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Abstract— Pointing to indicate direction or position is one of
the intuitive communication mechanisms used by humans in
all life stages. Our aim is to develop a natural human-robot
command interface using pointing gestures for human-robot
interaction (HRI). We propose an interface based on the Kinect
sensor for selecting by pointing (SEPO) in a 3D real-world
situation, where the user points to a target object or location
and the interface returns the 3D position coordinates of the
target. Through our interface we perform three experiments
to study precision and accuracy of human pointing in typical
household scenarios: pointing to a “wall”, pointing to a “table”,
and pointing to a “floor”. Our results prove that the proposed
SEPO interface enables users to point and select objects with an
average 3D position accuracy of 9.6 cm in household situations.

I. INTRODUCTION

In recent years, robots have started migrating from industrial
to home assistive scenarios. One of the biggest challenges in
this transition is finding natural communication mechanisms
that allow humans to effortlessly interact with a robot.
Pointing is one of the communication mechanisms frequently
used by humans in all life stages. Some researchers believe
that pointing is an important stage linking preverbal commu-
nication and spoken language [1].

When a human instructs another to perform a task, non-
verbal communication cues in the form of pointing and ges-
turing play important roles. By contrast, robots and machines
are usually instructed either by text-based programming, or
direct control of motions, e.g., using a teach pendant or
joystick interface.

Pointing gestures provide only coarse spatial information
of a target location. Adding verbal communication can
dramatically improve inferences about the spatial location
of the target. As humans, we interpret pointing in the rich
context of prior information and other cues, but rarely reflect
on the actual accuracy of pointing. Encoding verbal clues into
location information is nontrivial and often entails increased
complexity at the software level. Non-verbal pointing com-
munication seems to be a low-cost alternative in the Human-
Robot Interaction (HRI) context. A challenge in integrating
pointing gestures is that the precise pointing direction cannot
be easily inferred by a third person or a robot. Our aim is to
make human pointing gestures accurate enough such that the
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robot can detect the pointing direction and find the desired
target via the interface.

In this work we focus on visual pointing. We build
a system that reads human pointing direction, and if the
target is in the field of view, the system returns the 3D
target position. Interactions are by making intuitive gestures
without the need for an external pointing device. We evaluate
the accuracy on these both metrically and in terms of success
rate when selecting one among many ordinary household
objects.

Human machine interaction researchers have focused on
building interfaces capable of detecting pointing gestures and
estimating the 2D pointing direction. Kahn and Swain [2]
introduced a pointing gesture detection through their Perseus
architecture. Jojic et al. [3] developed a system for detecting
pointing gestures and found an estimation of the gesture
direction using stereo cameras and dense disparity maps in
real-time. Nickel and Stiefelhagen [4] used face and hand
tracking then used Hidden Markov Models to classify the
3D trajectories. Kehl and Van Gool [5] present a multi-
view approach that measures 3D directions of one or both
arms in 3D. All of the above approaches are limited to
give the direction of the pointing gesture. By contrast, our
approach is akin to ray casting in graphics and virtual reality
which computes the 3D position of the first object surface
intersected by the pointing ray [6]. A challenge is to make
this idea applicable and accurate in a real-world context.

The point-and-click method proposed by Kemp et al. [7]
enables humans to select a 3D world location using a laser
pointer. The robot is then able to detect the laser spot and
estimate its position with respect to the robot. Our ap-
proach is different, because we want to avoid using external
devices for pointing. Our proposed interface also returns
both the pointing direction and the target position (x, y, z).
Figure 1 shows the proposed system, where the Microsoft
KinectTM sensor is utilized as a non-verbal interface to
select a target object by a pointing gesture. This system has
potential relevance in HRI, e.g., commanding a robot arm to
bring a selected object.

Our target scenario addresses pointing and selection of
household objects, even though this can be applied to any
similar unstructured task. The main contributions are:

• A system for point-and-select gesture recognition. Us-
ing both the RGB camera and the depth sensor from
a KinectTM, we compute the pointing ray, the 3D
intersection between the ray and an object, and detect
a selection gesture (Section II).



Fig. 1: Using a depth camera, the system returned the (x,y,z)
coordinate of point P

• A study with nine subjects, where both the metric
accuracy of pointing as well as the success ratio of
selecting some common household objects is reported.
Three common configurations are evaluated, namely
pointing to a wall, a table and the floor (Section III).

