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Abstract— Upper-body disabled people can benefit from the
use of robot-arms to perform every day tasks. However, the
adoption of this kind of technology has been limited by the
complexity of robot manipulation tasks and the difficulty in
controlling a multiple-DOF arm using a joystick or a similar
device. Motivated by this need, we present an assistive vision-
based interface for robot manipulation. Our proposal is to
replace the direct joystick motor control interface present in a
commercial wheelchair mounted assistive robotic manipulator
with a human-robot interface based on visual selection. The
scene in front of the robot is shown on a screen, and the user
can then select an object with our novel grasping interface. We
develop computer vision and motion control methods that drive
the robot to that object. Our aim is not to replace user control,
but instead augment user capabilities through our system with
different levels of semi-autonomy, while leaving the user with
a sense that he/she is in control of the task. Two disabled pilot
users, were involved at different stages of our research. The
first pilot user during the interface design along with rehab
experts. The second performed user studies along with an 8
subject control group to evaluate our interface. Our system
reduces robot instruction from a 6-DOF task in continuous
space to either a 2-DOF pointing task or a discrete selection
task among objects detected by computer vision.

I. INTRODUCTION

Assistive robotics can help people with movement disabili-

ties. In particular, robot manipulators can benefit people with

limited upper body mobility. However, despite much research

efforts robot manipulation in general human environments is

still an open problem [1]. State of the art rehabilitation robot

arms try to duplicate human arm functionality by providing 6

or 7-DOF motion. Typically manufacturers provide a joystick

interface or a customized input device based on the end user’s

disabilities. User typically suffer from disabilities such as

spasms or muscular dystrophy making control a bigger chal-

lenge. Mapping from the high DOF arm to a 2DOF joystick

requires switching between modes which couple the joystick

to different translation, rotation and grasp motions. This is

time consuming, cumbersome and increases complexity and

cognitive load for users. While tele-manipulation is the norm

in rehab, much robotics research focuses on autonomy. User

interaction can be minimized by ceding more autonomy to

the robot. However, as pointed out by Kim et al. [2], disabled

users preferred to keep as much control as possible with

the aim of reasserting their domain of interaction with their

environment as well as to engage and exercise their cognitive

abilities to the fullest.
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Fig. 1: Vision-based User Interface to a 6DOF robot arm and hand. By pointing and

selecting in a 2D video image of the scene, the user can point to objects, select grasp

types and execute robot actions. (Image edited from original to clarify that our system

must be operated with both the arm and Kinect mounted on the wheelchair).

In the past decade several researchers have been working

on simplifying the interaction between upper body disabled

users and assistive robot arms, [3], [4], [5], [6], [7].

However, they focus more on how to achieve the manip-

ulation task rather than how it is presented to the end-user.

A more interesting interface implemented by [8] presents

the operator with a 2D and 3D scene visualization and

a wide range of interaction methods and tools to control

a PR2. Numerous mobile manipulators have been used as

assistive plataforms: PR2 [8], Care-O-bot 3 [9], EL-E [10].

A drawback with these systems, as pointed out by [8], is that

despite previous advances in assistive mobile manipulators,

none has been widely adopted by disabled end users to date.

Part of the reason is their cost making them not suitable

for widespread commercial adoption. In contrast, our system

is evaluated on a Kinova Jaco, one of the most widely

adopted robot arms by disabled users. Another limitation

of mobile manipulators is the use of an allocentric system

where the robot can move independently from the user. For

instance Ciocarlie et al. [8] test their system with a pilot user

completing a task that consists of retrieving a towel from

the kitchen combining navigation and door/drawer opening

and closing and object grasping. The complete task took 54

minutes. In our use-case, where the user is in constant use

of a wheelchair and the manipulator, having the human-in-

the-loop in a physical egocentric reference reduces operation

time and solves many of the perception, navigation and ma-

nipulation problems encountered in other systems. The main

strengths in our system compared to the others described

above are adaptability and simplicity. Our interface turns the

complexity of a multiple-DOF robot arm into a 2D object

selection interface. Although our system is capable of doing



autonomous grasping, our aim is to enhance user control

rather than replace it by providing different levels of semi-

autonomy our system can be easily adapt to different degrees

of disability. We develop a computer vision-based system that

focuses on user interaction. Our main contributions are:

• Intuitive 2D image-based interface (VIBI) with different

levels of autonomy that hides the complexity of robot

arms. Our HRI has evolved through several iterations

of feedback from Kinova rehab engineers and from

interactions with our first pilot user.

