Assistive Arm and Hand Manipulation: How does current research
intersect with actual healthcare needs?

Laura Petrich!, Jun Jin!, Masood Dehghan! and Martin Jagersand!

Abstract— Human assistive robotics can help the elderly and
those with disabilities with Activities of Daily Living (ADL).
Robotics researchers approach this bottom-up publishing on
methods for control of different types of movements. Health
research on the other hand focuses on hospital clinical assess-
ment and rehabilitation using the International Classification
of Functioning (ICF), leaving arguably important differences
between each domain. In particular, little is known quanti-
tatively on what ADLs humans perform in their ordinary
environment - at home, work etc. This information can guide
robotics development and prioritize what technology to deploy
for in-home assistive robotics. This study targets several large
lifelogging databases, where we compute (i) ADL task frequency
from long-term low sampling frequency video and Internet of
Things (IoT) sensor data, and (ii) short term arm and hand
movement data from 30 fps video data of domestic tasks.
Robotics and health care have different terms and taxonomies
for representing tasks and motions. From the quantitative ADL
task and ICF motion data we derive and discuss a robotics-
relevant taxonomy in attempts to ameliorate these taxonomic
differences.

I. INTRODUCTION

Human assistive robotics can help the elderly and those
with disabilities with Activities of Daily Living (ADL)[1].
Assistive robot arms such as the wheelchair-mountable Ki-
nova Jaco [2] and Manus/iArm [3] have been commer-
cially available for over a decade. Such robot arms can
provide increased independence for anyone with disabilities,
reduce load on caregivers (both relatives and nurses), and
reduce health care costs [4]. Robot arms are potentially as
important to upper body disabilities as power wheelchairs
have become to lower body disabilities. However, outside
of research projects, only a few hundred assistive arms
are deployed with disability users, primarily in Europe and
North America. To make robotics readers familiar with the
health care classification of ADL, we briefly review the
World Health Organization Disability Assessment Schedule
(WHODAS?2.0)[5], and classifications of tasks and motions
in the International Classification of Functioning (ICF) [6].
These are primarily developed to determine the level of
disability and design corresponding rehabilitation, not to
guide assistive robotics research. In health care literature,
to the best of our knowledge, there does not appear to
be quantitative studies on disabled, or able, human use of
ADL tasks and ICF motions; this may be a result of this
not being central to rehabilitation, but it is unclear at this
time precisely why this is the case. For assistive robotics,
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knowing what ADL tasks are most important to support,
and the needed performance parameters for these tasks will
be crucial to increase usability and deployment. This paper
hopes to mitigate this quantitative gap. Robots for helping
anyone with arm or hand functionality disabilities has been
studied since the 1960s. We distinguish here between a
physically independent robot arm, typically mounted on the
users wheelchair, and prosthesis, where a variable degree
of the human functionality is replaced, with the former
being our group of interest. Even with the vast research
into assistive robotics, of the few assistive robots being
utilized, they all still use basic joystick teleoperation[2],
[3]. Even with this basic human robot interaction (HRI),
United States Veterans Affairs estimate that approximately
150,000 Americans could benefit from a wheelchair mounted
arm[7]. With better functionality and ease of use, deployment
to larger populations with reduced arm function would be
possible.

In the field of Computer Science, recent interest in video
object and activity recognition[8][9], and life-logging capture
has resulted in numerous public data-sets[10]. We studied
over 30 such data-sets to extract tasks of high importance
and relevant motion data [11].

Health care and robotic domains have different tax-
onomies to classify and quantify everyday human tasks and
motions,[12], [13], [14], [15], [16], [17]. By combining the
taxonomies from both domains, and quantifying health care
needs with robotic opportunities we seek to bridge the two,
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often separate, communities. This would provide the robotics
community baseline information of what human tasks would
be of high value to implement on assistive robots.