II. INTERFACE DESCRIPTION

Our proposed interface allows the user to point to an
object and through a gesture inform the system that the target
direction is defined. Having defined the direction, the system
first calculates the location of the target object with respect
to the camera location. It then launches a tracking algorithm
in the neighborhood of the target position, which allows the
system to track the target object and return the object’s 3D
position (see Figure 1). There are two motivations behind
the use of tracking after selecting the object. The first is to
correct some of the inaccuracy of the pointing gesture. The
second is to deal with dynamic settings where objects may
be moved around.
Figure 2 shows our complete system block diagram which
can be simplified in three principal stages: (a) Gesture and
Pointing Identification Algorithm (blocks 1-5 in Figure 2);
(b) 3D Point Hit Algorithm (block 6 in Figure 2); and (c)
Object Tracking (blocks 7 and 8 in Figure 2).

A. Gesture and Pointing Identification Algorithm

We used the Microsoft Kinect sensor for acquiring depth
and color image data (blocks 1 and 2 in Figure 2). The
first step is to do a color and depth camera calibration
(block 3) [8]. Then using the free cross-platform Kinect
driver OpenNI and the NITE skeletal tracking library [9],
we identify the upper-torso joints (block 4). These joint
locations are the input to the spatial gesture recognizer
module (block 5), which is implemented as a finite-state
machine. In our particular pointing interaction scheme, we
use three states as shown in Figure 3. In the first state

Fig. 2: SEPO system Diagram

the user stands in front of the Kinect and makes a neutral
calibration pose. This allows the NITE skeletal tracking
library to initialize by doing background substraction, human
silhouette identification, and skeleton joint-value extraction.
The transition from first state (calibration/initialization) to the
second state (target selection) is done when the user points
to the target with her dominant hand and raises her non-
dominant hand over her shoulder to confirm the pointing
direction. If the user lowers her non-dominant hand below
her shoulder, the state shifts to the third state, in which
the object is being tracked. When the user points to other
targets and gives a target selection gesture (raising her non-
dominant hand over her shoulder again), the state is shifted
to “selection”.

Fig. 3: Object selection state diagram

B. 3D Point Hit Algorithm

For building the hit algorithm, we used two pointing
direction configurations, the line between head and dominant
hand (LHH) and line between dominant elbow and dominant
hand (LEH). Having the pointing direction, we need a 3D
world representation for finding the 3D hit point. We used
the PCL library [10] for extracting and manipulating the 3D
point cloud from the depth camera sensor. And then, we add



in real-time the location of the user torso joint values inside
the point cloud which allows us to find the pointing location
looking at the LHH or LEH configuration.

After acquiring the pointing direction by having either
LHH or LEH configuration we can define a parameterized
line equation:

~l = ~Jupper + t (~Jhand − ~Jupper), (1)

where ~l is the parameterized line vector, t ∈ R+ is a non-
negative real-valued step of the parameterized line, ~Jhand is
the 3-vector of the 3D hand coordinates, and ~Jupper is the
3-vector of the 3D elbow or head coordinates, depending on
the chosen configuration. For our ray to point cloud searching
algorithm, we can simply replace the parameterized line
inside the sphere equation, returning a discrete set of spheres
located across the line:

‖ ~x− (~Jupper + t(~Jhand − ~Jupper)) ‖2= r2, (2)

The point cloud generated by the depth sensor is structured in
an octree and the algorithm iterates over the multiple spheres
defined in (2) for a possible hit point.

Fig 4 shows a user inside the point cloud using the LHH
direction configuration where the red sphere is the tracked
position of her head, the blue sphere her hand and the green
sphere the target location. Notice that a virtual ray (red line)
is shown in real time indicating the pointing direction.

Fig. 4: System Visual Output

C. Object Tracking

The last stage of our interaction consists in tracking the
selected object. We take advantage of the direct correspon-
dence between the 2D image pixels and the 3D points from
the RGB camera and depth camera calibration. After getting
the 3D target location from the point cloud, we mapped
this location to the 2D image and ran a 2D tracker in the
neighborhood region for tracking the hit object. In our system
we used a 2D Camshift tracker [11], it outputs the centroid
location of the 2D tracking region. After the object changes
its position the inverse mapping procedure is done using the

centroid pixel coordinate as input and returning as output
the 3D location of the object tracked (see Figure 4). Besides
dealing with object location changes, and assuming that the
hit object has a uniform color, the Camshift algorithm finds
the centroid of the object and therefore corrects the hit point
position into the centroid of the object.

Although in our experiments we didn’t perform this stage,
a typical use for SEPO in HRI context could be to initialize
a tracker on an object as explained before and then input
this to a control routine, e.g., visual servoing, to command
a robot to reach for the desired object.

III. EXPERIMENTS

We are particularly interested in quantifying three aspects:
• Human accuracy in LHH and LEH configuration.
• Precision in LHH and LEH configuration.
• Hit accuracy for typical household objects.