• Our system introduces a 2D grasping cursor, which

allows the user to select a suitable grasp orientation.

• No need of a-priori 3D models of the objects, scene,

and/or an image database.

• Easy portability from one robot-arm to another. Our

system can be easily integrated with any robot arm that

exposes basic functionality: angular joint control and

current joint values. Our system was initially imple-

mented on our lab’s 7-DOF Barrett WAM arm, then

ported to a 6-DOF Kinova Jaco.

• Quantitative and qualitative evaluation of our VIBI

system through a user study with our second pilot user

and eight control subjects.

II. SYSTEM DESCRIPTION

Our proposed system uses a robot-arm, Kinect sensor,

screen and a low power computer, see Figure 4. Typically,

electric wheelchair users equipped with a robot-manipulator

use the same wheelchair motion control device to interface

with the robot-manipulator. This is adapted to ther capa-

bilities by a physical therapist who selects an appropriate

interface device for the handicap. Mouse emulation for PC

operation is usually also designed and we take advantage of

this for our interface. In our system, the scene in front of

the user is shown on a screen, and the user can then select

an object (see Figure 1). A demonstration of our system can

be seen in the accompanying video.

We performed three iterations of revisions following feed-

back from a potential end user of our system (pilot user

1) and handicap robot engineers at Kinova. From this we

learned: (1) Users prefer a system that works reliably with

manual intervention to a system that is autonomous but not

reliable. (2) Automating the 6DOF translation and rotation

needed to reach and align for a grasp is a high value goal. (3)

Users like to have direct control rather than autonomy when

they perform a fine manipulation e.g.,grasp, poke object,

drink.

A. Levels of Autonomy in the User Interface

As mentioned previously our aim is not to replace user

control. This has led us to design our system with differ-

ent levels of autonomy. We propose three types of object

selection: 1D List Selection, 2D Image Plane Selection,

General Pick Selection and one placing mode: General

Place which are described below.

Fig. 2: 1D List Selection: Motion commands to the robot are given by discrete selection

from displayed options (Gamepad is used to simulate user joystick input).

A. Computer vision detects objects on horizontal planes (tables, counters), generates

a linear list of the objects and highlights the detected objects with green markers.

B. The user then iterates through the list to select an object. For users with spasms

we threshold joystick vibration to trigger iteration.

C. A grasping cursor appears. The user can iterate again over the three possible gasping

approaches: right, left and front.

D. Green or red indicates if the grasping is possible or not

E. The robot moves close to the selected object with the desired grasping orientation.

F. User can retake control of the robot and finish the grasping by joystick teleoperation

or command the system to finish autonomously.

1) 1D List Selection: After interacting with our first pilot

user who has spasms this control mode was designed for

upper body disabled with high mobility restrictions. Discrete

selection of the target object from a list requires users to

generate noise with their input device in order to iterate over

the available selections (see Figure 2).

2) 2D Image Plane Selection: This selection mode is

intended for users with the ability to efficiently control the

joystick coarsely in 2D. Instead of linearly iterating through

the list of detected objects, the user selects from the 2D

image. The system then highlights the detected object closest,

in 3D, to the click and selects it (Figure 5A).

3) General Pick Selection: When the system is not able

to detect an object in the scene correctly, or simply if the

user wants a more flexible way to interact, Pick Selection

allows an approximate positioning of the robot end-effector

to any desired 3D location by having the user click in a 2D

image and compute the corresponding 3D location. Refer to

Figure 3A.

4) General Place Mode: After picking up an object,

the user can select a scene location for placing it, e.g., in

Figure 3C the user wants to place a box of juice inside the

blue container. In this case, the user clicks inside the blue

container, and then selects a grasping approach by clicking

in the grasp cursor. The robot-arm moves to an approximate



location slightly above the desired location, with the selected

grasping orientation. The user then finishes the task via

teleoperation. In e.g., drinking and other proximal tasks it

is common in handicap robotics to have pre-recorded poses.

The user can also bring the object to any of these. Notice

Fig. 3: Left column shows system user interface, right column a point cloud visual-

ization.

A. User’s view. The Pick mode is activated. The grasping cursor was used to position

the robot from a top grasping approach.

B. Point Cloud view. The red sphere corresponds to the 3D location of the selected

point in the RGB image. The blue sphere to the top grasping location, and the green

spheres the right and left grasping locations.

C. The Place mode is activated. The grasping cursor is used this time to place an

object. A right placing location is selected.

