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Abstract— This paper explores visual pointing ges-
tures for two-way nonverbal communication for in-
teracting with a robot arm. Such non-verbal instruc-
tion is common when humans communicate spatial
directions and actions while collaboratively perform-
ing manipulation tasks. Using 3D RGBD we com-
pare human-human and human-robot interaction for
solving a pick-and-place task. In the human-human
interaction we study both pointing and other types
of gestures, performed by humans in a collaborative
task. For the human-robot interaction we design a
system that allows the user to interact with a 7DOF
robot arm using gestures for selecting, picking and
dropping objects at different locations. Bi-directional
confirmation gestures allow the robot (or human) to
verify that the right object is selected. We perform
experiments where 8 human subjects collaborate
with the robot to manipulate ordinary household
objects on a tabletop. Without confirmation feedback
selection accuracy was 70-90% for both humans
and the robot. With feedback through confirmation
gestures both humans and our vision-robotic system
could perform the task accurately every time (100%).
Finally to illustrate our gesture interface in a real
application, we let a human instruct our robot to
make a pizza by selecting different ingredients.

I. INTRODUCTION

Robot arm manipulation in household robotics

has been studied for more than two decades, yet

robots are still not capable of dealing with home

environments [1]. Household environments pose a

challenge for robots because they are unstructured

and dynamic. Recently, several researchers have

been working towards solving this challenge [2].

Robot automation has been useful for industry, but
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Fig. 1: Instructor and assistant interaction

A. Human-Human: Human instructor selects an object by pointing. A

human assistant asks if his interpretation is correct.

B. Robot-Human: Robot instructor selects an object by pointing. A

human assistant interprets the pointing gesture performed by the robot,

approaches the table and picks the selected object.

C. Human-Robot: Human instructor selects an object by pointing. A

robot assistant is ready to reach the selected object.

robots in household situations require a different

interface. A better approach consists of robots capa-

ble of collaboratively interacting with humans [3],

[4]. Non-verbal gesture communication is a pow-

erful human interaction. Lozano and Tversky [5]

conducted experiments where human participants

performed an assembly task instructed by speech or

gestures. Participants understood and learned better

from gesture-only than from speech-only instruc-

tions. Important human-robot interaction cues can

be learned from human-human non-verbal commu-

nication.

Our work focuses on human-robot non-verbal

communication, where human-robot interaction is

performed without devices such as tablets and

control panels. Instead gestures are used to let

communication occur directly between humans and
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robots. This paper aims at studying and developing

communication mechanisms that allow humans to

intuitively instruct or cooperatively achieve a ma-

nipulation task with a robot, that uses a gesture-

based human-robot interface (HRI). In contrast to

the other works mentioned above, we will focus on

the visual interpretation of pointing in a pick-and-

place task (Section II) and the interaction between

the human and the robot for solving the task.

Pointing to indicate direction or position is one of

the intuitive communication mechanisms used by

humans in all life stages. However, misinterpreting

a pointing gesture could lead to a wrong direction

or position. Humans have the capacity to corrobo-

rate gesture interpretations by interacting with each

other. An immediate goal of this paper is to give

the robot the same functionality during human-

robot interaction. We think that researching human-

like interfaces will bring robots closer to becoming

useful in home environments. Our contributions

are:

• A human-robot gesture language for two-way

communication in pick-and-place tasks.

• A vision system using a Kinect that can: detect

gestures, detect objects location on an hori-

zontal plane, detect human pointing direction

and infer a 3D pointing location in the scene.

Based on that location the system can infer

what object is being pointed to and return a

possible grasping location. If the return object

is incorrect the system is capable of interaction

with the human until the right object is found.

• A behavioural state machine that implements

the pick-and-place task interaction.

• An experimental performance and error eval-

uation study where 8 human subjects use the

robotic system either as an instructor or assis-

tant in a collaborative task.

• A practical application of our system, where

our robot prepares a customized pizza by

interacting with a human by gesturing.

