � � � ĵm]
T This generalizes [16] from an

orthographic to a weak perspective case.
To extract pose information for each frame, we estimate the

scale factorst and rotation componentsit andjt from R. We
estimate the3 � 3 full rotation matrix by completing the last
row with kt = it � jt and parametrize it with Euler angles
rt = [t; �t; 't]. Each camera pose is represented by the mo-
tion parameter vectorxt = [rt; st; at; bt]. The geometric struc-
ture is represented byP and its reprojection given a new pose
x = [r; s; a; b] is estimated by

[u;v] = sR(r)P +

�
a

b

�
(16)

whereR(r) represents the rotation matrix given the Euler an-
glesr.

III. I MPLEMENTATION

We have implemented and tested our method on consumer
grade PC’s for video capture, tracking and rendering. The op-
erator views the remote scene on a monitor, and uses the mouse
to change the viewpoint and mouse buttons to switch between
rotation, translation and scale (zoom) mode. We mounted the

camera to a pan-tilt head using a long swing arm and aiming the
camera inwards. By placing the pan-tilt center of rotation near
the scene to be imaged the operator can control the viewpoint
to sample the viewing sphere. This limits the viewpoints in
the sample sequence to a 2D manifold, but by the re-projection
property of the geometric modelP we can from the model syn-
thesize any 6D affine camera pose by varying the scaled rotation
sR and translation[a; b].

A. Model capture algorithm

We have implemented the remote-site tracking and capture part
of our system using XVision[7]. To compute a model we pro-
cess about 128-512 images of the remote site video under vary-
ing camera pose as follows:

1) The operator selects the scene region to be captured in
the model by clicking on 10-20 (trackable) image points
[u1;v1] in imageI1. Delaunay triangulation is used to
divide the region into texture patches. For subsequent
video imagesIt point correspondences[ut;vt] are ob-
tained from real-time SSD tracking.

2) Using HW accelerated OpenGL each frameIt is loaded
into texture memory and warped to a standard shapeIwt

based on tracked positions. (Equations 2). The standard
texture shape is chosen to be the average positions of the
tracked points scaled to fit in a square region as shown in
Fig. 2.

3) We estimate the geometric modelP from the tracked as
described in Section II-B and a texture basisB as in Sec-
tion II-A

The PCA is performed separately on each color channel in
YUV color space. By separating the intensity information from
the color, more eigenvectors can be used for the intensity chan-
nel, and less for the color channels, saving both texture memory
and rendering time. Typically the eigenvector cutoffk is chosen
so the resulting composite model is about one fifth the size of
the set of sample images. Hence, if bandwidth is limited it is
most efficient to compute the model at the remote site, and then
transfer it to the operator console.

B. Hardware Rendering

To render dynamic textures in real-time, we use NVidia graph-
ics cards, and NVidia specific OpenGL extensions for texture
blending (NVregistercombiners, NVregistercombiners2) as
follows:

1) For the new desired view compute the re-projection[u; v]
from the posex as in Equation 1.

2) Estimate texture blending coefficientsy by interpolating
the coefficients of the nearest neighbors from the coeffi-
cients, and poses from the training data.

3) Compute the new textures in the standard shape using
Equation 3 and warp the textures onto the calculated ge-
ometry.

These operations are performed simultaneously in graphics
hardware as follows. Basis images are stored in texture mem-
ory as 4 channel (RGBA) textures in signed 8 bit format. Hence
each texture holds 4 basis images, all 4 belonging to the basis
for the same channel (Y, U or V). Since the hardware we are
using can access 2 (GeForce 2 card) or 4 (Geforce 3 and 4)
textures per rendering pass, up to 16 basis images (or 15 and
the mean image) can be combined in a single pass. Using the
register combiners mechanism, the 16 basis images are multi-
plied by their 16 corresponding coefficients, and summed. The
output is then converted to RGB by multiplying the scalar re-
sult by the row in a YUV to RGB transformation matrix corre-
sponding to the particular channel being rendered in the current
pass. Each pass is then accumulated in the frame buffer using
OpenGL blending. Finally, the dynamically generated texture
is stored in texture memory, and rendered onto the object ge-
ometry.

Using the HW accelerated implementation we can update the
predicted image at around 50 Hz using a 1year old GeForce
3 desktop graphics card, and at about 25-30Hz running on an
basic GeForce 2-to-go in a 1GHz laptop.

IV. EXPERIMENTAL RESULTS

Fig. 4. Image sequence predicted for different viewpoints (top) and ground
truth from corresponding (delayed) real images taken from the same viewpoints
(bottom). Seewww.cs.ualberta.ca/˜ jag/videos/m1.mpg for the
full video

To test our method, we have used it to capture a robot hand. The
hand has fairly complex geometry which would be difficult to
capture completely. Some parts of the object are occluded from
some angles, and therefore would be very hard to track. Using
our technique, a very simple geometric model (Fig. 2) can be
used including only easily trackable points, and the dynamic
texturing compensates for the geometric inaccuracy (note the
partially occluded finger in the back is represented mostly by
the dynamic texture, and not by geometry).

