
COMPUTER CHESS AND SEARCH

T.A. Marsland

Computing Science Department,
University of Alberta,

EDMONTON,
Canada T6G 2H1

ABSTRACT

Article prepared for the 2nd edition of the ENCYCLOPEDIA OF ARTIFI-
CIAL INTELLIGENCE, S. Shapiro (editor), to be published by John Wiley,
1992.

This report is for information and review only.

April 3, 1991

COMPUTER CHESS AND SEARCH

T.A. Marsland

Computing Science Department,
University of Alberta,

EDMONTON,
Canada T6G 2H1

1. HISTORICAL PERSPECTIVE
Of the early chess-playing machines the most famous was exhibited by Baron von Kem-

pelen of Vienna in 1769. As is well-known, von Kempelen’s machine and the others were
conjurer’s tricks and grand hoaxes. In contrast, around 1890 a Spanish engineer, Torres y
Quevedo, designed a true mechanical player for KR vs K (king and rook against king) endgames
(Bell 1978). A later version of that machine was displayed at the Paris Exhibition of 1914 and
now resides in a museum at Madrid’s Polytechnic University. Despite the success of this
electro-mechanical device, further advances on chess automata did not come until the 1940s. Dur-
ing that decade there was a sudden spurt of activity as several leading engineers and mathemati-
cians, intrigued by the power of computers, began to express their ideas about computer chess.
Some, like Tihamer Nemes (1951) and Konrad Zuse (1945) tried a hardware approach, but their
computer-chess works did not find wide acceptance. Others, like noted scientist Alan Turing,
found success with a more philosophical tone, stressing the importance of the stored program
concept (Turing et al., 1953).1 Today, best recognized are Adriaan de Groot’s 1946 doctoral
dissertation (de Groot, 1965) and the much referenced paper on algorithms for playing chess by
Claude Shannon (1950), whose inspirational work provided a basis for most early chess pro-
grams. Despite the passage of time, Shannon’s paper is still worthy of study.

1.1. Landmarks in Chess Program Development
The first computer-chess model in the 1950s was a hand simulation. Programs for subsets

of chess followed, and the first full working program was reported in 1958. Most of the landmark
papers reporting these results have now been collected together (Levy, 1988). By the mid 1960s
there was an international computer-computer match, later reported by Mittman (1977), between
a program backed by John McCarthy of Stanford (developed by Alan Kotok and a group of stu-
dents from MIT) and one from the Institute for Theoretical and Experimental Physics (ITEP) in
Moscow. The ITEP group’s program won the match, and the scientists involved went on to
develop Kaissa,2 which became the first World Computer Chess Champion in 1974 (Hayes and
Levy 1976). Meanwhile there emerged from MIT another program, Mac Hack Six (Greenblatt,
Eastlake and Crocker, 1967), which boosted interest in artificial intelligence. Firstly, Mac Hack
was demonstrably superior not only to all previous chess programs, but also to most casual chess
players. Secondly, it contained more sophisticated move-ordering and position-evaluation
methods. Finally, the program incorporated a memory table to keep track of the values of chess
positions that were seen more than once. In the late 1960s, spurred by the early promise of Mac

1 The chess portion of that paper is normally attributed to Turing, the draughts (checkers) part to
Strachey, and the balance to the other co-authors.

2 Descriptions of Kaissa, and other chess programs not discussed here, can be found elsewhere, e.g., the
books by Hayes and Levy (1976), Welsh and Baczynskyj (1985) and by Marsland and Schaeffer (1990).

- 2 -

Hack, several people began developing chess programs and writing proposals. Most substantial
of the proposals was the twenty-nine point plan by Jack Good (1968). By and large experi-
menters did not make effective use of these works; at least nobody claimed a program based on
those designs, partly because it was not clear how some of the ideas could be addressed and partly
because some points were too naive. Even so, by 1970 there was enough progress that Monroe
Newborn was able to convert a suggestion for a public demonstration of chess-playing computers
into a competition that attracted eight participants. Due mainly to Newborn’s careful planning
and organization this event continues today under the title ‘‘The North American Computer Chess
Championship,’’ with the sponsorship of the ACM.

In a similar vein, under the auspices of the International Computer Chess Association, a
worldwide computer-chess competition has evolved. Initial sponsors were the IFIP triennial
conference at Stockholm in 1974 and Toronto in 1977, and later independent backers such as the
Linz (Austria) Chamber of Commerce for 1980, ACM New York for 1983, the city of Cologne
in Germany for 1986 and AGT/CIPS for 1989 in Edmonton, Canada. In the first World Cham-
pionship for computers Kaissa won all its games, including a defeat of the Chaos program that
had beaten the favorite, Chess 4.0. An exhibition match between the new champion, Kaissa, and
the eventual second place finisher, Chess 4.0 the 1973 North American Champion, was drawn
(Mittman, 1977). Kaissa was at its peak, backed by a team of outstanding experts on tree-
searching methods (Adelson-Velsky, Arlazarov and Donskoy, 1988). In the second Champion-
ship at Toronto in 1977, Chess 4.6 finished first with Duchess and Kaissa tied for second place.
Meanwhile both Chess 4.6 and Kaissa had acquired faster computers, a Cyber 176 and an IBM
370/165 respectively. The exhibition match between Chess 4.6 and Kaissa was won by the
former, indicating that in the interim it had undergone far more development and testing, as the
appendix to Frey’s book shows (Frey, 1983). The 3rd World Championship at Linz in 1980 fin-
ished with a tie between Belle and Chaos. Belle represented the first of a new generation of
hardware assists for chess, specifically support for position maintenance and evaluation, while
Chaos was one of the few remaining selective search programs. In the playoff Belle won con-
vincingly, providing perhaps the best evidence yet that a deeper search more than compensates for
an apparent lack of knowledge. Even today, this counter-intuitive idea does not find ready accep-
tance in the artificial intelligence community.

At the 4th World Championship (1983 in New York) yet another new winner emerged,
Cray Blitz (Hyatt, Gower and Nelson, 1990). More than any other, that program drew on the
power of a fast computer, here a Cray XMP. Originally Blitz was a selective search program, in
the sense that it used a local evaluation function to discard some moves from every position, but
often the time saved was not worth the attendant risks. The availability of a faster computer made
it possible for Cray Blitz to switch to a purely algorithmic approach and yet retain much of the
expensive chess knowledge. Although a mainframe program won the 1983 event, small machines
made their mark and were seen to have a great future. For instance, Bebe with special-purpose
hardware finished second (Scherzer, Scherzer and Tjaden, 1990), and even experimental versions
of commercial products did well. The 5th World Championship (1986 in Cologne) was espe-
cially exciting. At that time Hitech, with the latest VLSI technology for move generation, seemed
all powerful (Berliner and Ebeling, 1989), but faltered in a better position against Cray Blitz
allowing a four-way tie for first place. As a consequence, had an unknown microprocessor sys-
tem, Rebel, capitalized on its advantages in the final round game, it would have been the first
micro-system to win an open championship. Finally we come to the most recent event of this
type, the 6th World Championship (1989 in Edmonton). Here the Carnegie Mellon favorite (Deep
Thought) won convincingly, even though the program exhibited several programming errors. Still
luck favors the strong, as the full report of the largest and strongest computer chess event ever
held shows (Schaeffer, 1990). Although Deep Thought dominated the world championship, at the
20th North American Tournament that followed a bare six months later it lost a game against

- 3 -

Mephisto, and so only tied for first place with its deadly rival and stable-mate Hitech. All these
programs were relying on advanced hardware technologies. Deep Thought was being likened to
‘‘Belle on a chip’’, showing how much more accessible increased speed through special
integrated circuits had become.

From the foregoing one might reasonably assume that most computer chess programs have
been developed in the USA, and yet for the past two decades participants form Canada have also
been active and successful. Two programs, Ostrich and Wita, were at the inauguration of
computer-chess tournaments at New York in 1970, and their authors went on to produce and
instigate fundamental research in practical aspects of game-tree search (Campbell and Marsland,
1983; Newborn, 1988; Marsland, Reinefeld and Schaeffer, 1987). Before its retirement, Ostrich
(McGill University) participated in more championships than any other program. Its contem-
porary, renamed Awit (University of Alberta), had a checkered career as a Shannon type-B (selec-
tive search) program, finally achieving its best result with a second place tie at New York in
1983. Other active programs have included Ribbit (University of Waterloo), which tied for
second at Stockholm in 1974, L’Excentrique and Brute Force. By 1986 the strongest Canadian
program was Phoenix (University of Alberta), a multiprocessor-based system using workstations
(Schaeffer, 1989b). It tied for first place with three others at Cologne.

While the biggest and highest performing computers were being used in North America,
European developers concentrated on microcomputer systems. Especially noteworthy are the
Hegener & Glaser products based on the Mephisto program developed by Richard Lang of Eng-
land, and the Rebel program by Ed Schröder from the Netherlands.

1.2. Implications
All this leads to the common question: When will a computer be the unassailed expert on

chess? This issue was discussed at length during a panel discussion at the ACM 1984 National
Conference in San Francisco. At that time it was too early to give a definitive answer, since even
the experts could not agree. Their responses covered the whole range of possible answers with
different degrees of optimism. Monty Newborn enthusiastically supported ‘‘in five years,’’ while
Tony Scherzer and Bob Hyatt held to ‘‘about the end of the century.’’ Ken Thompson was more
cautious with his ‘‘eventually, it is inevitable,’’ but most pessimistic was Tony Marsland who
said ‘‘never, or not until the limits on human skill are known.’’ Even so, there was a sense that
production of an artificial Grandmaster was possible, and that a realistic challenge would occur
during the first quarter of the 21st century. As added motivation, Edward Fredkin (MIT professor
and well-known inventor) has created a special incentive prize for computer chess. The trustee
for the Fredkin Prize is Carnegie Mellon University and the fund is administered by Hans Ber-
liner. Much like the Kremer prize for man-powered flight, awards are offered in three categories.
The smallest prize of $5000 was presented to Ken Thompson and Joe Condon, when their Belle
program earned a US Master rating in 1983. The second prize of $10,000 for the first program to
achieve a USCF 2500 rating (players who attain this rating may reasonably aspire to becoming
Grandmasters) was awarded to Deep Thought in August 1989 (Hsu, Anantharaman, Campbell
and Nowatzyk, 1990), but the $100,000 for attaining world-champion status remains unclaimed.
To sustain interest in this activity, Fredkin funds are available each year for a prize match
between the currently best computer and a comparably rated human.