II. TASK

Experiments are done with a pick-and-place task

example application. The objective is to clear ob-

jects off a table and sorting the objects in the

Fig. 2: A human performing a sequence of gestures to interact with the

robot

A. Human instructor selects a desired object by pointing. B. Robot

assistant interprets the pointing gesture performed by the human and

performs a confirmation gesture to the human instructor. C. Human

instructor denies robot interpretation by crossing his dominant arm

over his torso. D. Robot assistant moves to the next possible selected

object. Human instructor confirms the robot interpretation by raising his

dominant hand. E. Robot assistant picks up the selected object. Human

instructor selects a desired dropping location F. Robot assistant places

the object in the selected container.

appropriate containers. In the task we have two

actors: instructor and assistant, and two types of

communication: non-feedback and feedback. The

actions performed by the actors for both types

of communication are described in the work-flow

diagram shown in Figure 3.

We are covering human-human, robot-human

and human-robot interaction (see Figure 1). Our

system in operation for the human-robot case is

shown in Figure 2 (the red ring indicates the point-

ing location detected from the depth image pro-

jected into the RGB image). For the non-feedback

steps B, C and D (see Figure 2) are removed. Our

research focuses on pointing gestures because of

their simplicity and universal understanding. How-

ever, to enable complete interaction, we include Yes

and No symbolic gestures, both for robot-human

and human-robot interaction.
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Fig. 3: Pick-and-place task work-flow diagram for both feedback and

non-feedback communication cases.

The way the symbolic gestures are expressed

is not important for the pointing evaluation here.

They could, for instance, be replaced by ver-

bal Yes and No. A demonstration of our system

can be seen in the accompanying video or in:

http://webdocs.cs.ualberta.ca/%7Evis/HRI/PickandPlace.wmv

III. SYSTEM DESCRIPTION

Our system provides a two-way communication

channel based on gestures between a human and a

robot to achieve a pick-and-place task. Below is a

description of our human-robot and robot-human

system. For both interactions our system uses a

7DOF WAM arm, a Microsoft Kinect sensor and

a regular Linux machine.

A. Human-Robot System

Our human-robot system is illustrated in Fig-

ure 4. We assume that the human and the objects

are in the field of view of our depth camera and that

the possible selected objects are located in a plane

of interest that the robot can reach. Figure 5 shows

the point cloud and RGB visualizations of our

system respectively. The human does not see the

visualizations, but interacts solely with the physical

robot. In Figure 5A, the user points to a desired

object. Notice the virtual red line that is generated

using the red sphere inside the user’s head and

Fig. 4: System Diagram. Through the human gesture identification, object

localization and pointing interpretation:

*The robot gets feedback from the user by detecting human gestures (blue

arrow) and interpreting it.

*The human gets feedback from the robot by interpreting gestures

performed by the robot (green arrow).

the teal sphere inside the users hand. After the

hit location is found (red sphere at the end of the

virtual ray) the system corrects the hit location to

the nearest object and proposes a possible grasping

location on top of the object (dark blue sphere).

Figure 5C shows the identified objects in the system

(green spheres) and the grasping location (dark blue

sphere). The system gets ready to give feedback to

the user.

Our system is composed of four blocks: Selection,

Gesture Identification, Object Localization and De-

cision (Figure 4).

1) Selection: The Selection block is based on

our implementation [6], where the user points to a

target object or location and the interface returns

the 3D hit position coordinates. The input for the

Selection block is the depth sensor data, and the

output is the (x,y,z) hit location. Based on the depth

information, the user’s head and hand position are

found and used to calculate the pointing direction.

Notice that in [6] we focused on the technical

accuracy analysis of human pointing direction only,

and we neither completed a task nor used a robot.

In contrast, in this work we are interactively solving

a task with a robot using pointing gestures.

http://webdocs.cs.ualberta.ca/%7Evis/HRI/PickandPlace.wmv
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2) Gesture Identification: Based on the pick-

and-place task explain in Section II, we define four

human body gestures for the human-robot interac-

tion. These are Stand By (Figure 2B), Pointing

(Figure 2A), Yes (Figure 2D) and No (Figure 2C).

Our Gesture Identification block is in charge of

interpreting the predefined human gestures. We use

the OpenNI skeleton tracking libraries to find hu-

man joint locations. Gesture identification is based

on spatial relations between the different human

joint locations.

3) Object Localization: This block receives data

from the depth camera as input, and outputs the

centroid locations and bounding box of one or more

objects located on the plane of interest (Figure 5C).

We use the point cloud library (PCL) to manipulate

data coming from the depth sensor.