D. The red sphere corresponds to the 3D location of the selected point in the RGB

image. The blue sphere to the top placing location and the green spheres to the right,

left placing locations. Notice that the only difference between Pick and Place modes

is the distance between the green, blue and red spheres.

that the novelty of our interface relies on the simplicity of its

visualization. Even though the point cloud output is available,

what we present to the user is only a simple 2D RGB image,

where we hide the complexity of the 3D grasp orientations

by discretizing them.

B. System

Our system is composed of 4 modules as shown in

Figure 4: Interface, Calibration Vision and Robot-Arm

modules:

Fig. 4: System Diagram. Our proposed system uses a Kinect camera, screen and

regular Linux PC. The Vision and Robot-Arm modules abstract the complexity of

the arm which is presented to the end-user through the Interface module as a 2D

image interface.

1) Interface: The person views the regular 2D RGB

video from the Kinect scene camera on a screen. All user

interaction is defined with reference to this visual interface.

A blue label in the top right of the interface indicates the

current mode (Figures 3 A and C) and is also used to change

the current mode. In the case of the 1D List Selection, the

blue label (mode changing) can be included in the iterative

selection to avoid clicking.

2) Calibration: Our system assumes that the RGB-D

camera is fixed on the same reference frame as the robot-arm

(i.e.,the arm and the Kinect are mounted on the wheelchair).

We designed a visual 2D interface for calibration purposes.

The arm moves the end-effector through a set of predefined

points Ri(x, y, z) corresponding to motions along the robot-

arm frame of reference. The user then clicks on a known

marked point on the robot at each of the i locations on

the 2D image. Using the depth data from the Kinect the

transformation matrix relating the Kinect’s and the robot’s

frames of reference is acquired.

3) Vision: This module provides all the vision function-

ality using the Kinect camera which is composed of a depth

and RGB camera.

Two approaches are used to locate the objects: (1) By

using the depth and RGB camera correspondence, the user

can directly select a 2D image region and the 3D coordinates

associated with it is used as the estimate object location. This

approach is used by General Pick, General Place modes,

see Figure 3. When using these modes, the system provides

a step trajectory tool (see Section II-B.4) where the user

can stop the movement before any collision. (2) The system

detects automatically the objects location in the horizontal

plane closest to the Kinect. Both 1D List Selection and

2D Image Plane Selection use this approach. First the

point cloud obtained from the Kinect is downsampled with

a voxelized grid approach. Then using RANSAC [11] and

a 2D convex hull, the table plane coefficients, inliers and

points that belong to the table are found. Next, the inliers

are clustered by distance to distinguish the objects. Finally,

the mean vector for each cluster and the minimum bounding

box are calculated.

After having the object’s centroid and estimated bounding

box, the grasp locations are calculated. The top grasp (blue

sphere in Figure 5B) is calculated as a factor of the object

bounding box height. To calculate the right and left grasp

points, a grasping ring around the selected object (purple

spheres in Figure 5B) parallel to the plane that holds it, is

defined. Using the plane coefficients a normal vector n =
{nx, ny, nz} to the plane is calculated. Next the vector a =
{1, 1, −nx−ny

nz

} parallel to the plane is found. Having n and

â = {a1, a2, a3}, where â is the normalized vector of a, we

find b = â × n = {b1, b2, b3}. Based on these vectors, the

location of the grasping spheres around the object centroid

is defined by:

X(Θ) = c+ rcos(Θ)â + rsin(Θ)b

The radius r of the ring is calculated based on the

width value of the object’s bounding box. The point cloud

visualization of our system is shown in Figure 5B. The bear

was selected, using the 2D Image Plane Selection where

the blue sphere and purple spheres around the bear were



constructed as described above.

Fig. 5: A.The 2D Image Plane Selection is activated (blue label top right). Objects

detected in the scene are marked by a green ring. The grasping cursor is being used

to position the robot from a top grasping approach.

B.The green spheres are the 3D centroid locations of the objects detected in the scene.

After selection is done, a red sphere appears representing the 3D location of the selected

point in the RGB image. The system corrects the selection to the nearest centroid and

constructs a ring of purple spheres used for the right and left graspings. A blue sphere

is also added for the top grasping.

4) Robot Arm: Through this module, arm trajectories are

generated given the grasp location and orientation calculated

by the vision module. Arm trajectories can be executed

completely autonomously, or iterated manually by the user.

Additionally, it is possible to define constraints on regions

within the arm’s workspace. We use ROS and Moveit!