One might well ask whether such a problem is worth all this effort, but when one considers
some of the emerging uses of computers in important decision-making processes, the answer
must be positive. If computers cannot even solve a decision-making problem in an area of perfect
knowledge (like chess), then how can we be sure that computers make better decisions than
humans in other complex domains—especially domains where the rules are ill-defined, or those
exhibiting high levels of uncertainty? Unlike some problems, for chess there are well established
standards against which to measure performance, not only through the Elo rating scale but also

- 4 -

using standard tests (Kopec and Bratko, 1982) and relative performance measures (Thompson,
1982). The ACM-sponsored competitions have provided twenty years of continuing experimen-
tal data about the effective speed of computers and their operating system support. They have
also afforded a public testing ground for new algorithms and data structures for speeding the
traversal of search trees. These tests have provided growing proof of the increased understanding
about how to program computers for chess, and how to encode the wealth of expert knowledge
needed.

Another potentially valuable aspect of computer chess is its usefulness in demonstrating the
power of man-machine cooperation. One would hope, for instance, that a computer could be a
useful adjunct to the decision-making process, providing perhaps a steadying influence, and pro-
tecting against errors introduced by impulsive short-cuts of the kind people might try in a careless
or angry moment. In this and other respects it is easy to understand Donald Michie’s support for
the view that computer chess is the ‘‘Drosophila melanogaster (fruit fly) of machine intelli-
gence’’ (Michie, 1980).

What then has been the effect of computer chess on artificial intelligence (AI)? First, each
doubter who dared assert the superiority of human thought processes over mechanical algorithms
for chess has been discredited. All that remains is to remove the mysticism of the world’s
greatest chess players. Exactly why seemingly mechanical means have worked, when almost
every method proposed by reputable AI experts failed, remains a mystery for some. Clearly hard
work, direct application of simple ideas and substantial public testing played a major role, as did
improvements in hardware/software support systems. More than anything, this failure of tradi-
tional AI techniques for selection in decision-making, leads to the unnatural notion that many
‘‘intellectual and creative’’ activities can be reduced to fundamental computations. Ultimately
this means that computers will make major contributions to Music and Writing; indeed some will
argue that they have already done so. Thus one effect of computer chess has been to force an ini-
tially reluctant acceptance of ‘‘brute-force’’ methods as an essential component in ‘‘intelligent
systems,’’ and to encourage growing use of search in problem-solving and planning applications.
Several articles discussing these issues appear in a recent edited volume (Marsland and Schaeffer,
1990).

2. SEARCHING FOR CHESS
Since most chess programs work by examining large game trees, a depth-first search is

commonly used. That is, the first branch to an immediate successor of the current node is recur-
sively expanded until a leaf node (a node without successors) is reached. The remaining branches
are then considered in turn as the search process backs up to the root. In practice, since leaf nodes
are rarely encountered, search proceeds until some limiting depth (the horizon or frontier) is
reached. Each frontier node is treated as if it were terminal and its value fed back. Since com-
puter chess is well defined, and absolute measures of performance exist, it is a useful test vehicle
for measuring efficiency of new search algorithms. In the simplest case, the best algorithm is the
one that visits fewest nodes when determining the expected value of a tree. For a two-person
game-tree, this value, which is a least upper bound on the merit (or score) for the side to move,
can be found through a minimax search. In chess, this so called minimax value is a combination
of both ‘‘MaterialBalance’’ (i.e., the difference in value of the pieces held by each side) and
‘‘StrategicBalance’’ (e.g., a composite measure of such things as mobility, square control, pawn
formation structure and king safety) components. Normally, an Evaluate_______ procedure computes
these components in such a way that the MaterialBalance dominates all positional factors.

- 5 -

2.1. Minimax Search
For chess, the nodes in a two-person game-tree represent positions and the branches

correspond to moves. The aim of the search is to find a path from the root to the highest valued
‘‘leaf node’’ that can be reached, under the assumption of best play by both sides. To represent a
level in the tree (that is, a move by one side) the term ‘‘ply’’ was introduced by Arthur Samuel in
his major paper on machine learning (Samuel, 1959). How that word was chosen is not clear,
perhaps as a contraction of ‘‘play’’ or maybe by association with forests as in layers of plywood.
In either case it was certainly appropriate and it has been universally accepted.

In general, a true minimax search of a game tree will be expensive since every leaf node
must be visited. For a uniform tree with exactly W moves at each node, there are W D nodes at the
layer of the tree that is D ply from the root. Nodes at this deepest layer will be referred to as ter-
minal nodes, and will serve as leaf nodes in our discussion. Some games, like Fox and Geese,
produce narrow trees (fewer than 10 branches per node) that can often be expanded to true leaf
nodes and solved exhaustively. In contrast, chess produces bushy trees with an average branching
factor, W, of about 35 moves (de Groot, 1965). Because of the size of the game tree, it is not pos-
sible to search until a mate or stalemate position (a true leaf node) is reached, so some maximum
depth of search (i.e., a horizon) is specified. Even so, an exhaustive search of all chess game trees
involving more than a few moves for each side is impossible. Fortunately the work can be
reduced, since the search of some nodes is unnecessary.

2.2. The Alpha-Beta (α-β) Algorithm
As the search of the game tree proceeds, the value of the best terminal node found so far

changes. It has been known since 1958 that pruning was possible in a minimax search (Newell,
Shaw and Simon, 1958), but according to Knuth and Moore (1975) the ideas go back further, to
John McCarthy and his group at MIT. The first thorough treatment of the topic appears to be
Brudno’s paper (Brudno 1963). The α-β algorithm employs lower (α) and upper (β) bounds on
the expected value of the tree. These bounds may be used to prove that certain moves cannot
affect the outcome of the search, and hence that they can be pruned or cut off. As part of the early
descriptions about how subtrees were pruned, a distinction between deep and shallow cut-offs
was made. Early versions of the α-β algorithm used only a single bound (α), and repeatedly reset
the β bound to infinity, so that deep cut-offs were not achieved. To correct this flaw, Knuth and
Moore (1975) introduced a recursive algorithm called F2 to prove properties about pruning in
search. They also employed a ‘‘negamax’’ framework whose primary advantage is that by
always passing back the negative of the subtree value, only maximizing operations are needed.
Figure 1 uses a Pascal-like pseudo code to present our α-β function, AB, in the same negamax
framework. Here a Return______ statement is the convention for exiting the function and returning the
best subtree value or merit. Omitted are details of the game-specific functions Make_____ and Undo_____ (to
update the game board), Generate________ (to find moves) and Evaluate_______ (to assess terminal nodes). In the
pseudo code of Figure 1, the max(α,merit) operation represents Fishburn’s ‘‘fail-soft’’ condition
(Fishburn, 1984), and ensures that the best available value is returned (rather than an α/β bound),
even if the value lies outside the α-β window. This idea is usefully employed in some of the
newer refinements to the α-β algorithm.

- 6 -

FUNCTION AB (p : position; α, β, depth : integer) : integer;
{ p is pointer to the current node }
{ α and β are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR merit, j, value : integer;
moves : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN
IF depth ≡ 0 THEN { frontier node, maximum depth? }

Return(Evaluate(p));

moves := Generate(p); { point to successor positions }
IF empty(moves) THEN { leaf, no moves? }

Return(Evaluate(p));
{ find merit of best variation }

merit := –∞;
FOR j := 1 TO sizeof(moves) DO BEGIN

Make(moves[j]); { make current move }
value := –AB (moves[j], –β, –max(α,merit), depth–1);
IF (value > merit) THEN { note new best merit }

merit := value;
Undo(moves[j]); { retract current move }
IF (merit ≥ β) THEN

GOTO done; { a cut-off }
END ;

done:
Return(merit);

END ;

Figure 1: Depth-limited ‘fail-soft’ Alpha-Beta Function under Negamax Search.

.............. 2.1.22.1.11.2.21.2.1 depth = 0

(5,9)

2.2

(5,β)

2.1

(α,5)

1.2 depth = 1

(α,β)

1.1

(−β,−5)

2depth = 2

(−β,−α)

1

(α,β)

p depth = 3

23791645

Figure 2: The Effects of α−β Pruning under Negamax Search.

Although tree-searching topics involving pruning appear routinely in standard artificial
intelligence texts, game-playing programs remain the major application for the α-β algorithm. In
the texts, a typical discussion about game-tree search is based on alternate use of minimizing and

- 7 -

maximizing operations. In practice, the negamax approach is preferred, since the programming is
simpler. Figure 2 contains a small 3-ply tree in which a Dewey-decimal notation is used to label
the nodes, so that the node name identifies the path from the root node. Thus, in Figure 2, p.2.1.2
is the root of a hidden subtree whose value is shown as 7. Also shown at each node of Figure 2 is
the initial alpha-beta window that is employed by the negamax search. Note that successors to
node p.1.2 are searched with an initial window of (α,5). Since the value of node p.1.2.1 is 6,
which is greater than 5, a cut-off is said to occur, and node p.1.2.2 is not visited by the α-β algo-
rithm.

2.3. Minimal Game Tree
If the ‘‘best’’ move is examined first at every node, the minimax value is obtained from a

traversal of the minimal game tree. This minimal tree is of theoretical importance since its size is
a lower bound on the search. For uniform trees of width W branches per node and a search depth
of D ply, Knuth and Moore provide the most elegant proof that there are

W 2
D___

 + W 2
D___

 − 1
terminal nodes in the minimal game tree (Knuth and Moore, 1975), where x is the smallest
integer ≥ x , and x is the largest integer ≤ x . Since such a terminal node rarely has no succes-
sors (i.e., is not a leaf) it is often referred to as a horizon node, with D the distance from the root
to the horizon (Berliner, 1973).

2.4. Aspiration Search
An α-β search can be carried out with the initial bounds covering a narrow range, one that

spans the expected value of the tree. In chess these bounds might be (MaterialBalance–Pawn,
MaterialBalance+Pawn). If the minimax value falls within this range, no additional work is
necessary and the search usually completes in measurably less time. This aspiration search
method—analyzed by Brudno (1963), referred to by Berliner (1973) and experimented with by
Gillogly (1978)—has been popular, though it has its problems (Kaindl, 1990). A disadvantage is
that sometimes the initial bounds do not enclose the minimax value, in which case the search
must be repeated with corrected bounds, as the outline of Figure 3 shows. Typically these failures
occur only when material is being won or lost, in which case the increased cost of a more
thorough search is acceptable. Because these re-searches use a semi-infinite window, from time
to time people experiment with a ‘‘sliding window’’ of (V, V+PieceValue), instead of (V, +∞).
This method is often effective, but can lead to excessive re-searching when mate or large material
gain/loss is in the offing. After 1974, ‘‘iterated aspiration search’’ came into general use, as fol-
lows:

‘‘Before each iteration starts, α and β are not set to –∞ and +∞ as one might expect,
but to a window only a few pawns wide, centered roughly on the final score [merit]
from the previous iteration (or previous move in the case of the first iteration). This
setting of ‘high hopes’ increases the number of α-β cutoffs’’ (Slate and Atkin, 1977).