The point cloud obtained from the Kinect is

downsampled with a voxelized grid approach. Then

using RANSAC [7] and a 2D convex hull, we find

the table plane coefficients, inliers and points that

belong to the table. Next, the inliers are clustered by

distance to distinguish the objects. Finally, the mean

vector for each cluster and its minimum bounding

box are calculated.

4) Decision: The Decision block provides our

system with the capacity of interaction. This block

outputs the robot interaction and receives as input

the hit point location from the Selection block, the

identified gesture preformed by the human from

the Gesture Identification block and the object

centroids and bounding boxes from the Object

Localization block (See Figure 4). The Decision

block is based on the state machine shown in

Figure 6, which consists of six states. The human

is interacting using the Stand by gesture and the

system holds until a Pointing gesture is performed

by the human (State 1). Then the system saves the

hit point coordinates coming from the Selection

block (State 2). The system holds until the human

goes back to the Stand by gesture. Using the input

data from the Object Localization and Selection

blocks, the system calculates the nearest object

centroid to the hit point (State 3). The system

projects the centroid position into the top face of the

object bounding box (dark blue sphere in Figure 5).

Fig. 5: System point cloud visualization (A,C) and RGB visualization

(B, D). Centroids (green spheres) and bounding boxes extraction from

objects over the table plane (C). The system corrects the the ray hit point

in the scene (red sphere) to the closest detected object (shape sorter toy).

Fig. 6: Finite State Diagram. The system is activated when the user selects

an object by pointing. Six states are needed for the complete interaction.
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The robot, which has been previously calibrated

with respect to the depth sensor camera, uses the

centroid projection location to locate the robot end

effector over the selected object and gives feedback

to the human by performing a pointing gesture

(see Figure 2B). The system holds until the human

performs a Yes or No gesture. If the gesture is No

followed by a Stand by gesture, the system iterates

to the next nearest object and returns to state 3.

In the case where the human keeps doing the No

gesture until there are no objects left the robot goes

back to state 1. If the the human performs a Yes

gesture followed by a Stand by gesture the state is

shifted to state number 4. Using the selected object

centroid projection (dark blue sphere in Figure 5),

the robot locates its hand above the projected object

centroid with its palm perpendicular to the table

plane and grasps the object. Then the robot goes to

an initial position and waits for a Pointing gesture

indicating the dropping location (State 4). After

the Pointing gesture is performed the hit target

is saved and compared with the possible available

container locations (State 5). The system chooses

the container closest to the hit point. The robot

drops the object in the container and goes back

to the initial position (State 6). In our system the

decision block is tailored to the pick-and-place

example application. However, our system is based

on a general state machine representation and as

shown by [8] a large variety of tasks for home

robots can be implemented with such a system. In

fact in our application example we do that.

B. Robot-Human system

In the robot-human case the gesture interpreta-

tion is done by the human (see Figure 1B), which

makes the system implementation simpler than in

the human-robot case. We define four gestures for

the robot: robot-Stand-by, robot-Pointing (Fig-

ure 1B), robot-Yes: The robot moves its right

finger up and down repeatedly, robot-No: The

robot moves its wrist from right to left repeatedly.

In contrast with our human-robot configuration,

where objects are dynamically detected we used

predefined positions for implementation simplicity.

We pre-record the robot pointing gesture directions

for the different object locations in the two test con-

figurations; objects on a line and general (objects

spread out over the table). We interact with the user

by predefined robot configurations.

IV. EXPERIMENTS AND ANALYSIS

We performed three experiments using the

instructor-assistant pick-and-place task described in

Section II, where the actors for each experiment

are: human-human, human-robot and robot-human.

We had a total of 8 participants aged from 18

to 34 with 6 male and 2 female. Among them 5

had corrected vision and one was left handed. The

average time per participant to complete the three

experiments was 1 hour including break times.

A. Experimental setup

The different experimental setups are shown in

Figure 1. Two arrangements of objects were used:

general and line. In the general configuration ob-

jects are spread over the table surface. In the line

configuration, objects are collinear with the instruc-

tor line of sight. In the second case only the arm

tilt angle is informative, while in the former case,

both tilt and pan angles help indicate what object

the instructor points to. For both robot-human and

human-robot experiments the 7DOF WAM arm

was located such that the table space belonged

to the robot arm workspace (see Figure 1B and

Figure 1C).