II. ACTIVITIES OF DAILY LIVING, SELF-CARE, AND
INDEPENDENCE

The International Classification of Functioning, Disability
and Health (ICF) provides a framework and classification
system for determining the overall health of individuals
and populations[6]. Disability information is an important
indicator of a populations health status, as it shows the
impact that functional limitations have on independence.
This concept is known as functional disability, or the limita-
tions one may experience in performing independent living
tasks [18]. A quantification of functional disability includes
both measures of Activities of Daily Living (ADLs) and
Instrumental Activities of Daily Living (IADLs) as shown
in Figure 2. The World Health Organization (WHO) further
developed WHODAS?2.0 from ICF as a standardized, cross-
cultural measure of functioning and disability across all life
domains[19], see Fig. 1.

A common approach in healthcare research is to ask dis-
abled users and their caregivers (nurses or family members)
for their preferences when it comes to robotic assistance [20],
[21]. Notably preferences vary a lot, and users opinions shift
significantly over time. Particularly caregivers tend to favor
tasks such as taking medication, while users favor picking
dropped objects and leisure related tasks in pre-automation
surveys. 67 users were surveyed after they received and used
an assistive robotic arm. Post-automation user preferences
had shifted from leisure to work related tasks[7].

III. A REVIEW OF ROBOTICS FOR ASSISTED LIVING

A lightweight robotic arm can be attached to a wheelchair
and assist the user in ADLs [7]. With such a robot, users
with low arm functionality would gain freedom to complete
more of their daily tasks independently. While there are
many industrial robot arms, only two manufacturers have
over 100 systems deployed Dutch Exact Dynamics (Manus,
iARM) [3] and Canadian Kinova (Jaco, Mico)[22]. These

are lightweight, have integrated controllers and cost from
USD 20,000-35,000 with a gripper. For example the Kinova
JACO robotic arm [3] weighs 5.7kg (12.51bs), comes with a
wheelchair attachment kit. It can grasp, lift, and move objects
up to 1.5kg. The Manus/iARM has similar specifications.
Presently users control the robotic arm using a joystick, sim-
ilar to conventional tele-operation[23]. Novel research user
interfaces allow the user to specify an object to manipulate
by either pointing towards it or clicking on it through a touch
screen image; the robotic arm then moves to the target object
and grasps it[24]. In published assistive robotics research
a variety of other commercial robot arms are used, and
several new prototype arms have been designed. However
neither new robots, nor new research methods for motion
control and HRI have reached significant deployment[25].
The few hundred deployed Jaco and Manus arms still use
basic joystick position-based tele-operation, where a 2 or 3
DOF joystick is mapped to a subset of the Cartesian arm
translation and wrist rotation controls[2]. To complete tasks
in 6 DOF the user switches between modes for different
joystick to arm DOF assignment, which can be tedious.

IV. A TASK TAXONOMY FOR ARM MANIPULATION

Robotics capabilities are built bottom-up, by designing
sensing and control methods for individual motions. These
motions can then be combined to solve tasks. The same
motions can potentially be used to solve ADLs in quite
different categories in the WHODAS/ICF taxonomy. Dex-
trous in-hand finger manipulation requires quite different
contact configurations and manipulation taxonomies have
been developed based on these contact configurations[26].
Robot arm manipulation is generally thought of uniformly
as a 6 degree of freedom (DOF) Euclidean (end-effector)
transform, requiring no taxonomy. Contrarily, ADL tasks
naturally contain a variety of movements with different DOF,
contact and precision requirements. This suggests that a tax-
onomy can guide development of control subroutines tailored
to those requirements, and the composition of subroutines
can solve a broad variety of tasks. Figure 3 introduces a
high-level taxonomy of assistive robotics tasks, including
arm manipulation. There are 3 general categories in assistive
robotic applications: non-physical cognitive tasks, locomo-
tion based mobility tasks, and arm-hand manipulation. We
will focus on analyzing arm and hand motions. Currently
in applied robotics, the robot hand is typically used for
grasping, and the arm is responsible for pose alignment
and contacts, possibly including force or impedance control.
It will take some time before robotics will be able to
utilize fine dexterous finger manipulation in actual applied
ADLs, resulting in the arm performing both coarse and
fine manipulations[17]. Coarse motion of the reach type
is mostly a 3-DOF translation and has moderate accuracy
requirements. Fine motion can be subdivided into contact
and non-contact. Non-contact 6-DOF fine motion can be used
to bring an object into alignment before putting it down or
inserting it. Although most applied robotics is performed us-
ing position control, some studies take contacts into account,
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either through impedance control, or sensing and modeling
of the surface for hybrid position-force control[27]. Surface
contacts allows human-like strategies to overcome sensing
and actuation inaccuracies by utilizing practices such as
touching a table and sliding fingers across it before picking
up a small objects, such as a pen.