Even so, although aspiration searching is still popular and has much to commend it, minimal win-
dow search seems to be more efficient and requires no assumptions about the choice of aspiration
window (Marsland, 1983).

2.5. Quiescence Search
Even the earliest papers on computer chess recognized the importance of evaluating only

positions which are ‘‘relatively quiescent’’ (Shannon, 1950) or ‘‘dead’’ (Turing et al., 1953).
These are positions that can be assessed accurately without further search. Typically they have no

- 8 -

{ Assume V = estimated value of position p, and }
{ e = expected error limit }
{ depth = current distance to the frontier }
{ p = position being searched }

α := V – e; { lower bound }
β := V + e; { upper bound }

V := AB (p, α, β, depth);
IF (V ≥ β) THEN { failing high }

V := AB (p, V, +∞, depth)
ELSE
IF (V ≤ α) THEN { failing low }

V := AB (p, –∞, V, depth);

{ A successful search has now been completed }
{ V now holds the current merit value of the tree }

Figure 3: NarrowWindow Aspiration Search.

moves, such as checks, promotions or complex captures, whose outcome is unpredictable. Not all
the moves at horizon nodes are quiescent (i.e., lead immediately to dead positions), so some must
be searched further. To limit the size of this so called quiescence search, only dynamic moves are
selected for consideration. These might be as few as the moves that are part of a single complex
capture, but can expand to include all capturing moves and all responses to check (Gillogly,
1972). Ideally, passed pawn moves (especially those close to promotion) and selected checks
should be included (Slate and Atkin, 1977; Hyatt, Gower and Nelson, 1985), but these are often
only examined in computationally simple endgames. The goal is always to clarify the node so
that a more accurate position evaluation is made. Despite the obvious benefits of these ideas the
best form of the quiescence search remains unclear, although some theories for controlling the
search depth and limiting the participation of moves are emerging. Present quiescent search
methods are attractive; they are simple, but from a chess standpoint leave much to be desired,
especially when it comes to handling forking moves and mate threats. Even though the current
approaches are reasonably effective, a more sophisticated method is needed for extending the
search, or for identifying relevant moves to participate in the selective quiescence search (Kaindl,
1982). A first step in this direction is the notion of a singular extension (Anantharaman, Camp-
bell and Hsu, 1988). On the other hand, some commercial chess programs have managed well
without quiescence search, using direct computation to evaluate the exchange of material.
Another favored technique for assessing dynamic positions is use of the null move (Beal 1989),
which assumes that there is nothing worse than not making a move!

2.6. Horizon Effect
An unresolved defect of chess programs is the insertion of delaying moves that cause any

inevitable loss of material to occur beyond the program’s horizon (maximum search depth), so
that the loss is hidden (Berliner, 1973). The ‘‘horizon effect’’ is said to occur when the delaying
moves unnecessarily weaken the position or give up additional material to postpone the eventual
loss. The effect is less apparent in programs with more knowledgeable quiescence searches
(Kaindl, 1982), but all programs exhibit this phenomenon. There are many illustrations of the
difficulty; the example in Figure 4, which is based on a study by Kaindl, is clear. Here a program
with a simple quiescence search involving only captures would assume that any blocking move
saves the queen. Even an 8-ply search (..., Pb2; Bxb2, Pc3; Bxc3, Pd4; Bxd4, Pe5; Bxe5) might
not show the inevitable, ‘‘believing’’ that the queen has been saved at the expense of four pawns!
Thus programs with a poor or inadequate quiescence search suffer more from the horizon effect.

- 9 -

The best way to provide automatic extension of non-quiescent positions is still an open question,
despite proposals such as bandwidth heuristic search (Harris, 1974).

8

7

6

5

4

3

2

1
Black to move

Figure 4: The Horizon Effect.

3. ALPHA-BETA ENHANCEMENTS
Although the α-β algorithm is extremely efficient in comparison to a pure minimax search,

it is improved dramatically both in the general case, and for chess in particular, by heuristic
move-ordering mechanisms. When the heuristically superior moves are tried first there is always
a statistical improvement in the pruning efficiency. Another important mechanism is the use of
an iteratively deepening search, it too has the effect of dynamically re-ordering the move list at
the root position, with the idea of reducing the search to that of the minimal game tree. Iteratively
deepening searches are made more effective by the use of transposition tables to store results of
searches from earlier iterations and use them to guide the current search more quickly to its best
result. Finally, the α-β implementation itself has a more efficient implementation, based on the
notion of a minimal (null) window search to prove more quickly the inferiority of competing vari-
ations.

3.1. Minimal Window Search
Theoretical advances, such as SCOUT (Pearl, 1980) and the comparable minimal window

search techniques (Fishburn, 1984; Marsland, 1983; Campbell and Marsland, 1983) came in the
late 1970’s. The basic idea behind these methods is that it is cheaper to prove a subtree inferior,
than to determine its exact value. Even though it has been shown that for bushy trees minimal
window techniques provide a significant advantage (Marsland, 1983), for random game trees it is
known that even these refinements are asymptotically equivalent to the simpler α-β algorithm.
Bushy trees are typical for chess and so many contemporary chess programs use minimal window
techniques through the Principal Variation Search (PVS) algorithm (Marsland and Campbell,
1982). In Figure 5, a Pascal-like pseudo code is used to describe PVS in a negamax framework.
The chess-specific functions Make_____ and Undo_____ have been omitted for clarity. Also, the original
version of PVS has been improved by using Reinefeld’s depth=2 idea, which shows that re-
searches need only be performed when the remaining depth of search is greater than 2. This
point, and the general advantages of PVS, is illustrated by Figure 6, which shows the traversal of
the same tree presented in Figure 2. Note that using narrow windows to prove the inferiority of
the subtrees leads to the pruning of an additional frontier node (the node p.2.1.2). This is typical
of the savings that are possible, although there is a risk that some subtrees will have to be re-
searched.

- 10 -

FUNCTION PVS (p : position; α, β, depth : integer) : integer;
{ p is pointer to the current node }
{ α and β are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR merit, j, value : integer;
moves : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN

IF depth ≡ 0 THEN { frontier node, maximum depth? }
Return(Evaluate(p));

moves := Generate(p); { point to successor positions }
IF empty(moves) THEN { leaf, no moves? }

Return(Evaluate(p));
{ principal variation? }

merit := –PVS (moves[1], –β, –α, depth–1);
FOR j := 2 TO sizeof(moves) DO BEGIN

IF (merit ≥ β) THEN
GOTO done; { cut off }

α := max(merit, α); { fail-soft condition }
{ zero-width minimal-window search }

value := –PVS (moves[j], –α–1, –α, depth–1);
IF (value > merit) THEN { re-search, if ‘fail-high’ }

IF (α < value) AND (value < β) AND (depth > 2) THEN
merit := –PVS (moves[j], –β, –value, depth–1)

ELSE merit := value;
END ;

done:
Return(merit);

END ;

Figure 5: Minimal Window Principal Variation Search.

.............

.............. 2.1.22.1.11.2.21.2.1 depth = 0

(5,6)

2.2

(5,6)

2.1

(4,5)

1.2 depth = 1

(α,β)

1.1

(−6,−5)

2depth = 2

(−β,−α)

1

(α,β)

p depth = 3

23791645

Figure 6: The Effects of PVS Pruning (Negamax Framework).

- 11 -

3.2. Forward Pruning
To reduce the size of the tree that should be traversed and to provide a weak form of selec-

tive search, techniques that discard some branches have been tried. For example, tapered N-best
search (Greenblatt, Eastlake and Crocker, 1967) considers only the N-best moves at each node,
where N usually decreases with increasing depth of the node from the root of the tree. As noted
by Slate and Atkin ‘‘The major design problem in selective search is the possibility that the loo-
kahead process will exclude a key move at a low level [closer to the root] in the game tree.’’
Good examples supporting this point are found elsewhere (Frey, 1983). Other methods, such as
marginal forward pruning and the gamma algorithm, omit moves whose immediate value is worse
than the current best of the values from nodes already searched, since the expectation is that the
opponent’s move is only going to make things worse. Generally speaking these forward pruning
methods are not reliable and should be avoided. They have no theoretical basis, although it may
be possible to develop statistically sound methods which use the probability that the remaining
moves are inferior to the best found so far.

One version of marginal forward pruning, referred to as razoring (Birmingham and Kent,
1977), is applied near horizon nodes. The expectation in all forward pruning is that the side to
move can always improve the current value, so it may be futile to continue. Unfortunately there
are cases when the assumption is untrue, for instance in zugzwang positions. As Birmingham and
Kent (1977) point out ‘‘the program defines zugzwang precisely as a state in which every move
available to one player creates a position having a lower value to him (in its own evaluation
terms) than the present bound for the position’’. Marginal pruning may also break down when
the side to move has more than one piece en prise (e.g., is forked), and so the decision to stop the
search must be applied cautiously. On the other hand, use of the null move heuristic (Beal 1989;
Goetsch and Campbell, 1990) may be valuable here.

Despite these disadvantages, there are sound forward pruning methods and there is every
incentive to develop more, since this is one way to reduce the size of the tree traversed, perhaps to
less than the minimal game tree. A good prospect is through the development of programs that
can deduce which branches can be neglected, by reasoning about the tree they traverse (Horacek
1983).

3.3. Move Ordering Mechanisms
For efficiency (traversal of a smaller portion of the tree) the moves at each node should be

ordered so that the more plausible ones are searched soonest. Various ordering schemes may be
used. For example, ‘‘since the refutation of a bad move is often a capture, all captures are con-
sidered first in the tree, starting with the highest valued piece captured’’ (Gillogly, 1972). Special
techniques are used at interior nodes for dynamically re-ordering moves during a search. In the
simplest case, at every level in the tree a record is kept of the moves that have been assessed as
being best, or good enough to refute a line of play and so cause a cut-off. As Gillogly (1972) puts
it: ‘‘If a move is a refutation for one line, it may also refute another line, so it should be con-
sidered first if it appears in the legal move list’’. Referred to as the killer heuristic, a typical
implementation maintains only the two most frequently occurring ‘‘killers’’ at each level (Slate
and Atkin, 1977).

Later a more powerful and more general scheme for re-ordering moves at an interior node
was introduced. For every legal move seen in the search tree, Schaeffer’s history heuristic main-
tains a record of the move’s success as a refutation, regardless of the line of play (Schaeffer,
1989a). At any point the best refutation move is the one that either yields the highest merit or
causes a cut-off. Many implementations are possible, but a pair of tables (each of 64×64 entries)
is enough to keep a frequency count of how often a particular move (defined as a from-to square
combination) is best for each side. Thus at each new interior node, the available moves are re-
ordered so that the ones that have been most successful elsewhere are tried first. An important

- 12 -

property of this so called history table is the ability to share information about the effectiveness of
moves throughout the tree, rather than only at nodes at the same search level. The idea is that if a
move is frequently good enough to cause a cut-off, it will probably be effective whenever it can
be played.