B. Human-human

The human-human case (Figure 1A) took an av-

erage of 3.05 min per participant. In the first set of

experiments we considered a general configuration

of 4 objects on the table. In the second set we

considered differently ordered line arrangement of

the 4 objects (Figure 5B). The line arrangement

is purposely made to be aligned with the pointing

direction of the instructor. The motivation of using

this configuration is to test experimentally whether

when a human is inferring a pointing direction, the

point of view matters. The feedback experiments

took the longest (1.1 min) since participants needed

more time to use the pre-determined gestures (Sec-

tion III-A.2), which have been introduced to them

at this stage. Experimental results are shown in
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Figure 8. In the human-human case success ratio

for the line configuration is 0.75 while for the

general configuration is 0.95. It is clear then that it

is harder to interpret the pointing in the former case

without any feedback. In fact, the pointing with

line arrangement of objects has been designated

by the participants as the most difficult pointing

configuration to interpret.

C. Robot-human

The robot-human case (Figure 2) took an average

of 8.15 min. Here we performed a set of 3 ex-

periments with 8 participants. We considered both

the general arrangement configuration and the line

arrangement configuration of the objects. Results

are shown in Figure 8, where we can see that the

general object configuration without feedback is

equally difficult as the line configuration without

feedback. We believe that the difference in results

obtained between the human-human case and the

robot-human is due to the under actuation in the

Barrett hand Barrett hand, which makes it difficult

to interpret pointing location.

D. Human-Robot

The human-robot case (Figure 2C) took on av-

erage 2 min. Here we investigate how our system

interprets human pointing as well as the accuracy

and precision of our system. Accuracy is defined

as the mean value of the sample data, whereas

precision is the standard deviation, i.e., Euclidean

distance between hit point (red sphere) and the

object location (green sphere), and precision as the

uncertainty (Figure 5C). The average experimental

accuracy obtained during the experiments was 8.15

cm and precision 0.17 cm. This means that our

Decision block has to deal with this uncertainty

and correct it in order to obtain a suitable grasping

location. In the human-robot interaction case the

success ratio is equal in both the general configu-

ration and the line configuration, see Figure 8. This

means that our vision system can better interpret

human pointing than a human assistant.

Figure 7 shows that the number of misinterpreta-

tions of the assistant is lowest in the human-robot

interaction. In fact there is 28% misinterpretations

Fig. 7: Percentage of feedback misinterpretations

in a robot-human interaction, 10% misinterpretation

in a human-human interaction and 2% misinter-

pretation in a human-robot interaction. This result

means that our system is better in this particular

case at interpreting pointing than humans.

The high percentage of misinterpretations in the

human-robot case might be explained by the Barrett

hand being non-anthropomorphic and not able to

point with a straight finger. This is a technical lim-

itation with this hand because of the underactuation

constraints used to build it.

On a Likert-type scale from 1 to 7, in average

participants find it equally difficult, less than 2, to

accomplish the task with feedback in the human-

human, robot-human and human-robot interactions.

Understanding feedback was equally difficult in the

three interaction cases. Furthermore, participants

find it equally difficult, around 4, to interpret both

human pointing and robot pointing in the robot-

human interaction. The reason in the first case is

obvious since it is generally difficult for another

human to understand human pointing. The reason

in the second case is that participants were confused

with the robot pointing because the robot finger

was not straight. Human-human pre-determined

gestures for communication, interpretation of robot

gestures, use of human pre-determined gestures

and pointing to the right object, were found to

be not so difficult. Finally human-human gesture

interpretation was found less difficult to interpret

as humans are used to interact with other humans.

To sum up, our experiments showed that neither
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Fig. 8: Commander and assistant experiment success rate

humans nor our robot vision system could interpret

pointing perfectly (Though the robot vision system

was more accurate than humans). Therefore the

extended interaction through confirmation gestures

we introduced is important to make HRI reliable.