To quantitatively evaluate rendering fidelity we measured ge-
ometric and intensity errors obtained with our dynamic texture

and compared these with the view dependent textures used in
other models from images work (e.g. in [3]). In view dependent
texturing several texture images are used, and in rendering the
one or a blend of several real images close to the virtual camera
viewpoint are chosen to texture the model. To put the meth-
ods on equal footing each one was allowed the same amount of
texture memory,

To measure appearance error we computed the differences in
pixel intensities between rendered images and ground truth real
images of the same scene and viewpoint, see Fig. 5. For the
dynamic texture we got a smooth and low error of0:56% (or
less than 2 units on a standard 8bit/color channel quantization).
The view dependent texture exhibits larger errors the further
away the virtual viewpoint is from the real sample images. On
average the error was1:17%, but the high peak errors gave a
visually unpleasant jumpiness in response to operator viewpoint
motion.

0 5 9 13 15
0

5

10

15

Time

M
ea

n
er

r Static texture
Dynamic texture

Fig. 5. Intensity pixel error in the rendered images (compared to original
image)

In animation the reproduction of continuous realistic motion
over a sequence of frames is as important as image sharpness.
To quantify the jumpiness we captured a model from a standard
camera calibration pattern, and re-animated a smooth, known
viewpoint motion For each feature on the texture image we
measured the actual reprojection and compared it to ground
truth. The following table shows the average pixel jitter.

Vertical jitter Horizontal jitter

Static texture 1.15 0.98
Dynamic texture 0.52 0.71

V. DISCUSSION

We showed how to capture object models from a remote mov-
ing camera and render predicted images from new views using
a new type of image-based modeling where a coarse geomet-
ric model is captured from images, and a time-varyingdynamic
textureis overlaid to compensate for errors in the coarse geome-
try approximation. Our technique obliviates the need for expen-
sive range sensors and calibrated setups to capture the remote
scene geometry, and instead uses inexpensive consumer web or
video cameras with a standard PC’s. To enable real-time ren-
dering we take advantage of recent advances in consumer grade
graphics cards which allow blending of several transparent tex-
tures.

In the future we plan to integrate the predictive display
with our visual feedback control system[9]. This would en-
able vision-based tasks like the light bulb replacement in
www.cs.ualberta.ca/˜ jag/videos/m2.mpg to be
performed in a tele-robotics setting where the operator receives
real-time photo-realistic predictive display in response to simul-
taneous viewpoint and arm/hand motions. In the current imple-
mentation the operator has to interleave separate viewpoint se-
lection and arm/hand motion sequences. The main obstacle in
our current implementation is the the texture basis mixture co-
efficients are indexed in global pose. To represent independent
motion of the robot hand/arm we plan to change this to modu-
late thedynamic texturebased on the local triangle configura-
tion. We are also working on providing a 3D impression using
CAVE and HMD stereo displays. Generating the left and right
images is simple from our model by just changing the viewing
pose by the interocular distance. It remains to integrate our sys-
tem with real-time pose tracking of also the operator to be able
to put the predictive display into the U of Alberta 3D immersive
CAVE.

REFERENCES

[1] M. Barth, T. Burkert, C. Eberst, N. St¨offler, and G. F¨arber. Photo-realistic
scene prediction of partially unknown environments for the compensation
of time delays in presence applications. InInt. Conf. on Robotics and
Automation, 2000.

[2] D. Cobzas and M. Jagersand. Tracking and rendering using dynamic tex-
tures on geometric structure from motion. InECCV, 2002.

[3] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering archi-
tecture from phtographs. InComputer Graphics (SIGGRAPH’96), 1996.

[4] O. D. Faugeras.Three Dimensional Computer Vision: A Geometric View-
point. MIT Press, Boston, 1993.

[5] S. J. Gortler, R. Grzeszczuk, and R. Szeliski. The lumigraph. InComputer
Graphics (SIGGRAPH’96), pages 43–54, 1996.

[6] G. D. Hager and P. N. Belhumeur. Efficient region tracking with paramet-
ric models of geometry and illumination.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(10):1025–1039, 1998.

[7] G. D. Hager and K. Toyama. X vision: A portable substrate for real-
time vision applications.Computer Vision and Image Understanding,
69(1):23–37, 1998.

[8] R. Held, A. Efstathiou, and M. Greene. Adaption to displaced and delayed
visual feedback from the hand.J. Exp Psych, 72:871–891, 1966.

[9] M. Jagersand. Image based visual simulation and tele-assisted robot con-
trol. In IROS Workshop: New Trends in Image Based Visual Servoing,
1997.

[10] M. Jagersand. Image based predictive display for tele-manipulation. In
Int. Conf. on Robotics and Automation, 1999.

[11] W. S. Kim and A. K. Bejczy. ‘demonstration of a high-fidelity predic-
tive/preview display technique for telerobotic servicing.IEEE Transac-
tions on Robotics and Automation, 1993.

[12] M. Levoy and P. Hanrahan. Light field rendering. InComputer Graphics
(SIGGRAPH’96), pages 31–42, 1996.

[13] A. Shashua.Geometry and Photometry in 3D Visual Recognition. PhD
thesis, MIT, 1993.

[14] T. B. Sheridan. Space teleoperation through time delay: Review and prog-
nisis. IEEE Tr. Robotics and Automation, 9, 1993.

[15] I. Stamos and P. K. Allen. Integration of range and image sensing for
photorealistic 3d modeling. InICRA, 2000.

[16] C. Tomasi and T. Kanade. Shape and motion from image streams under
orthography: A factorization method.International Journal of Computer
Vision, 9:137–154, 1992.

[17] D. Weinshall and C. Tomasi. Linear and incremental aquisition of invari-
ant shape models from image sequences. InProc. of 4th Int. Conf. on
Compute Vision, pages 675–682, 1993.