3.4. Progressive and Iterative Deepening
The term progressive deepening was used by de Groot (1965) to encompass the notion of

selectively extending the main continuation of interest. This type of selective expansion is not
performed by programs employing the α-β algorithm, except in the sense of increasing the search
depth by one for each checking move on the current continuation (path from root to horizon), or
by performing a quiescence search from horizon nodes until dead positions are reached.

In the early 1970’s several people tried a variety of ways to control the exponential growth
of the tree search. A simple fixed depth search is inflexible, especially if it must be completed
within a specified time. This difficulty was noted by Scott who reported in 1969 on the effective
use of an iterated search (Scott, 1969). Jim Gillogly, author of the Tech chess program, coined
the term iterative deepening to distinguish a full-width search to increasing depths from the pro-
gressively more focused search described by de Groot. About the same time David Slate and
Larry Atkin (1977) sought a better time control mechanism, and introduced an improved iterated
search for carrying out a progressively deeper and deeper analysis. For example, an iterated
series of 1-ply, 2-ply, 3-ply ... searches is carried out, with each new search first retracing the best
path from the previous iteration and then extending the search by one ply. Early experimenters
with this scheme were surprised to find that the iterated search often required less time than an
equivalent direct search. It is not immediately obvious why iterative deepening is effective; as
indeed it is not, unless the search is guided by the entries in a memory table (such as a transposi-
tion or refutation table) which holds the best moves from subtrees traversed during the previous
iteration. All the early experimental evidence suggests that the overhead cost of the preliminary 1
iterations is usually recovered through a reduced cost for the D -ply search. Later the efficiency
of iterative deepening was quantified to assess various refinements, especially memory table
assists (Marsland, 1983). Now the terms progressive and iterative deepening are often used
synonymously.

One important aspect of these searches is the role played by re-sorting root node moves
between iterations. Because there is only one root node, an extensive positional analysis of the
moves can be done. Even ranking them according to consistency with continuing themes or a
long range plan is possible. However, in chess programs which rate terminal positions primarily
on material balance, many of the moves (subtrees) return with equal merits. Thus at least a stable
sort should be used to preserve an initial order of preferences. Even so, that may not be enough.
In the early iterations moves are not assessed accurately. Some initially good moves may return
with a poor expected merit for one or two iterations. Later the merit may improve, but the move
could remain at the bottom of a list of all moves of equal merit—not near the top as the initial
ranking recommended. Should this move ultimately prove to be best, then far too many moves
may precede it at the discovery iteration, and disposing of those moves may be inordinately
expensive. Experience with our test program, Parabelle (Marsland and Popowich, 1985), has
shown that among moves of apparently equal merit the partial ordering should be based on the
order provided by an extensive pre-analysis at the root node, and not on the vagaries of a sorting
algorithm.

3.5. Transposition and Refutation Tables
The results (merit, best move, status) of the searches of nodes (subtrees) in the tree can be

held in a large direct access table (Greenblatt, Eastlake and Crocker 1967; Slate and Atkin, 1977).
Re-visits of positions that have been seen before are common, especially if a minimal window

- 13 -

search is used. When a position is reached again, the corresponding table entry serves three pur-
poses. First, it may be possible to use the merit value in the table to narrow the (α,β) window
bounds. Secondly, the best move that was found before can be tried immediately. It had prob-
ably caused a cut-off and may do so again, thus eliminating the need to generate the remaining
moves. Here the table entry is being used as a move re-ordering mechanism. Finally, the primary
purpose of the table is to enable recognition of move transpositions that have lead to a position
(subtree) that has already been completely examined. In such a case there is no need to search
again. This use of a transposition table is an example of exact forward pruning. Many programs
also store their opening book in a way that is compatible with access to the transposition table. In
this way they are protected against the myriad of small variations in move order that are common
in the opening.

By far the most popular table-access method is the one proposed by Zobrist (1970). He
observed that a chess position constitutes placement of up to 12 different piece types
{K,Q,R,B,N,P,–K ... –P} onto a 64-square board. Thus a set of 12×64 unique integers (plus a
few more for en passant and castling privileges), {Ri }, may be used to represent all the possible
piece/square combinations. For best results these integers should be at least 32 bits long, and be
randomly independent of each other. An index of the position may be produced by doing an
exclusive-or on selected integers as follows:

Pj = Ra xor Rb xor . . . xor Rx

where the Ra etc. are integers associated with the piece placements. Movement of a ‘‘man’’ from
the piece-square associated with Rf to the piece-square associated with Rt yields a new index

Pk = (Pj xor Rf) xor Rt

By using this index as a hash key to the transposition table, direct and rapid access is possible.
For further speed and simplicity, and unlike a normal hash table, only a single probe is made.
More elaborate schemes have been tried, and can be effective if the cost of the increased complex-
ity of managing the table does not undermine the benefits from improved table usage. Table 1
shows the usual fields for each entry in the hash table. Flag specifies whether the entry
corresponds to a position that has been fully searched, or whether Merit can only be used to adjust
the α-β bounds. Height ensures that the value of a fully evaluated position is not used if the sub-
tree length is less than the current search depth, instead Move is played.

Table 1: Typical Transposition Table Entry.

Lock To ensure the table entry corresponds to

the tree position.___
Move Preferred move in the position, determined

from a previous search.___
Merit Value of subtree, computed previously.___
Flag Is the merit an upper bound, a lower bound

or an exact value?___
Height Length of subtree upon which merit is based.___

Correctly embedding transposition table code into the α-β algorithm needs care and atten-
tion to details. It can be especially awkward to install in the more efficient Principal Variation
Search algorithm. To simplify matters, consider a revised version of Figure 5 in which the line

value := –PVS (moves[j], –α–1, –α, depth–1);
is replaced by

value := –MWS (moves[j], –α, depth–1);

- 14 -

FUNCTION MWS (p : position; β, depth : integer) : integer;
VAR value, Height, Merit : integer;

Move, TableMove, BestMove : 1..MAXWIDTH;
Flag : (VALID, LBOUND, UBOUND);
moves : ARRAY [1..MAXWIDTH] OF position;

BEGIN
Retrieve(p, Height, Merit, Flag, TableMove);

{ if no entry in hash-transposition table then }
{ TableMove = 0, Merit = –∞ and Height < 0 }

IF (Height ≥ depth) THEN BEGIN {Node seen before}
IF (Flag ≡ VALID) OR (Flag ≡ LBOUND AND Merit ≥ β)

OR (Flag ≡ UBOUND AND Merit < β) THEN
Return(Merit);

END;
IF (Height > 0) THEN BEGIN {Save a move Generation?}

Merit := –MWS (moves[TableMove], –β+1, depth–1);
if (Merit ≥ β) THEN

Return(CUTOFF(p, Merit, depth, Height, TableMove));
END;

IF (depth ≡ 0) THEN
Return(Evaluate(p)); {Frontier node}

moves := Generate(p);
IF empty(moves) THEN

Return(Evaluate(p)); {Leaf node}
BestMove := TableMove;
FOR Move := 1 TO sizeof(moves) DO
IF Move ≠ TableMove THEN BEGIN

IF (Merit ≥ β) THEN
Return(CUTOFF(p, Merit, depth, Height, BestMove));

value := –MWS (moves[Move], –β+1, depth–1);
IF (value > Merit) THEN BEGIN

Merit := value;
BestMove := Move;

END;
END;

IF (Height ≤ depth) THEN
Store(p, depth, Merit, UBOUND, BestMove);

Return(Merit); {full-width node}
END;

FUNCTION CUTOFF (p: position; Merit, depth, Height : integer;
Move : 1..MAXWIDTH) : integer;

BEGIN
IF (Height ≤ depth) THEN

Store(p, depth, Merit, LBOUND, Move);
return(Merit); {pruned node}

END;

Figure 7: Minimal Window Search with Transposition Table.
Basically the minimal window search portion is being split into its own procedure (this formula-
tion also has some advantages for parallel implementations). Figure 7 contains pseudo code for
MWS and shows not only the usage of the entries Move, Merit, Flag and Height from Table 1,
but does so in the negamax framework of the null window search portion of PVS. Of course the
transposition access methods must also be put into PVS. It is here, for example, that Store_____ sets

- 15 -

Flag to its EXACT value. Note too, in Figure 7, the introduction of the CUTOFF function to
ensure that the LBOUND marker is stored in the transposition table when a cutoff occurs, while
UBOUND is used when all the successors are examined. The contents of functions Retrieve_______ and
Store_____, which access and update the transposition table, are not shown here.

Transposition tables have found many applications in chess programs, not only to help
detect replicated positions, but also to assess king safety and pawn formations (Nelson, 1985).
Further these tables have been used to support a form of rote learning first explored by Arthur
Samuel (1958) for checkers. Two major examples of improving performance in chess programs
through learning are the works of Slate (1987) and Scherzer, Scherzer and Tjaden (1990).

A transposition table also identifies the preferred move sequences used to guide the next
iteration of a progressive deepening search. Only the move is important in this phase, since the
subtree length is usually less than the remaining search depth. Transposition tables are particu-
larly beneficial to methods like PVS, since the initial minimal window search loads the table with
useful lines that will be used if a re-search is needed. On the other hand, for deeper searches,
entries are commonly lost as the table is overwritten, even though the table may contain more
than a million entries (Nelson, 1985). Under these conditions a small fixed size transposition
table may be overused (overloaded) until it is ineffective as a means of storing the continuations.
To overcome this fault, a special table for holding these main continuations (the refutation lines)
is also used. The table has W entries containing the D elements of each continuation. For shal-
low searches (D < 6) a refutation table guides a progressive deepening search just as well as a
transposition table. Thus a refutation table is the preferred choice of commercial systems or users
of memory limited processors. A small triangular workspace (D×D /2 entries) is needed to hold
the current continuation as it is generated, and these entries in the workspace can also be used as a
source of killer moves. A good alternative description of refutation and transposition techniques
appears in the recent book by Levy and Newborn (1990).