E. Other gestures used in human-human interac-

tion

During the human-human experiments we told

the subjects to non-verbally communicate what

items they wanted the other person to pick up,

but we did not tell them what specific gestures to

use. This allowed us to observe what gestures the

subjects chose. Most of the subjects simply pointed

towards the target object. However we also saw

some other variations. A couple of subjects used

their hands to indicate the shape of the desired

objects. That is, they formed a round shape to

show they wanted the soccer ball. Similarly another

subject used this same technique to tell the other

person to pick up the yogurt container. Another

gesture we came across was a kind of counting

gesture. When the objects were ordered in a line,

the subject moved his/her forearm in a circular fash-

ion three times to indicate he/she wanted the third

object. We also observed another technique to dis-

tinguish between objects at different distance from

the subject. Two subjects stood on their toes while

pointing toward target objects that were farther

away. In particular this was also used to distinguish

between the blue and the black containers. Finally

one of the subjects used curved pointing when the

objects were placed in a line. Instead of pointing

directly towards the object in a straight line, the

subject formed a curve with his/her arm to allow for

more precise selection. These observations give us

new ideas for improving our current pre-determined

gestures.

V. APPLICATION EXAMPLE: ”MAKING PIZZA

WITH MY ROBOT”

We envision that our system can be used in

different real life scenarios, e.g., a robot can work

behind a counter taking the role of a shopkeeper;

a client points to a particular object and by using

confirmation feedback the robot will reach the

desired product. In another situation a robot can

be used as a chef at a hotel breakfast buffet; the

client points to different ingredients to include in

his omelette. In a metal workshop a robot can

assist a welder by picking and placing parts. The

welder only has to point to them, avoiding heavy

weight manipulation and extreme temperatures. To

bring our study to a practical situation we made

our robot capable of preparing pizza by gesturing

with a human. The application set-up is shown

in Figure 9. Ingredients are randomly placed on

top of the table and detected. When the user gets

close to the cooking table the robot is activated

and the human tracking starts. The user can then

select any ingredient by simply pointing to it. After

the selection the robot picks the ingredient and

pours it on top of the pizza tray, see Figure 10

A-C. This action can be repeated as many times

as the user wants. After the user is satisfied with

the number and amount of ingredients, a “finish

pizza” gesture is performed and the robot places

the pizza in the oven, see Figure 10 D-F. A

video of the complete interaction can be found

at http://webdocs.cs.ualberta.ca/%7Evis/HRI/makingPizza.wmv. The

example application demonstrates that a complex

task for a robot, like preparing a customized pizza

for a client, can be simplified by using the appro-

priate communication interface.

VI. CONCLUSIONS

When humans collaborate on manipulation tasks,

gestures form an integral part of the communica-

tion. It is often easier to point to an object or desired

location than to describe it in words or numbers. We

designed and evaluated a robot and vision system

http://webdocs.cs.ualberta.ca/%7Evis/HRI/makingPizza.wmv
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Fig. 9: The set-up used in our practical application “making pizza with

my robot” consists of a 7DOF robot arm, a kinect sensor and a cooking

table with ingredients.

Fig. 10: Left Column: User selects mushrooms by pointing, the robot

picks and pours mushrooms in the pizza tray. Right Column: User

performs the “finish pizza gesture” and the robot places the pizza inside

the toaster oven.

that is able to see, interpret and act using a gesture

language. In our experimental study 8 humans

interacted with the robot for about 1h each. We

prove experimentally that our system can behave

similar to and for specific cases better than a human

interpreting human pointing. The task was to clean

off a table and sort the objects into containers. We

compared human-robot, robot-human and human-

human pairs as instructors and assistants respec-

tively. We performed the tasks both with instruction

only (one way communication) and with feedback

gestures from the assistant (robot or human) to

verify that the robot/human had interpreted the

task correctly. Without feedback the assistant could

interpret the pointing gesture correctly in 70-95% of

the cases. Humans had particular difficulty distin-

guishing between objects placed along a line (75%

success rate), but were much better with the objects

in a general configuration (95% success). Humans

also had more difficulty interpreting the robot’s

pointing (70%) than another human’s pointing. This

is likely due to the physical inability of our Barrett

robot hand to extend the finger fully and point with

a straight gesture towards the object. The robot

vision system had similar accuracy independent of

object configuration (88% success). In the feedback

case the assistant indicated the object to select by

pointing just above it. The instructor could then

confirm with a yes gesture, or deny with a no ges-

ture, and then point again to the desired object. This

feedback allowed successful task completion in all

cases for both the robot and human assistants. In

questionnaire answers the human subjects indicated

that for this task the human-robot system was about

equally easy to work with compared to human-

human communication. Finally we implemented

the application “Making pizza with my robot”,

where we showed how our study can be brought to

a practical human scenario. We strongly believe that

by researching simple and novel ways of human

robot communication will bring robotics closer to

human environments.
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