V. ADL EVALUATION FROM LIFELOGGING DATA

Lifelogging data is a valuable source of ADL, and human
motion information. It involves long term recording of all
the activities performed by a human, usually through a video
camera, and occasionally other sensor data[10]. While life-
logging research has been published for more than two
decades, hardware and method innovation has made the field
grow greatly in the past five years. Small, wearable cameras,
such as the Microsoft Lifecam, with long recording duration
has made it far more practical compared to analog video
cameras and recorders used in initial research. New methods
for recognizing objects and actions has driven Computer
Vision (CV) research interests to explore life-logging data,
which has been found to be more realistic in-the-wild than
typical CV benchmarks[28]. We studied over 30 lifelogging
data sets, most of which targeted the performance of a
particular algorithm (e.g. video object recognition in home
environments), and therefore did not encompass the full day.
As they typically did not have a statistically sound sampling
over all objects and tasks to meet our analysis criteria . We
found that long term recordings of several days or more
were done at 1-2 frames per second (fps), making these
useful to analyze ADL task frequency and duration, but not
suitable for studying detailed timing of individual arm and
hand motions. Another category of data sets had shorter
30fps regular video rate recordings of specific tasks, making
the detailed timing of individual arm and hand motions
possible. We were able to choose three sources of data for
the analysis: two from long duration recordings to capture
ADL task frequency and duration[10], [29], one from short
term recording of tasks[30].
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A. ADL Task timing analysis

To compute quantitative data on ADL task frequency and
duration we analyzed both egocentric lifelogging videos (re-
ferred to as NTCIR), [29]and exocentric data from Internet-
of-Things type sensing built into home objects (referred to
as MIT) [29]. The use of complementary sensing turned
out to be important to capture a broader set of tasks.
Similar to other CV research, we were able to infer actions
from automatically computed visual concepts[30]. We hand-
labeled a small portion of the data to verify the accuracy of
the automatic computations. This enabled us to label in-home
data sequences spanning multiple days with what ADL users
where performing at particular times and compute statistics.
Figure illustrates the frequency of the most common ADL
tasks.

We have grouped tasks to correspond to robot skills, rather
than specific ADL/ICF codes. Commonly, events are not
recorded in videos or from sensors as discussed below. By
combining both results, we obtained an accurate quantitative
measure of task importance.

Door openings is the most frequent task at 94/day, and
includes both doors between rooms, cabinet doors, and draw-
ers. Our rationale for including cabinet doors and drawers is
that the robot would approach each situation in the same
fashion as a standard door. We believe MIT data was more
accurate when door opening data was obtained from built
in door sensors; the low video frequency (2 fps) of the NT-
CIR data presented low accuracy with the automatic visual
concepts extraction by missing quick openings, particularly
of cabinet doors and drawers to retrieve objects. Following
door opening, electronics refers to handheld devices, and
was dominated by smart phone use. These devices were
mostly not covered by the MIT sensors, but were detected by
the NTCIR video. Drinking and eating were essential tasks
in both studies, with a frequency of 8.8/day from NTCIR
and 4.4/day from MIT. MIT based hand washing on the
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number of faucet openings/closing (ie turning the sink on
and off resulted in two tasks), which greatly overestimated
hand washing. We removed this outlier and relied on NTCIR
results of 4.7/day.