3.6. Combined Enhancements
The various terms and techniques described have evolved over the years, with the superior-

ity of one method over another often depending on which elements are combined. Iterative
deepening versions of aspiration and Principal Variation Search (PVS), along with transposition,
refutation and history memory tables are all useful refinements to the α-β algorithm. Their rela-
tive performance is adequately characterized by Figure 8. That graph was made from data gath-
ered by a chess program’s simple evaluation function, when analyzing the standard Bratko-Kopec
positions (Kopec and Bratko, 1982). Other programs may achieve slightly different results,
reflecting differences in the evaluation function, but the relative performance of the methods
should not be affected. Normally, the basis of such a comparison is the number of frontier nodes
(also called horizon nodes, bottom positions or terminal nodes) visited. Evaluation of these nodes
is usually more expensive than the predecessors, since a quiescence search is carried out there.
However, these horizon nodes are of two types, ALL nodes, where every move is generated and
evaluated, and CUT nodes from which only as many moves as necessary to cause a cut-off are
assessed (Marsland and Popowich, 1985). For the minimal game tree these nodes can be counted,
but there is no simple formula for the general α-β search case. Thus the basis of comparison for
Figure 8 is the amount of CPU time required for each algorithm, rather than the leaf node count.
Although a somewhat different graph is produced as a consequence, the relative performance of
the methods does not change. The CPU comparison assesses the various enhancements more use-
fully, and also makes them look even better than on a node count basis. Analysis of the Bratko-
Kopec positions requires the search of trees whose nodes have an average width (branching fac-
tor) of W = 34 branches. Thus it is possible to use the formula for horizon node count in a uni-
form minimal game tree to provide a lower bound on the search size, as drawn in Figure 8. Since
search was not possible for this case, the trace represents the % performance relative to direct α-

- 16 -

β, but on a node count basis. Even so, the trace is a good estimate of the lower bound on the time
required.

Figure 8 shows the effect of various performance enhancing mechanisms. At interior nodes,
if the transposition (+trans) and/or refutation (+ref) table options are enabled, any valid table
move is tried first. By this means, should a cut-off occur the need for a move generation is elim-
inated. Otherwise the initial ordering simply places safe captures ahead of other moves. When
the history table (+hist) is enabled, the move list is further re-ordered to ensure that the most fre-
quently effective moves from elsewhere in the tree are tried soonest. For the results presented in
Figure 8, transposition, refutation and heuristic tables were in effect only for the traces whose
label is extended with +trans, +ref and/or +hist respectively. Also, the transposition table was
fixed at eight thousand entries, so the effects of table overloading may be seen when the search
depth reaches 6-ply. Figure 8 shows that:

(a). Pure iterative deepening costs little over a direct search, and so can be effectively used as a
time control mechanism. In the graph presented an average overhead of only 5% is shown,
even though memory assists like transposition, refutation or history tables were not used.

(b). When iterative deepening is used, PVS is superior to aspiration search (with a ± pawn win-
dow).

(c). A refutation table is a space efficient alternative to a transposition table for guiding the early
iterations.

(d). Odd-ply α-β searches are more efficient than even-ply ones.
(e). Transposition table size must increase with depth of search, or else too many entries will be

overlaid before they can be used. The individual contributions of the transposition table,
through move re-ordering, bounds narrowing and forward pruning are not brought out in
this study.

(f). Transposition and/or refutation tables combine effectively with the history heuristic, achiev-
ing search results close to the minimal game tree for odd-ply search depths. It is these com-
binations that have the most dramatic effect on iterative deepening’s efficiency.

3.7. Overview
A model chess program has three phases to its search. Typically, from the root node an

exhaustive examination of layers of moves occurs, and this is followed by a phase of selective
searches up to a limiting depth (the horizon). This limiting depth is not necessarily a constant,
since responses to check are not usually counted in the path length. The reason is clear, there are
only a few responses to checking moves and so their cost is negligible. Programs that have no
selective search component might be termed ‘‘brute force,’’ while those lacking an initial exhaus-
tive phase are often selective only in the sense that they use some form of marginal forward prun-
ing. An evaluation function is applied at the frontier nodes to assess the material balance and the
structural properties of the position (e.g., relative placement of pawns). To aid in this assessment
a third phase is used, a variable depth quiescence search of those moves that are not dead (i.e.,
cannot be accurately assessed). It is the quality of this quiescence search which controls the
severity of the horizon effect exhibited by all chess programs. Since the evaluation function is
expensive, the best pruning must be used. All major programs use the ubiquitous α-β algorithm,
in its aspiration or principal variation search form, along with iterative deepening.

Dynamic move re-ordering mechanisms like the killer heuristic, refutation tables, transposi-
tion tables and the history heuristic significantly improve these methods. Forward pruning
methods are also sometimes effective. The transposition table is especially important because it
improves the handling of endgames where the potential for a draw by repetition is high. Like the
history heuristic, it is also a powerful predictor of cut-off moves, thus saving a move generation.
The properties of these methods has been encapsulated in Figure 8, which shows their

- 17 -

Figure 8: Time Comparison of Alpha-Beta Enhancements.

search depth (ply)

2 3 4 5 6 7 8
10

20

30

40

50

60

70

80

90

100

110

120

direct α-β....
...

...
.......

.......
....iterative α-β

aspiration
....................pvs

pvs+ref

..pvs+tran

pvs+hist

pvs+tran+ref+hist

minimal tree

%
Pe

rfo
rm

an
ce

Re
la

tiv
e

to
a

D
ire

ct
al

ph
a-

be
ta

Se
ar

ch

performance relative to a direct α-β search.

4. THE ANATOMY OF CHESS PROGRAMS
A typical chess program contains the following three distinct elements: Board description

and move generation, tree searching/pruning, and position evaluation. Many people have based
their first chess program on Frey and Atkin’s (1979) instructive Pascal-based model. Even so,
the most efficient way of representing all the tables and data structures necessary to describe a
chess board is not yet known, although good proposals exist in readily available books (Frey,
1983; Welsh and Baczynskyj, 1985). Sometimes the Generate________ function produces all the feasible
moves at once from these tables. This has the advantage that the moves may be sorted to improve
the probability of a cut-off. In small memory computers, on the other hand, the moves are pro-
duced one at a time. This saves space and perhaps time whenever an early cut-off occurs. Since
only limited sorting is possible (captures might be generated first) the searching efficiency is gen-
erally lower, however.

- 18 -

In the area of searching/pruning methods, variations on the depth-limited alpha-beta algo-
rithm remain the preferred choice. All chess programs fit the following general model. A full
width ‘‘exhaustive’’ (all moves are considered) search is done at the first few ply from the root
node. At depths beyond this exhaustive layer some form of selective search is used. Typically,
unlikely or unpromising moves are simply dropped from the move list. More sophisticated pro-
grams do an extensive analysis to select those moves that are to be discarded at an interior node.
Even so, this type of forward pruning is known to be error prone and dangerous; it is attractive
because of the big reduction in tree size that ensues. Finally, the Evaluate_______ function is invoked at
the horizon nodes to assess the moves. Many of these are captures or other forcing moves which
are not ‘‘dead,’’ and so a limited quiescence search is carried out to resolve the unknown potential
of the move. The evaluation process is the most important part of a chess program, because it esti-
mates the value of the subtrees that extend beyond the horizon. Although in the simplest case
Evaluate_______ simply counts the material balance, for superior play it is also necessary to measure
many positional factors, such as pawn structures. These aspects are still not formalized, but ade-
quate descriptions by computer chess practitioners are available in books (Slate and Atkin, 1977;
Ebeling, 1987; Hyatt, Gower and Nelson, 1990).

4.1. Hardware Assists
Computer chess has consistently been in the forefront of the application of high technology.

With Cheops (Moussouris, Holloway and Greenblatt, 1979), the 1970’s saw the introduction of
special purpose hardware for chess. Later networks of computers were tried; in 1983 (New York),
Ostrich used an eight processor Data General system (Newborn, 1985) and Cray Blitz a dual pro-
cessor Cray X-MP (Hyatt, Gower and Nelson, 1985). Some programs used special purpose
hardware [see for example Belle (Condon and Thompson, 1982), Bebe (Scherzer, Scherzer and
Tjaden, 1990), Advance 3.0 and BCP (Welsh and Baczynskyj, 1985)], and there were several
experimental commercial systems employing high-performance VLSI chips. The trend towards
the use of custom chips will continue, as evidenced by the success of the latest master-calibre
chess program, Hitech from Carnegie-Mellon University, based on a new circuit design for gen-
erating moves. Most recently Deep Thought, which has been likened to Belle on a chip, often
runs as a multiprocessor system (Hsu et al., 1990; Hsu, 1990). The advantages and difficulties of
parallel systems have been described by Hyatt, Suter and Nelson (1989) and Schaeffer (1989b).
Although mainframes continue to be faster, the programs on smaller more special purpose com-
puters are advancing more rapidly. It is only a matter of time before massive parallelism is
applied to computer chess, as Stiller’s endgame studies show (Stiller, 1989). The problem is a
natural demonstration piece for the power of distributed computation, since it is processor inten-
sive and the work can be partitioned in many ways. Not only can the game trees be split into
similar subtrees, but parallel computation of such components as move generation, position
evaluation, and quiescence search is possible.

Improvements in hardware speed have been an important contributor to computer chess per-
formance. These improvements will continue, not only through faster special purpose processors,
but also by using many processing elements.

4.2. Software Advances
Many observers attributed the advances in computer chess through the 1970’s to better

hardware, particularly faster processors. Much evidence supports that point of view, but major
improvements also stemmed from a better understanding of quiescence and the horizon effect,
and a better encoding of chess knowledge. The benefits of aspiration search, iterative deepening
(especially when used with a refutation table), the killer heuristic and transposition tables were
also appreciated, and by 1980 all were in general use. One other advance was the simple
expedient of ‘‘thinking on the opponent’s time’’ (Gillogly, 1972), which involved selecting a

- 19 -

response for the opponent, usually the move predicted by the computer, and searching the
predicted position for the next reply. Nothing is lost by this tactic, and when a successful predic-
tion is made the time saved may be accumulated until it is necessary or possible to do a deeper
search. Anticipating the opponent’s response has been embraced by all microprocessor based
systems, since it increases their effective speed.

Not all advances work out in practice. For example, in a test with Kaissa, the method of
analogies ‘‘reduced the search by a factor of 4 while the time for studying one position was
increased by a factor of 1.5’’ (Adelson-Velsky, Arlazarov and Donskoy, 1979). Thus a dramatic
reduction in the positions evaluated occurred, but the total execution time went up and so the
method was not effective. This sophisticated technique has not been tried in other competitive
chess programs. The essence of the idea is that captures in chess are often invariant with respect
to several minor moves. That is to say, some minor moves have no influence on the outcome of a
specific capture. Thus the true results of a capture need be computed only once, and stored for
immediate use in the evaluation of other positions that contain this identical capture! Unfor-
tunately, the relation (sphere of influence) between a move and those pieces involved in a capture
is complex, and it can be as much work to determine this relationship as it would be to simply
re-evaluate the exchange. However, the method is elegant and appealing on many grounds and
should be a fruitful area for further research, as a promising variant restricted to pawn moves
illustrates (Horacek, 1983).