[12], allowing for rapid deployment across different arms

and enabling us to leverage work done by the robotics

community. In order to add support for new arms within the

system, we require a model of the arm and a simple interface

to extract or set angular joint positions. In the case of the

Jaco arm we later removed the ROS dependency and utilized

the built in cartesian planer to reduce system requirements.

III. EXPERIMENTS

Our system was tested by two disabled users and an 8

person control group. Our first pilot user was involved during

our interface design along with rehab experts. He suffers

from cerebral palsy, due to his condition, he has restricted

upper limb movements and suffers from spasms. Feedback

from Kinova and disabled users lead us to substitute the left

grasp for a more common front grasp, and ROS MoveIt!

for JACO’s native motion planning. Although MoveIt! is

more portable, it computes trajectories that users deemed

unnatural and it is computationally expensive (Full day

battery life is important). Our second pilot user has a form

of quadriplegia. He has no hand or finger movements, just

gross arm movements. He performed user studies along with

an 8 subject control group to evaluate our interface. Our

control group consists of 8 participants with normal hand-eye

coordination aged from 18 to 34 with 6 males and 2 females.

We performed two experiments for testing our system: an

orientation task (Figure 6) and a drinking task (Figure 9).

Both the pilot study user and our control group ran the two

experiments. The average time per participant to complete

the two experiments was 1 hour including break times and

an initial 10 minute training period.

A. Tasks and data Analysis

The operator station consists of a mouse, screen and

joystick. In front of the control station, a Kinect camera was

located facing a 100x160cm tabletop with the JACO arm

attached to the table. We adapt a joystick to the limitations

of our disabled user and integrate a mouse pad that he uses

on daily basis for internet navigation (see Figure 7).

Fig. 6: Orientation Task. User was asked to locate the robot hand in a pre-grasp position

for three specific orientations right (A), top (B) and front (C).

Fig. 7: Set-up for our pilot study. For direct teleoperation, we adapted a joystick. For

interacting with the visual interface, we integrated end-user’s regular PC mouse-pad.

(A) Orientation task, (B) Drinking task.

1) Orientation task: The first experiment is a pre-grasp

orientation task. An object was placed over tabletop and the



Orientation t P-value Range

Right 2.73 0.018 (1.06, 19.37)

Top 4.14 0.004 (8.74, 34.05)

Front 4.85 0.004 (9.09, 27.66)

TABLE I: Control group orientation task: t, P-value and range of time improvement

with 95% confidence. Range time in seconds.

user was asked to locate the robot hand in a right, top and

front orientation with respect to the object (see Figure 6).

Two control methods were used: (1) Direct teleoperation

through JACO’s built in Cartesian controller driven by a

joystick and (2) Visual interface selection mode. To avoid

bias, order of selection of the control method and orientation

order was randomized for each user. During the task, the

user was asked to complete 9 grasp orientations. During the

experiment, we record the time it takes the user to complete

each orientation and the number of times the user switches

modes with the joystick to achieve translation, rotations and

grasp motions of the arm. A comparison between the average

time to complete the different orientations using the joystick

and our proposed visual interface is shown in Figure 8. In the

three orientation cases, the visual interface outperforms the

joystick, for both the pilot study and the control group. The

easiest orientation was right followed by front and top. This

was expected because the JACO arm was mounted as a right

handed one, where its starting position is a right orientation.

For the control group, a paired t test for comparing the

two modes for each orientation was performed. We wanted to

know if the interface decreases operation time as compared

to the joystick mode, i.e.,H0 : µd = 0 versus Ha : µd > 0
with a significant level α = 0.05. Here µd = µJoystick −
µInterface where µJoystick and µInterface are the mean time

to complete the orientation using the joystick and using the

interface respectively. The t and Pvalues for each orientation

are shown in table I. Since Pvalue ≤ α we reject H0 :
for all the orientations. This data analysis confirms that the

interface mode decreases operation time in comparison with

the joystick mode. A paired t confidence interval is also

computed. Pairing the samples, the interval is given by x̄d±
(tCriticalV alue) ∗ Sd√

n
, where Sd is the standard deviation

and n is the number of samples. Using a 95% confidence

interval, the last column in table I shows the average range

improvement in seconds between the joystick teleoperation

and our interface (i.e.,we can be 95% confident that grasping

from the top with our interface saves between 8.74 to 34.05

seconds in comparison with the joystick teleoperation). On

average, our interface was faster for positioning and orienting

the robot than the joystick interface. Disabled people in

general have more difficulty providing input as seen in the

joystick teleoperation performed by the disabled user, as

shown figure 8. However since our visual user interface

reduces the amount of input compared 6DOF direct robot

control, the same task time can be reduced in some cases

by a factor of 5 (compare in Figure 8, disabled user visual

interface time with disabled user joystick time). Similarly the

gap between the disabled user and the control group is also

reduced.