Where accuracy is understood as the distance from the
measure value to the reference value i.e. Euclidean distance
between the hit point and the target location, and precision as
the average spreading distance around the measure location.

A. Experiment setup

To avoid the influence of fatigue in our trials we divided
the experiments in three main sections: “table”, “floor” and
“wall”. Each section had a duration of approximately 20
minutes per participant. The experiments were carried out
on three days in a row. We had nine subjects participating.
Seven male, two female, all with normal or corrected to
normal vision and right-handed. The age varied between 18
and 34. All setups consisted of a Microsoft Kinect running
simultanously the RGB and depth camera, a regular Linux
machine with our SEPO interface software.

All three main sections were divided like this.
For the “table” section (left Figure 7) a tabletop (height 67
cm) was divided to a field of 5 by 6 squares with 10 cm
side length each. In the middle of these squares numbered
targets were attached ( red targets Figure 5). For pointing on
the table the subject stood with a distance of approximately
0.5 m on one side of the table.

For the “floor” section (middle Figure 7) a plateau was
divided in 3 by 3 squares of 50 cm and marked with
numbers for rows and columns(Figure 6). The subject was
asked to stand at different locations for pointing a particular
intersection or objects.

For the “wall” section (right Figure 7) a poster of 14
by 10 squares of 10 cm side length each was attached and
equipped with numbered targets (Figure 10). Additionally to
the poster there were a horizontal (right) and a vertical row
(up and down) of squares attached to the poster to measure
the accuracy over a big area. The subjects had a distance
of 80 cm to the wall centered in front of the poster (right
Figure 7).

B. Experiment description

Before the pointing process could start each subject had to
go through the calibration process of standing facing to the



Kinect, putting up both hands, waving them back and forth
and maybe taking a step towards or away from the Kinect
untill the person was tracked. After that the participant was
asked to go to the pointing position. The person was allowed
to orient herself freely and suitably for the pointing direction.

Sections “table” and “wall” were subdivided into 11 short
tasks, and section “floor” in 10. For all the sections, in the
first two tasks the subject was asked to point at the called
number (bottom Figure 5) or intersection (bottom Figure 6)
and to select the pointing position by raising the left arm.

Fig. 5: Hit%, ”table” scenario, numbers in blue in the bottom
image corresponds to numbers in bargraph

No further instructions were given. The subject was sup-
posed to point as natural as possible. While carrying out
the first task the LHH configuration was applied and in the
second task the LEH configuration. In the third and fourth
task the subject was told that the system is running with the
LHH strategy now. In the fifth and sixth task the participant
was asked to point with the LEH strategy. The accuracy
of those tasks with the knowledge of the strategies were
compared and the following tasks were carried out with
the more accurate strategy. In the last task (eleventh for
“table”and “wall”, tenth for the “floor”) real objects were
added to the scene and the subject was asked to point at
them.

After the last experiment the subjects were asked to
complete a questionnaire. The evaluation showed that the

Fig. 6: Hit%, ”floor” scenario, numbers in blue in the bottom
image corresponds to numbers in bargraph

Fig. 7: Experiments, Left:table, Middle:floor, Right:wall

subjects did not think the accuracy of their pointing changed
in the three scenarios. The self-reported overall difficulty
was rated in the middle of the spectrum (variance 5.61) and
overall fatigue slightly under medium (3 of 7 with 7 as very
high, variance 4.44). As the variance in both of these ratings
shows people had a different sense of how difficult and tiring
the pointing and selecting was. The head and hand alignment
strategy was preferred, only two participants liked pointing
with the forearm better. We also asked how annoying the
gesture of raising the hand for finally selecting the object
was. The participants rated the annoyance in the middle of
the spectrum with a variance of 2.78.

C. SEPO Accuracy and Precision

In this section, we evaluate the accuracy and precision
of the SEPO interface in three scenarios: “table”, “floor”,
and “wall” and compare the two pointing configurations:



LHH and LEH. The results are summarized in Figure 8. Our
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Fig. 8: Elbow and head hand-line pointing results

results confirmed published data which says that pointing is
more accurate and precise in the case where the pointing
direction is computed from the head-hand line than in the
case where the pointing direction is computed from the
elbow-hand line [12]. In addition our results suggest head-
hand pointing on the table with SEPO interface is more
precise than pointing on the Wall and the floor.

This can be explained by fact that the table setup presents
an adequate ratio of the proximity of the subjects to the
visually tracked area of the objects. The accuracy of pointing
to the wall and on the table is respectively 2.5 cm and 2.4
cm better than for the floor.

After task 6 the following tasks were carried out with
the more accurate strategy which was LHH, experiments are
summarized in Figure 9 with 5 of our participants.