Perhaps the most important improvements in software have come from the new ideas in
selective and quiescent search. Great emphasis has been placed on self-limiting variable depth
search (Kaindl 1982) and on the method of singular extensions (Anantharaman, Campbell and
Hsu 1988) to guide the quiescent down appropriately forcing lines. Also the widely mentioned
idea of a null-move search, based on the assumption that nothing is worse than non move, has led
Beal (1989) to formulate a theory of 1st-order and higher-order null-move searches. These ideas
tie in with McAllister’s (1988) proposed use of ‘‘conspiracy numbers’’, although they have not
yet been applied in a major way to chess. Some of these methods are still somewhat special pur-
pose, but they all point to the existence of a theory for controlled search for games.

4.3. Endgame Play
During the 1970’s there developed a better understanding of the power of pawns in chess,

and a general improvement in endgame play. Even so, endgames remained a weak feature of
computer chess. Almost every game illustrated some deficiency, through inexact play or concep-
tual blunders. More commonly, however, the programs were seen to wallow and move pieces
aimlessly around the board. A good illustration of such difficulties is a position from a 1979 game
between Duchess and Chaos, which was analyzed extensively in an appendix to an important
reference (Frey, 1983). After more than ten hours of play the position in Figure 9 was reached,
and since neither side was making progress the game was adjudicated after white’s 111th move
of Bc6-d5. White had just completed a sequence of 21 reversible moves with only the bishop,
and black had responded correctly by simply moving the king to and fro. Duchess had only the
most rudimentary plan for winning endgames. Specifically, it knew about avoiding a 50-move
rule draw. Had the game continued, then within the next 29 moves it would either play an
irreversible move like Pf6-f7, or give up the pawn on f6. Another 50-move cycle would then
ensue and perhaps eventually the possibility of winning the pawn on a3 might be found. Even
today I doubt if many programs can do any better. There is simply nothing much to be learned
through search. What is needed here is some higher notion involving goal seeking plans. All the
time a solution which avoids a draw must be sought. This latter aspect is important since in many
variations black can simply offer the sacrifice bishop takes pawn on f6, because if the white king
recaptures a stalemate results.

- 20 -

8

7

6

5

4

3

2

1
White to move

Figure 9: Lack of an Endgame Plan.

Sometimes, however, chess programs are supreme. At Toronto in 1977, in particular, Belle
demonstrated a new strategy for defending the lost ending KQ vs KR against chess masters.
While the ending still favors the side with the queen, precise play is required to win within 50
moves, as several chess masters were embarrassed to discover (Kopec, 1990). In speed chess
even Belle often dominated the masters, and the newer machines like Deep Thought and Hitech
are truly formidable. Increasingly, chess programs are teaching even experts new tricks and
insights. Long ago Thomas Ströhlein built a database to find optimal solutions to several simple
three and four piece endgames (kings plus one or two pieces). Using a Telefunken TR4 (48-bit
word, 8 µsec. operations) he obtained the results summarized in Table 2 (Ströhlein 1970). When
one considers that it took more than 29 hours to solve the KQ vs KR endgame, one realizes what
a major undertaking it was in 1969. In the next decade, many others built databases of the sim-
plest endings. Their approach (Bramer and Clark, 1979; Bratko and Michie, 1980) was to develop
optimal sequences backward from all possible winning positions, building all paths to mate (i.e.,
reducing to a known subproblem). These works have recently been reviewed and put into per-
spective (van den Herik and Herschberg, 1985), but the other main results summarized in Table 2
were obtained by Thompson (1986).

Table 2: MaximumMoves to Mate or Win an Endgame.
__

Ströhlein(1970) Thompson(1986)__
Moves to Moves to Moves to

Pieces Mate Pieces Win Pieces Mate__
KQ vs K 10 KBB vs KN 66 KRR vs KR 31
KR vs K 16 KQ vs KNN 63 KRQ vs KR 35
KR vs KB 18 KQ vs KNB 42 KQN vs KQ 41
KR vs KN 27 KQ vs KBB 71 KQB vs KQ 33
KQ vs KR 31 KRN vs KR 33 KQR vs KQ 67

KRB vs KR 59 KQQ vs KQ 30__

In the five-piece endgames not all the positions are necessarily won, but of those that are the
maximum moves to mate or capture of a black piece is now known. These results were obtained
in 1985/86 using a Sequent Balance 8000 computer, on which a ‘‘typical pure-piece endgame
would be solved in two or three weeks of real time’’ (Thompson, 1986)! Although the recent
work by Stiller (1989) is interesting, the major contribution by Belle and Ken Thompson was the
building of databases to solve five-piece endgames—specifically, KQ# vs KQ (where # = Q, R, B

- 21 -

or N) and KR# vs KR. Furthermore Thompson discovered that in general KBB vs KN is won
(not drawn) and less than 67 moves are needed to mate or safely capture the knight, raising ques-
tions about revisions to the 50-move rule. Also completed was a major study of the complex
KQP vs KQ ending. Again, often more than 50 manoeuvres are required before a pawn can
advance (Thompson, 1986). Although hard to top, in 1988 Lewis Stiller used a Connection
Machine 2 to confirm these results and develop new ones, solving nearly all the five-piece
endgames in the process (Stiller, 1989). He also exhaustively studied many of the four-piece plus
pawn endgames, but had no means of storing the results to produce databases. For more complex
endings involving several pawns, some exciting new ideas are those on chunking. Based on these
ideas, it is claimed that the ‘‘world’s foremost expert’’ has been generated for endings where each
side has a king and three pawns (Berliner and Campbell, 1984).

4.4. Memory Tables
Others have pointed out (Slate and Atkin, 1977; Nelson, 1985) that a hash table can also be

used to store information about pawn formations. Since there are usually far more moves by
pieces than by pawns, the value of the base pawn formation for a position must be re-computed
several times. It is a simple matter to build a hash key based on the location of pawns alone, and
so store the values of pawn formations in a hash table for immediate retrieval. A 98-99% success
rate was reported (Hyatt, Gower and Nelson, 1985) for a pawn hash table, since otherwise 10-
20% of the search time was taken up with evaluation of pawn structures. King safety can also be
handled similarly (Nelson, 1985), because the king has few moves and for long periods is not
under attack.

8

7

6

5

4

3

2

1
White to move

Figure 10: Transposition Table Necessity.

Transposition and other memory tables come into their own in endgames, since there are
fewer pieces and more reversible moves. Search time reduction by a factor of five is common,
and in certain types of king and pawn endings, it is claimed that experiments with Cray Blitz and
Belle have produced trees of more than 30 ply, representing speedups of well over a hundred-fold.
Even in complex middle games, however, significant performance improvement is observed.
Thus, use of a transposition table provides an exact form of forward pruning and as such reduces
the size of the search space, in endgames often to less than the minimal game tree! The power of
forward pruning is well illustrated by the position in Figure 10, which was apparently first solved
by Chess 4.9 (Frey and Atkin, 1979) and then by Belle. The only complete computer analysis of
this position was provided later. As Hyatt, Gower and Nelson (1985) put it, a solution is possible
because ‘‘the search tree is quite narrow due to the locked pawns.’’ Here Cray Blitz is able to

- 22 -

find the correct move of Ka1-b1 at the 18th iteration. The complete line of the best continuation
was found at the 33rd iteration, after examining four million nodes in about 65 seconds of real
time. This was possible because the transposition table had become loaded with the results of
draws by repetition, and so the normal exponential growth of the tree was inhibited. Also, at
every iteration, the transposition table was loaded with losing defences corresponding to lengthy
searches. Thus the current iteration often yielded results equivalent to a much longer 2(D –1) ply
search. Ken Thompson refers to this phenomenon as ‘‘seeing over the horizon.’’

4.5. Selective Search
Many software advances came from a better understanding of how the various components

in evaluation and search interact. The first step was a move away from selective search, by pro-
viding a clear separation between the algorithmic component (search) and the heuristic com-
ponent (chess position evaluation). The essence of the selective approach is to narrow the width
of search by forward pruning. Some selection processes removed implausible moves only, thus
abbreviating the width of search in a variable way not necessarily dependent on node level in the
tree. This technique was only slightly more successful than other forms of forward pruning, and
required more computation. Even so, it too could not retain sacrificial moves. So the death knell
of selective search was its inability to predict the future with a static evaluation function. It was
particularly susceptible to the decoy sacrifice and subsequent entrapment of a piece. Interior node
evaluation functions that attempted to deal with these problems became too expensive. Even so,
in the eyes of some, selective methods remain as a future prospect since

‘‘Selective search will always loom as a potentially faster road to high level play. That
road, however, requires an intellectual break-through rather than a simple application
of known techniques’’ (Condon and Thompson, 1983).

The reason for this belief is that chess game trees grow exponentially with depth of search. Ulti-
mately it will become impossible to obtain the necessary computing power to search deeper
within normal time constraints. For this reason most chess programs already incorporate some
form of selective search, often as forward pruning. These methods are quite ad hoc since they
have a weak theoretical base.

Although nearly all chess programs have some form of selective search deep in the tree,
even if it is no more than discarding unlikely moves, so far only two major programs (Awit and
Chaos) had noted successes while not considering all the moves at the root node. Despite their
past occasional good results, these programs no longer compete in the race for Grand Master
status. Nevertheless, although the main advantage of a program that is exhaustive to some chosen
search depth is its tactical strength, it has been shown that the selective approach can also be
effective in handling tactics. In particular, Wilkin’s Paradise program demonstrated superior
performance in ‘‘tactically sharp middle game positions’’ on a standard suite of tests (Wilkins,
1983). Paradise was designed to illustrate that a selective search program can also find the best
continuation when there is material to be gained, though searching but a fraction of the game tree
viewed by such programs as Chess 4.4 and Tech. Furthermore it can do so with greater success
than either program or a typical A-class player. However, a nine to one time advantage was
necessary, to allow adequate time for the interpretation of the MacLisp program. Paradise’s
approach is to use an extensive static analysis to produce a small set of plausible winning plans.
Once a plan is selected ‘‘it is used until it is exhausted or until the program determines that it is
not working.’’ In addition, Paradise can ‘‘detect when a plan has been tried earlier along the line
of play and avoid searching again if nothing has changed’’ (Wilkins, 1983). This is the essence
of the method of analogies too. As Wilkins says, the ‘‘goal is to build an expert knowledge base
and to reason with it to discover plans and verify them within a small tree.’’ Although Paradise
was successful in this regard, part of its strength lay in its quiescence search, which was seen to
be ‘‘inexpensive compared to regular search,’’ despite the fact that this search ‘‘investigates not

- 23 -

only captures but forks, pins, multimove mating sequences, and other threats’’ (Wilkins, 1983).
The efficiency of the program lies in its powerful evaluation, so that usually ‘‘only one move is
investigated at each node, except when a defensive move fails.’’ Jacques Pitrat also wrote exten-
sively on the subject of finding plans that win material (Pitrat, 1977), but neither his ideas nor
those in Paradise were incorporated into the competitive chess programs of the 1980’s.

