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Fig. 1: The partition function Zt is the expectation of all possible
{rtj} when at state st. rtj follows a normal distribution parame-
terized by r∗t . A shows a regular normal distribution. B shows a
truncated normal distribution.

A. Conditions when the cost function is a constant

We prove that when p(rtj) is a regular normal distribution
with doman [−∞,∞], the cost function Eq. (11) in our paper
is a constant which is related to human factor1 σ2

0 .
Firstly, let’s review the cost function in Eq. (11):

L = argmax
θ

∑
r∗t − logZt (1)

, where Zt is the partition function that integrates the
exponential reward rtj of all possible actions {atj} when
human demonstrator is at state st. Since human demonstrator
makes selections only from promising actions instead of any
uniform actions, we assume rtj ∼ N (r∗t , σ0), where r∗t is
reward from the selected action a∗t that is observed in the
demonstration. So Zt can be written as:

Zt = Ep(rtj ;r∗t )[exp(rtj)] (2)

Considering a [−∞,∞] domain of rtj , we have:

Zt =
∫ ∞
−∞

exp(rtj)p(rtj)drtj (3)

where p(rtj) = N (rtj |r∗t , σ0), Eq. (3) can be rewritten as:

Zt =
1√
2πσ0

∫ ∞
−∞

exp(− 1

2σ2
0

r2tj + (
r∗t
σ2
0

+ 1)rtj

− 1

2σ2
0

r∗2t )drtj

(4)
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1σ2
0 is determined by human demonstrator’s confidence level α.

Now Zt has a standard form as a Gaussian integral, which
is tractable in practice[1]:∫ ∞
−∞

k exp(−fx2 + gx+ h)dx = k

√
π

f
exp(

g2

4f
+ h) (5)

So, we have:

Zt = exp(r∗t +
σ2
0

2
) (6)

As a result, r∗t is neutralized in the cost function, Eq. (1)
can be rewritten as:

L = argmax
θ

∑
−σ

2
0

2
(7)

which is now a constant related to human factor σ0.

B. Cost function with truncated normal distribution
We empirically calculate the cost values given different rt∗

and σ0 (Fig. 2.). A Monte Carlo estimator with a sampling
size=2000 is used for computation. Results show the cost
value overall increases as r∗t grows, however the slope is
different. Lower σ0 outputs a smaller gradient for learning
the reward function while higher σ0 outputs a larger one.

Intuitively, a lower σ0 means human demonstrator is more
confident in selecting actions, which will result the learned
reward function easily over-fit to observed demonstrations.
On the other side, a higher σ0 means human demonstrator
is not so confident in demonstration. So the demonstration
samples have more randomness compared to smaller σ0
demonstrations. Any updates in the resulting r∗t should have
more value in learning.

Fig. 2: Cost function values with different σ0 and r∗t .
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