
Supplementary Materials for Generalizable task representation learning
from human demonstration videos: a geometric approach

Jun Jin† and Martin Jagersand†

I. REPRESENTING GEOMETRIC CONSTRAINTS AS GRAPHS

We propose to use graphs as structural priors to encode
the geometric constraints. More specifically, given a set of
geometric features X = {xi}, we define an undirected graph
G = (V, E) as a representation of the innerconnections
between geometric features, where the nodes V are variables
that take input of feature descriptors xi ∈ X and edges E
define their association relationships. Furthermore, suppose
a graph neural network g is used to encode the graph
structure G along with the node feature inputs X and output
a latent embedding z representing this geometric constraint.
We have:

z = g(X|G) (1)

A. Representing complex geometric features using keypoints

The above equation is the basic idea of geometric con-
straint graphs. Commonly, any geometric constraint is a
binary relationship on two geometric features, such as two
points, a point and a line, two lines, a point and a plane.
To generally describe complex geometric features using
keypoints, as proposed above, a geometric constraint can be
defined as a multiple-entity relationship that operates on a
set of feature points.

For convenience, we use [xi, ..., xm] to define a complex
geometric feature, where xi are the keypoints used for its
representation. Given this defintion, eq. 1 is rewritten as
below:

z = g(X = {[x1, ..., xm], [xm+1, ..., xn]}|G) (2)

, where xi are keypoints, [x1, ..., xm] and [xm+1, ..., xn]
represent the two geometric features, the square brackets
define a complex feature composed from a set of keypoints.
For simplicity, we denote eq. 2 as:

z = g([x1, ..., xm], [xm+1, ..., xn]) (3)

Since we’ve introduced an extra composition structure to
represent a complex geometric feature, the graph structure
G should satisfy the below two properties. For convience,
let us give the line-to-line constriant as an example, its
graph representation is g([x1, x2], [x3, x4]) where each line
is represented using two points:

†Authors are with the Department of Computing Science, Univer-
sity of Alberta, Edmonton AB., Canada, T6G 2E8. {jjin5,mj7}
@ualberta.ca

• Permutation-invariant, which means an arbitrary order
of the two complex features and the keypoints inside
each feature should contribute to an invariant graph
structure, namely:

g([x1, x2], [x3, x4]) = g([x3, x4], [x1, x2]) (4)

g([x1, x2], [x3, x4]) = g(π([x1, x2]), π([x3, x4])) (5)

, where π is the permutation operator.
• Non-inner-associative, which means changing the inner

association rules of the complex features will change the
graph structure, namely

g([x1, x2], [x3, x4]) 6= g([x1, x4], [x3, x2])

g([x1, x2], [x3, x4]) 6= g([x1, x3], [x2, x4])
(6)

Eq. 4 is naturally satisfied by the graph definition and
graph neural network [1] since a graph neural network
is required to be permutation-invariant to the input orders
of node features. However, to satisfy eq. 5 and eq. 6,
specially designed G is required for each geometric constraint
representation, which is discussed below.

a) Graph structure of basic geometric constraints::
Now we give the graph structure G of the three basic
geomeric constraints as shown in Fig. 1: (1) point-to-point;
(2) point-to-line; (3) line-to-line.

point-to-point point-to-line line-to-line

g(x1, x2) g(x1, [x2, x3]) g([x1,x2], [x3, x4])

x1 x2

x1

x2 x3

x1

x3 x4

x2

Fig. 1: The select-out graph structure of three basic geometric
constraints. The grey shaded region means the two points represent
a line. The selection process is shown in Fig. 2

Each graph structure is derived by enumerating all possible
node connections and filtering out graphs that do not satisfy
the “permutation-invariant” or “non-inner-associative” prop-
erty. To list all possible node connections inside a graph G,
we require any node v ∈ G that its degree should satisfy
deg(v) ≥ 1 and the intermediate connection nodes with
deg(v) ≥ 2, since the graph needs organize all the points
without any node or edge isolations. For example, consider
the line-to-line constraint using four keypoints. There are a
total of 38 possible structures of G. After filtering out, the
structure shown in Fig. 1 is selected out. Fig. 2 shows the
selection process.



Violate the permutation-invariant property

point-to-line
g(x1, [x2, x3])

line-to-line
g([x1,x2], [x3, x4])

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

x3 x4

x2

All possible structures✓

x1

x3 x4

x2 x1

x3 x4

x2

Examples of possible structures✓

Select out

Select out

x1

x3 x4

x2

Violate the non-inner-associative propertyLegend:

1

2

1

2

1

2

1

2

A1 A2 A3 A4

B1 B2 B3 B4

Fig. 2: Examples of how the graph structure of point-to-line and line-to-line constraints are selected out. We firstly enumerate all possible
node connections without any node or edge isolation, wherein the point-to-line has 4 candicates and the line-to-line has 38 candidates.
Then we filter out candicates that violate the above mentioned two properties. As shown above, red dot indicates violation of the
permutation-invariant property and yellow dot for the non-inner-associative property. To give examples of such violations, in B3, non-
inner-associative property is violated since g([x1, x2], [x3, x4]) = g([x1, x4], [x3, x2]).In B4, permutation-invariant property is violated
since g([x1, x2], [x3, x4]) 6= g([x3, x4], [x1, x2]).

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.