4.6. Search and Knowledge Errors
The following game was the climax of the 15th ACM NACCC, in which all the important

programs of the day participated. Had Nuchess won its final match against Cray Blitz there
would have been a 5-way tie between these two programs and Bebe, Chaos and Fidelity X. Such
a result almost came to pass, but suddenly Nuchess ‘‘snatched defeat from the jaws of victory,’’
as chess computers were prone to do. Complete details about the game are not important, but the
position shown in Figure 11 was reached.

8

7

6

5

4

3

2

1
White’s move 45.

Figure 11: A Costly Miscalculation.

Here, with Rf6xg6, Nuchess wins another pawn, but in so doing enters a forced sequence that
leaves Cray Blitz with an unstoppable pawn on a7, as follows:

45. Rf6xg6 ? Rg8xg6+
46. Kg5xg6 Nc8xd6
47. Pc5xd6

Many explanations can be given for this error, but all have to do with a lack of knowledge about
the value of pawns. Perhaps black’s passed pawn was ignored because it was still on its home
square, or perhaps Nuchess simply miscalculated and ‘‘forgot’’ that such pawns may initially
advance two rows? Another possibility is that white became lost in some deep searches in which
its own pawn promotes. Even a good quiescence search might not recognize the danger of a
passed pawn, especially one so far from its destination. In either case, this example illustrates the
need for knowledge of a type that cannot be obtained easily through search, and yet humans
recognize at a glance (de Groot, 1965). The game continued 47. ... Pa5 and white was neither
able to prevent promotion nor advance its own pawn.

There are many opportunities for contradictory knowledge interactions in chess programs.
Sometimes chess folklore provides ground rules that must be applied selectively. Such advice as
‘‘a knight on the rim is dim’’ is usually appropriate, but in special cases placing a knight on the
edge of the board is sound, especially if it forms part of an attacking theme and is unassailable.
Not enough work has been done to assess the utility of such knowledge and to measure its impor-
tance. In 1986, Jonathan Schaeffer completed an interesting doctoral thesis (Schaeffer, 1986)

- 24 -

which addressed this issue; a thesis which could also have some impact on the way expert sys-
tems are tested and built, since it demonstrates that there is a correct order to the acquisition of
knowledge, if the newer knowledge is to build effectively on the old (Schaeffer and Marsland,
1985).

5. AREAS OF FUTURE PROGRESS
Although most chess programs are now using all the available refinements and tables to

reduce the game tree traversal time, only in the ending is it possible to search consistently less
than the minimal game tree. Selective search and forward pruning methods are the only real hope
for reducing further the magnitude of the search. Before this is possible, it is necessary for the
programs to reason about the trees they see and deduce which branches can be ignored. Typically
these will be branches that create permanent weaknesses, or are inconsistent with the current
themes. The difficulty will be to do this without losing sight of tactical factors.

Improved performance will also come about by using faster computers, and through the
construction of multiprocessor systems. Perhaps the earliest multiprocessor chess program was
Ostrich (Newborn, 1985). Other experimental systems followed including Parabelle (Marsland
and Popowich, 1985) and ParaPhoenix. None of these early systems, nor the strongest multipro-
cessor program Cray Blitz (Hyatt, Gower and Nelson, 1990), consistently achieved more than a
5-fold speed-up, even when eight processors were used. There is no apparent theoretical limit to
the parallelism. Although the practical restrictions are great, some new ideas on partitioning the
work and better scheduling methods have begun to yield improved performance (Hyatt, Suter and
Nelson, 1989; Schaeffer, 1989b).

Another major area of research is the derivation of strategies from databases of chess
endgames. It is now easy to build expert system databases for the classical endgames involving
four or five pieces. At present these databases can only supply the optimal move in any position
(although a short principal continuation can be provided by way of expert advise). What is needed
now is a program to deduce from these databases optimally correct strategies for playing the
endgame. Here the database could either serve as a teacher of a deductive inference program, or
as a tester of plans and hypotheses for a general learning program. Perhaps a good test of these
methods would be the production of a program that derives strategies for the well-defined KBB
vs KN endgame. A solution to this problem would provide a great advance to the whole of artifi-
cial intelligence.

References

[AAD79] G.M. Adelson-Velsky, V.L. Arlazarov and M.V. Donskoy, ‘‘Algorithms of Adaptive Search’’ in
J. Hayes, D. Michie and L. Michulich, eds., Machine Intelligence 9, Ellis Horwood, Chichester,
1979, 373-384.

[AAD88] G.M. Adelson-Velsky, V.L. Arlazarov and M.V. Donskoy, Algorithms for Games__________________, Springer-
Verlag, New York, 1988. Translation of Russian original (1978).

[ACH88] T. Anantharaman, M. Campbell and F. Hsu, ‘‘Singular Extensions: Adding Selectivity to
Brute-Force Searching,’’ Int. Computer Chess Assoc. J. 11(4), 135-143 (1988). Also in
Artificial Intelligence 43(1), 99-110 (1990).

[Bea89] D. Beal, ‘‘Experiments with the Null Move’’ in D. Beal, ed., Advances in Computer Chess 5,
Elsevier, 1989, 65-79. Revised as ‘‘A Generalized Quiescence Search Algorithm’’ in Artificial
Intelligence 43(1), 85-98 (1990).

[Bel78] A.G. Bell, The Machine Plays Chess?______________________, Pergamon Press, Oxford, 1978.
[Ber73] H.J. Berliner, "Some Necessary Conditions for a Master Chess Program," Procs. 3rd Int. Joint

Conf. on Art. Intell., (Menlo Park: SRI), Stanford, 1973, 77-85.

- 25 -

[BeC84] H. Berliner and M. Campbell, ‘‘Using Chunking to Solve Chess Pawn Endgames,’’ Artificial
Intelligence 23(1), 97-120 (1984).

[BeE89] H.J. Berliner and C. Ebeling, ‘‘Pattern Knowledge and Search: The SUPREM Architecture,’’
Artificial Intelligence 38(2), 161-198 (1989). A revised version appears as ‘‘Hitech’’ in
Computers, Chess, and Cognition, 1990.

[BiK77] J.A. Birmingham and P. Kent, ‘‘Tree-searching and Tree-pruning Techniques’’ in M. Clarke,
ed., Advances in Computer Chess 1, Edinburgh Univ. Press, Edinburgh, 1977, 89-107.

[BrC79] M.A. Bramer and M.R.B. Clarke, ‘‘A Model for the Representation of Pattern-knowledge for
the Endgame in Chess,’’ Int. J. Man-Machine Studies 11, 635-649 (1979).

[BrM80] I. Bratko and D. Michie, ‘‘A Representation for Pattern-knowledge in Chess Endgames’’ in M.
Clarke, ed., Advances in Computer Chess 2, Edinburgh Univ. Press, Edinburgh, 1980, 31-56.

[Bru63] A.L. Brudno, ‘‘Bounds and Valuations for Abridging the Search of Estimates,’’ Problems of
Cybernetics 10, 225-241 (1963). Translation of Russian original in Problemy Kibernetiki 10,
141-150 (May 1963).

[CaM83] M.S. Campbell and T.A. Marsland, ‘‘A Comparison of Minimax Tree Search Algorithms,’’
Artificial Intelligence 20(4), 347-367 (1983).

[CoT82] J.H. Condon and K. Thompson, ‘‘Belle Chess Hardware’’ in M. Clarke, ed., Advances in
Computer Chess 3, Pergamon Press, Oxford, 1982, 45-54.

[CoT83] J.H. Condon and K. Thompson, ‘‘Belle’’ in P. Frey, ed., Chess Skill in Man and Machine,
Springer-Verlag, 2nd Edition 1983, 201-210.

[Ebe87] C. Ebeling, All the Right Moves: A VLSI Architecture for Chess___, MIT Press, 1987. See (1986)
Ph.D. thesis, Carnegie-Mellon Univ., Pittsburgh, 145pp.

[Fis84] J.P. Fishburn, Analysis of Speedup in Distributed Algorithms______________________________________, UMI Research Press, Ann Arbor,
Michigan, 1984. See earlier PhD thesis (May 1981) Comp. Sci. Tech. Rep. 431, Univ. of
Wisconsin, Madison, 118pp.

[FrA79] P.W. Frey and L.R. Atkin, ‘‘Creating a Chess Player’’ in B.L. Liffick, ed., The BYTE Book of
Pascal, BYTE/McGraw-Hill, Peterborough NH, 2nd Edition 1979, 107-155. Also in D. Levy
(ed.), Computer Games 1, Springer-Verlag, 1988, 226-324.

[Fre83] P.W. Frey(editor), Chess Skill in Man and Machine___________________________, Springer-Verlag, New York, 2nd Edition
1983.

[Gil72] J.J. Gillogly, ‘‘The Technology Chess Program,’’ Artificial Intelligence 3(1-4), 145-163 (1972).
Also in D. Levy (ed.), Computer Chess Compendium, Springer-Verlag, 1988, 67-79.

[Gil78] J.J. Gillogly, Performance Analysis of the Technology Chess Program, Tech. Rept. 189,
Computer Science, Carnegie-Mellon Univ., Pittsburgh, March 1978.

[GoC90] G. Goetsch and M.S. Campbell, ‘‘Experiments with the Null-Move Heuristic’’ in T.A. Marsland
and J. Schaeffer, eds., Computers, Chess, and Cognition, Springer-Verlag, New York, 1990,
159-168.

[Goo68] I.J. Good, ‘‘A Five-Year Plan for Automatic Chess’’ in E. Dale and D. Michie, eds., Machine
Intelligence 2, Elsevier, New York, 1968, 89-118.

[GEC67] R.D. Greenblatt, D.E. Eastlake and S.D. Crocker, ‘‘The Greenblatt Chess Program,’’ Fall Joint
Computing Conf. Procs. vol. 31, 801-810 (San Francisco, 1967). Also in D. Levy (ed.),
Computer Chess Compendium, Springer-Verlag, 1988, 56-66.

[Gro65] A.D. de Groot, Thought and Choice in Chess________________________, Mouton, The Hague, 1965. Also 2nd Edition
1978.

[Har74] L.R. Harris, ‘‘Heuristic Search under Conditions of Error,’’ Artificial Intelligence 5(3), 217-234
(1974).

[HaL76] J.E. Hayes and D.N.L. Levy, The World Computer Chess Championship___________________________________, Edinburgh Univ.
Press, Edinburgh, 1976.