For the table scenario, the subjects point 2 times repeatedly
to 4 different locations on a numbered grid (see the picture
of the table in Figure 5). The results indicate an average
accuracy of 8.8 cm across all participants within a [5.4, 12.4]
cm range. To give task related sense of the accuracy, we can
say that on average users would have no trouble pointing
to bigger objects (e.g., cereal box, juice box); see bottom
Figure 5). The average precision acquired for this experiment
was 1.1 cm within a [0.4, 5.2] cm range.

For the floor scenario, the subjects point repeatedly 4 times
to 3 different locations on the grid floor (see Figure 6). The
results indicate an average accuracy of 11.3 cm across all par-

ticipants within a [4.0, 18.6] cm range. The average precision
acquired for this experiment was 3.1 cm within a [2.7, 14.1]
cm range, users would have no trouble pointing objects like
toolbox, garbage bin, vacuum cleaner(see Figure 6).

For the wall scenario, the subjects point twice to each
of 3 different locations on a grid pattern on the wall (see
Figure 10). The results indicate an average accuracy of 8.8
cm across all participants within a [3.6, 18.3] cm range.
The average precision acquired for this experiment was 3.4
cm within a [0.6, 11.5] cm range, users would have no
trouble pointing objects like poster, ballon, wall-clock (see
Figure 10).

D. Evaluation of 3D Point Hit Algorithm on Everyday Tar-
gets

To validate our experimetal results we performed a visual
evaluation using our system visual output (Figure 4). The
experiment include real objets for each of the scenarios.
Through the visual system output we detect if the object
was succesfully selected. If the object was missed we
noted how many squares it is away from the object. The
average of hit percentage was 58% for all the objects on
the table, 100% for big objects (10,11 in Fig. 5), 57% for
medium objects (7,8,9 in Fig. 5) and 41% for small objects
(1,2,3,4,5,6 in Fig. 5). The average of hit percentage was
69% for all objects on the floor, 96% for big objects (6,7,8
in Fig. 6), 52% for medium objects (3,4,5 in Fig. 6) and
55% for small objects (1,2 in Fig. 6). The average of hit
percentage was 51% for all objects on the wall, 89% for
big objects (4,5,6 in Fig. 10), 33% for medium objects (3
in Fig. 10) and 22% for small objects (1,2 in Fig. 10).
The difference in hit% between the scenarios is due to the
relation between surface area projected in the user field of
view and the distance to the target object. Bigger objects
(e. g. table: cereal box, juice box;floor:vacuum cleaner, tool
box;wall:balloon, poster) were hit more often than smaller
ones (picture frame, flower pot or pin). When an object
was missed the hit point was almost all the time in an area
of one square (10 cm on the wall, 50 cm on the floor)
from the desired object. The results are summarized in
Figures 5,6,10).

E. Subjective evaluation

As some of the participants of the trial found raising the
left hand for finally selecting an object was pretty annoying,
alternative gestures should be considered. The subjects were
asked to make suggestions. One of these was using verbal
commands. An advantage of the verbal commands is that
they could add another factor to make the selection more
precise with for example telling the color or the shape of the
desired object. Another solution that could be thought of is a
handheld button with the drawback that when using a button
you can’t handle other objects, and as mentioned before we
are particularly interested in not introducing any invasive
device to our interface. Other proposals from trial subjects
were making a fist, opening the hand or simple nodding.
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Fig. 9: Accuracy and precision results for LHH configuration

These are undeniably gestures which can be carried out with
less effort.

Besides searching for an alternative to the gesture, making
the gesture more precise or using different gestures for
different commands could be a big advantage even if it would
add more complexity to the interface. For example pointing
with a special finger could mean that something in a special
place (wall, floor or table) or something with a special color
is meant.

Fig. 10: Hit%,”wall” scenario, numbers in blue in the bottom
image corresponds to numbers in bargraph

IV. CONCLUSIONS

We have proposed the selecting by pointing (SEPO) inter-
face for HRI, based on the Microsoft Kinect sensor. We have

studied three specific household scenarios: “table”, “floor”,
and “wall”, with two different pointing configurations LHH
and LEH. Our results have demostrated that the LHH config-
uration consistently outperforms the accuracy and precision
of the LEH configuration. This is consistent with other
results in the literature. Our results has also shown that
the proposed SEPO interface enables users to point to and
select objects with an average position accuracy of 9.6±1.6
cm in household situations, that means we can successfully
selected objects similar to: cereal box on the kitchen table, a
notebook on the desk, a poster on the wall, a vacuum cleaner
on the floor, etc. A demonstration of the SEPO interface
can be seen in the accompanying video or in our website
http://webdocs.cs.ualberta.ca/˜vis/HRI/.
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