Fig. 8: Average time to complete orientation. When performing an orientation task our

pilot study user was faster by 73%, 89% and 81% when using our interface to orient

from the right, top and front respectively. When performing an orientation task the

control group users were faster by 63%, 75% and 70% when using our interface to

orient from the right, top and front respectively.

Fig. 9: Drinking Task. A cup is surrounded by obstructing objects, the user was asked

to bring the cup to a position where he can drink from it. In this particular trial the

user decides to moved first the bear to unblock the cup (A) and (B). Then, orient the

hand in a right grasping position, pick up the cup and finally bring it close to her (C)

and (D).

2) Drinking task: A cup was surrounded by different

obstructing objects (see Figure 9). The user was asked to

bring the cup to a position where she can drink from it.

The user was also told that the cup was full of water and

that her objective was to not spill the water during the

process of bringing the cup close to her mouth. The user

was free to decide what obstructions to remove and grasp to

use. Two control methods were used. Each user performed

the task three times per control method. To avoid bias,

order of selection of the control method was randomized for

each user. The two modes used were: (1) Control the arm

with direct teleoperation through JACO’s built in Cartesian

controller driven by a joystick. (2) Alternate the arms control

between direct teleoperation and an assisted control scheme

where our visual interface was used to position the arm,

and the joystick controller was used to finalize the grasping

task. A comparison between the direct teleoperation using the

joystick and the mixed joystick-interface approach is shown

in Figure 10. The disabled user performed slightly better with

joystick-interface than by only using the joystick. However,

the control group performed better using only the joystick.

A possible explanation of the results is that shifting between

the interface and joystick may increase execution time. The

better performance of the disabled user could be attributed to

the higher demand that joystick control entails when faced



with limited mobility.

Fig. 10: Time to complete the drinking task for the joystick and a mixed mode using

the joystick and our proposed vision interface.

3) Subjective analysis: At the end of the experiment, users

were asked to fill a questionnaire. In the first section, the

user rates in a Likert-type scale from 1 to 7 the difficulty of

completing both tasks with the two different interfaces. The

results are shown in Figure 11. Both tasks where completed

by all users during our trials. During the orientation task,

both disabled user and control group perceived the joystick

at least 2 times more difficult to use than the interface.

In the drinking task, the joystick-interface was perceived

easier than the only joystick control mode. In general, users

perceive the use of the interface easier than the direct

joystick teleoperation. Something interesting to notice is that,

although the time performance in the control group was

better using only the joystick in the drinking task, the user

perceived less difficulty when the interface was used. Thus

indicating that faster performance does not necessarily reflect

a better system.

The last question consists in rating how physically and

mentally demanding the use of both interfaces was. The

result is shown in Figure 11. It is clear that the use of

our vision system is less demanding physically and mentally

for both the disabled user and the control group. This is

also expected because, as we mentioned, through our 2D

interface, we hide the complexity of controlling a robot-arm.

Fig. 11: Users rated on a scale from 1-7. Left: the difficulty of completing the

orientation task and the drinking task using the joystick and our vision interface.

Right: The physical and mental demand on completing both orientation and drinking

task

IV. CONCLUSIONS

We designed and developed a computer vision system

aimed to allow upper body disabled people to use a robot

arm. Our system was implemented on two different robots:

Barrett’s WAM arm and Kinova’s JACO arm. Our system

was successively improved by having discussions with Ki-

nova robotics and one disabled robot arm user who owns a

Jaco and uses it daily. The user study was performed by

a different disabled pilot user and 8 able participants in

a control group. Our vision system on average was faster

than the direct joystick control in achieving an orientation

tasks. The vision system on average was 1.81 and 1.69 times

faster than the direct joystick control in achieving orientation

tasks for our pilot study and our control group respectively.

While performing a drinking task, it was slightly faster in the

pilot user study and slower in the control group. However,

participants rated the vision system easier to use than direct

joystick control of the arm for all cases. Our experimental

results suggest that our system would be helpful to disabled

users of wheelchair mounted robot arms such as Kinova’s

Jaco.
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