B. Arm and Hand Motion Analysis.

From other video datasets we were able to extract the num-
ber and timings of individual arm and hand motions needed
to perform a particular ADL, and for a few tasks, similar
timings for robot execution. The Georgia Tech Egocentric
Activity Datasets (GTEA+) ! contain full frame rate (30fps)
video recordings of humans performing domestic tasks. We
analyze the annotated GTEA+ dataset, which contained
approximately 25GB of annotated kitchen activity videos.
This allows for the extraction of individual human motion
timings. Figure illustrates four common motions out of the
33 in GTEA+. Noteably, many human motions were far
faster than typical assistive robot motions. For example reach
motions take just a second for a human, while published
HRI solutions take anywhere from ten seconds to several
minutes[31]. This has implications for how many human
motions and ADLs a robot system can practically substitute
without tasks taking an excessive amount of time. In other
motions, such as pouring liquids, the task itself constrains the
human to proceed rather slowly. The door task covers both
lightweight cabinet doors and drawers, along with heavier
doors (e.g. refrigerator); with lighter doors, the human times
approached that of unconstrained reach, despite the more
challenging physical constraint of hinged or sliding motion.
Unlike NTCIR, GTEA+ is not a representative sampling of
all human activities. It is still notable that the number of
reaches is three times the number of door openings. (1500
reaches versus 500 door and drawer openings over 11 hours
of video).

Uhttp://www.cbi.gatech.edu/fpv/

VI. DISCUSSION

Of the measured ADL tasks, door openings, drink-
ing/eating, hand wash and toileting would arguably be the
most essential to support for assistive robot arm and hand
systems. These tasks are relatively feasible to accomplish
given the payload capacity of current arms.

Activities such as using electronics (primarily smart-
phones), socializing, and reading could be physically aided
by robot arms, but since these activities are not inherently
physical, alternative solutions are possible and can be simpler
and more reliable (e.g. hands-free phone use and other
computational automation).

Toileting is a priority task that involves transferring those
with disabilities from a wheelchair to the toilet. Assistive
arms do not support this, but there are specialized transfer
devices - also useful for transfer from beds - that are gener-
ally used in health care, and could potentially be employed
in homes.

Overall, there is great potential for supporting ADLs for
those with disabilities and the elderly. Over the past few
decades there has been an increasing demand for health care
services due to the rising elderly and disability populations
[32]. Assistive robots can bridge this gap by alleviating
the labour burden for health care specialists and caregivers.
Moreover, an assistive robot could help one perform ADL
they are otherwise incapable of managing on their own,
returning individual independence. Canada has a multi-ethnic
population and characteristics similar to many other industri-
alized nations. Statistics Canada found that from 2001 - 2006
there was a 20.5% increase in those identifying as having a
disability, rising to 4.4 million people [33]. The proportion
of seniors (age 65+) in the population has also steadily
increased, with seniors comprising a projected 23.1% of
the population by 2031 [34]. In 2014, seniors constituted
only 14 of the population, but consumed 46% of provincial
public health care dollars [35]. Functional capacity is an
indicator of ones ability to carry out ADL, and as one ages,
losses in functional capacity become more common and
severe, leading to required assistance with ADL. Statistics
Canada further states that over 2.4 million people living
with disabilities regularly receive assistance with at least
one ADL on a daily basis, with immediate family members
most commonly identified as the primary caregiver. It has
been shown that the number of ADL requiring assistance
is correlated with the severity of the disability [33]. Using
a robotic arm attached to a wheelchair would help users
to gain the freedom to complete more of their daily tasks
independently.

VII. CONCLUSIONS

In this paper we presented assistive robotics for Activ-
ities of Daily Living both from a health care perspective
and robotics perspective. We analyzed human ADL task
frequency from public life-logging datasets and computed
motion timings from public Computer Vision data. Over-
all, reach motions (to grasp objects) and door openings
(including cabinets and drawers) were the most frequent



motions. Drinking, eating and hand washing are other high
priority tasks that can be addressed by current assistive robot
arms. Toileting and dressing, while ranking just below, are
generally thought to be more challenging for robotics, since
they require the transfer of substantial body weight. Detailed
data on frequency and duration information for all analyzed
tasks and motions, as well as the analysis methods are
available on the companion website http://webdocs.
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