- 26 -

[HeH85] H.J. van den Herik and I.S. Herschberg, ‘‘The Construction of an Omniscient Endgame
Database,’’ Int. Computer Chess Assoc. J. 8(2), 66-87 (1985).

[Hor83] H. Horacek, ‘‘Knowledge-based Move Selection and Evaluation to Guide the Search in Chess
Pawn Endings,’’ Int. Computer Chess Assoc. J. 6(3), 20-37 (1983).

[Hsu90] F-h. Hsu, Large Scale Parallelization of Alpha-Beta Search: An Algorithmic and Architectural
Study with Computer Chess, CMU-CS-90-108, Ph.D. thesis, Carnegie-Mellon Univ.,
Pittsburgh, Feb. 1990.

[HAC90] F-h. Hsu, T.S. Anantharaman, M.S. Campbell and A. Nowatzyk, ‘‘Deep Thought’’ in T.A.
Marsland and J. Schaeffer, eds., Computers, Chess, and Cognition, Springer-Verlag, New York,
1990, 55-78.

[HGN85] R.M. Hyatt, A.E. Gower and H.L. Nelson, ‘‘Cray Blitz’’ in D. Beal, ed., Advances in Computer
Chess 4, Pergamon Press, Oxford, 1985, 8-18.

[HSN89] R.M. Hyatt, B.W. Suter and H.L. Nelson, ‘‘A Parallel Alpha/Beta Tree Searching Algorithm,’’
Parallel Computing 10(3), 299-308 (1989).

[HGN90] R.M. Hyatt, A.E. Gower and H.L. Nelson, ‘‘Cray Blitz’’ in T.A. Marsland and J. Schaeffer,
eds., Computers, Chess, and Cognition, Springer-Verlag, New York, 1990, 111-130.

[Kai82] H. Kaindl, ‘‘Dynamic Control of the Quiescence Search in Computer Chess’’ in R. Trappl, ed.,
Cybernetics and Systems Research, North-Holland, Amsterdam, 1982, 973-977.

[Kai90] H. Kaindl, ‘‘Tree Searching Algorithms’’ in T.A. Marsland and J. Schaeffer, eds., Computers,
Chess, and Cognition, Springer-Verlag, New York, 1990, 133-158.

[KnM75] D.E. Knuth and R.W. Moore, ‘‘An Analysis of Alpha-beta Pruning,’’ Artificial Intelligence
6(4), 293-326 (1975).

[KoB82] D. Kopec and I. Bratko, ‘‘The Bratko-Kopec Experiment: A Comparison of Human and
Computer Performance in Chess’’ in M. Clarke, ed., Advances in Computer Chess 3, Pergamon
Press, Oxford, 1982, 57-72.

[Kop90] D. Kopec, ‘‘Advances in Man-Machine Play’’ in T.A. Marsland and J. Schaeffer, eds.,
Computers, Chess, and Cognition, Springer-Verlag, New York, 1990, 9-32.

[LeN90] D.N.L. Levy and M.M. Newborn, How Computers Play Chess_______________________, W.H. Freeman & Co., New
York, 1990.

[Lev88] D.N.L. Levy(editor), Computer Chess Compendium_________________________, Springer-Verlag, New York, 1988.
[MaC82] T.A. Marsland and M. Campbell, ‘‘Parallel Search of Strongly Ordered Game Trees,’’

Computing Surveys 14(4), 533-551 (1982).
[Mar83] T.A. Marsland, "Relative Efficiency of Alpha-beta Implementations," Procs. 8th Int. Joint Conf.

on Art. Intell., (Los Altos: Kaufmann), Karlsruhe, Germany, Aug. 1983, 763-766.
[MaP85] T.A. Marsland and F. Popowich, ‘‘Parallel Game-Tree Search,’’ IEEE Trans. on Pattern Anal.

and Mach. Intell. 7(4), 442-452 (July 1985).
[MRS87] T.A. Marsland, A. Reinefeld and J. Schaeffer, ‘‘Low Overhead Alternatives to SSS*,’’ Artificial

Intelligence 31(2), 185-199 (1987).
[Ma(90] T.A. Marsland and J. Schaeffer (eds.), Computers, Chess, and Cognition___________________________, Springer-Verlag, New

York, 1990.
[Mic80] D. Michie, ‘‘Chess with Computers,’’ Interdisciplinary Science Reviews 5(3), 215-227 (1980).
[Mit77] B. Mittman, ‘‘A Brief History of Computer Chess Tournaments: 1970-1975’’ in P. Frey, ed.,

Chess Skill in Man and Machine, Springer-Verlag, 1977, 1-33.
[MHG79] J. Moussouris, J. Holloway and R. Greenblatt, ‘‘CHEOPS: A Chess-oriented Processing

System’’ in J. Hayes, D. Michie and L. Michulich, eds., Machine Intelligence 9, Ellis Horwood,
Chichester, 1979, 351-360.

[Nel85] H.L. Nelson, ‘‘Hash Tables in Cray Blitz,’’ Int. Computer Chess Assoc. J. 8(1), 3-13 (1985).

- 27 -

[Nem51] T. Nemes, "The Chess-Playing Machine," Acta Technica, Hungarian Academy of Sciences,
Budapest, 1951, 215-239.

[New85] M.M. Newborn, "A Parallel Search Chess Program," Procs. ACM Ann. Conf., (New York:
ACM), Denver, Oct 1985, 272-277. See also (March 1982) Tech. Rep. SOCS 82.3, Computer
Science, McGill Univ., Montreal, Canada, 20pp.

[New88] M.M. Newborn, ‘‘Unsynchronized Iteratively Deepening Parallel Alpha-Beta Search,’’ IEEE
Trans. on Pattern Anal. and Mach. Intell. 10(5), 687-694 (1988).

[NSS58] A. Newell, J.C. Shaw and H.A. Simon, ‘‘Chess Playing Programs and the Problem of
Complexity,’’ IBM J. of Research and Development 4(2), 320-335 (1958). Also in E.
Feigenbaum and J. Feldman (eds.), Computers and Thought, 1963, 39-70.

[Pea80] J. Pearl, ‘‘Asymptotic Properties of Minimax Trees and Game Searching Procedures,’’ Artificial
Intelligence 14(2), 113-138 (1980).

[Pit77] J. Pitrat, ‘‘A Chess Combination Program which uses Plans,’’ Artificial Intelligence 8(3),
275-321 (1977).

[Sam59] A.L. Samuel, ‘‘Some Studies in Machine Learning Using the Game of Checkers,’’ IBM J. of
Res. & Dev. 3, 210-229 (1959). Also in D. Levy (ed.), Computer Games 1, Springer-Verlag,
1988, 335-365.

[ScM85] J. Schaeffer and T.A. Marsland, "The Utility of Expert Knowledge," Procs. 9th Int. Joint Conf.
on Art. Intell., Los Angeles, 1985, 585-587.

[Sch86] J. Schaeffer, Experiments in Search and Knowledge, Ph.D. thesis, Univ. of Waterloo, Waterloo,
Canada, Spring 1986.

[Sch89a] J. Schaeffer, ‘‘Distributed Game-Tree Search,’’ J. of Parallel and Distributed Computing 6(2),
90-114 (1989).

[Sch89b] J. Schaeffer, ‘‘The History Heuristic and Alpha-Beta Search Enhancements in Practice,’’ IEEE
Trans. on Pattern Anal. and Mach. Intell. 11(11), 1203-1212 (1989).

[Sch90] J. Schaeffer, ‘‘1989 World Computer Chess Championship’’ in T.A. Marsland and J. Schaeffer,
eds., Computers, Chess, and Cognition, Springer-Verlag, New York, 1990, 33-46.

[SST90] T. Scherzer, L. Scherzer and D. Tjaden, ‘‘Learning in Bebe’’ in T.A. Marsland and J. Schaeffer,
eds., Computers, Chess, and Cognition, Springer-Verlag, New York, 1990, 197-216.

[Sco69] J.J. Scott, ‘‘A Chess-Playing Program’’ in B. Meltzer and D. Michie, eds., Machine Intelligence
4, Edinburgh Univ. Press, 1969, 255-265.

[Sha50] C.E. Shannon, ‘‘Programming a Computer for Playing Chess,’’ Philosophical Magazine 41(7),
256-275 (1950). Also in D. Levy (ed.), Computer Chess Compendium, Springer Verlag, 1988,
2-13.

[SlA77] D.J. Slate and L.R. Atkin, ‘‘CHESS 4.5 - The Northwestern Univ. Chess Program’’ in P. Frey,
ed., Chess Skill in Man and Machine, Springer-Verlag, 1977, 82-118.

[Sla87] D. Slate, ‘‘A Chess Program that uses its Transposition Table to Learn from Experience,’’ Int.
Computer Chess Assoc. J. 10(2), 59-71 (1987).

[Sti89] L. Stiller, ‘‘Parallel Analysis of Certain Endgames,’’ Int. Computer Chess Assoc. J. 12(2),
55-64 (1989).

[Str70] T. Ströhlein, Untersuchungen über Kombinatorische Speile, Doctoral Thesis, Technischen
Hochschule München, Munich, Germany, Jan. 1970.

[Tho82] K. Thompson, ‘‘Computer Chess Strength’’ in M. Clarke, ed., Advances in Computer Chess 3,
Pergamon Press, Oxford, 1982, 55-56.

[Tho86] K. Thompson, ‘‘Retrograde Analysis of Certain Endgames,’’ Int. Computer Chess Assoc. J.
9(3), 131-139 (1986).

[TSB53] A.M. Turing, C. Strachey, M.A. Bates and B.V. Bowden, ‘‘Digital Computers Applied to
Games’’ in B.V. Bowden, ed., Faster Than Thought, Pitman, 1953, 286-310.

- 28 -

[WeB85] D.E. Welsh and B. Baczynskyj, Computer Chess II________________, W.C. Brown Co., Dubuque, Iowa, 1985.
[Wil83] David Wilkins, ‘‘Using Chess Knowledge to Reduce Speed’’ in P. Frey, ed., Chess Skill in Man

and Machine, Springer-Verlag, 2nd Edition 1983, 211-242.
[Zob70] A.L. Zobrist, A New Hashing Method with Applications for Game Playing, Tech. Rep. 88,

Computer Sciences Dept., Univ. of Wisconsin, Madison, April, 1970. Also in Int. Computer
Chess Assoc. J. 13(2), 169-173 (1990).

[Zus76] K. Zuse, ‘‘Chess Programs’’ in The Plankalkül, Rept. No. 106, Gesellschaft für Mathematik und
Datenverarbeitung, Bonn, Germany, 1976, 201-244. Translation of German original, 1945.
Also as Rept. No. 175, Oldenbourg Verlag, Munich, 1989.

