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ABSTRACT

Several heuristics have been developed to reduce the effort needed to select a move in chess.
Some of them dynamically change the order in which moves are considered during the
search, others assess the opponent’s threats by making a null move. There are many more
possibilities including forward-pruning mechanisms recognizing when it is futile to pursue a
line of play along the full length of a given path. This paper considers a spectrum of simple
heuristics and strategies and applies them to Chinese chess. It also tries to provide quantita-
tive data to support the use of not only these standard techniques but also of some newer
ideas involving attack-evading moves and strictly-forced moves. The effect on these methods
of the significantly different draw-by-repetition rules for Chinese chess is also considered.

1. INTRODUCTION

Over the years, several move-ordering heuristics, search-depth extension methods and memory functions have
been developed for computer chess programs. Some of them have been widely implemented and extensively
studied (Marsland, 1986), others have been tried and found effective, but only limited quantitative supporting
data was provided (Birmingham and Kent, 1977), and finally a few are still quite new (Beal, 1989; Ananthara-
man et al., 1988). In this paper many of the methods with which there is only modest working experience (or
little published data) have been implemented in the Chinese chess program, Abyss, and data gathered to help
make an authoritative comparison.
Chinese chess, a game much like chess but played on a board with 10×9 intersections, was chosen not only to
avoid replication of some earlier work, but also to see how well the techniques developed for computer chess
carry over to a related domain. Unlike chess, there are seven piece types, with different restrictions on their
moves. For example, the King/General and Queen/Guard must stay in the "palace" (a 3×3 region), the
Bishop/Elephant must stay on the home side of the "river" (a space diving the board into two halves, and taking
one move to cross). Also, after crossing the river the Pawn/Soldier can move both forward and sideways, but
does not promote to a more valuable piece when it reaches the back rank. Of the remaining pieces, the
Rook/Warrior and Knight/Horse are substantially the same as their chess counterparts (a Horse may be blocked,
however), while the Cannon is much like a Rook, but captures with an inline jump reminiscent of a checkers
(draughts) move. One convenient English-language reference for the rules and examples of play is Lau’s
(1985) book.
Despite the obvious differences in the board and the pieces, the basic ideas in the two games are the same: win
pieces and mate the King! In the eyes of humans, playing strategies developed for the one game carry over nat-
urally to the other, but with two important differences. In Chinese chess a stalemate does not exist: if you can-
not move you are lost. There is also an important difference in the notion of draw by repetition. Although the
same idea is present in Chinese chess, it is moderated by the restriction that the drawing cycle (threefold repeti-
tion of position) exclude a sequence of threats. Thus a draw by perpetual check is not allowed. But draw cycles
are surprisingly common in Chinese chess, and since their outcome may seriously affect some of the heuristic
methods employed, a detailed description of the algorithm used to detect illegal repetitions in Abyss is provided
in the Appendix. This is done not only for completeness, but also as a first step towards a full algorithmic
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treatment of this seemingly complex draw-by-repetition mechanism that is a fundamental component of Chi-
nese chess.

2. MOVE-ORDERING HEURISTICS

It is well-known in game-tree search that the most effective way to reduce the size of an α-β search is to
improve the move-ordering mechanisms. The simplest scheme is to consider capture moves before all others,
and so use of this simple heuristic is here taken for granted and forms the basic reference program (+cap) for
comparison purposes. Two other important move-ordering heuristics are: first try the move held in the transpo-
sition-table entry before doing either a move generation or considering capture moves (Slate and Atkin, 1977),
and use the history heuristic (Schaeffer, 1983, 1989) to order the (remaining) moves, so that those which fre-
quently achieve a cut-off elsewhere in the tree are tried before the others. It is now well established that these
three methods combine together well, achieving an average search reduction of more than 50%, as Table 1
shows. In the Depth = 5 data, the 32K-entry transposition table accounts for 75% of the search reduction and
the history heuristic for the remaining 25%, over use of capture moves alone. However, in these experiments,
use of the transposition table was not restricted to providing a preferred move, but included the normal search
savings that come from the recognition of transposition of moves. Our failure to isolate this component for the
results in Table 1 may be considered a minor flaw.

Table 1: Experiments with Interior Move Orderings
Depth = 3 Depth = 4 Depth = 5

nodes ratio hit % nodes ratio hit % nodes ratio hit %
Orderings

+cap 263085 1.00 18 1978554 1.00 30 8883580 1.00 34
+cap+tra+his 158359 0.60 18 788646 0.40 30 4238259 0.48 34

The data in Table 1 was obtained by searching the 50 tactical Chinese chess positions listed in Ye’s thesis (Ye
1992, Appendix, 2). Following the normal convention, if Abyss selects the first move of the winning combina-
tion it was accepted as "solving" the problem. For the 50 problems this success rate is listed as the "hit %" in
Table 1 and elsewhere. A more stringent requirement that the correct principal variation also be identified yields
a consistently lower figure of about 66% of the hits for 5-ply searches (Ye, 1992). Omitted here is data pertain-
ing to the use of a refutation table (a table showing an adequate continuation for every move in the original
position under study). Its incremental effect is small when an appropriately sized transposition table is used.
Also, even when deep searches overload the transposition table, the entries corresponding to the principal refu-
tations can be protected from being overwritten from one iteration to the next. Strangely, there has not yet been
a discussion of the added management costs and the merits and benefits that accrue to this refinement. With
this addition the transposition table effectively makes the refutation table redundant, even on the deepest
searches.
To be truly effective the transposition table must not be overwritten excessively. In particular, the entries corre-
sponding to critical nodes of the tree should not be overwritten. This can be done through careful table manage-
ment techniques, or by choosing a table size that is appropriate for the average size of the trees being searched.
The effectiveness of the table can be captured experimentally by measuring the percentage of the time that valid
entries are overwritten during the search process. Figure 1 shows the data for 5-ply searches with table sizes
varying from 2K entries to 1024K entries (a typical entry might require 8-10 bytes). By accepting a 10% over-
write rate one would be happy with a 32K-entry table, which was our choice here.

2.1. The Null-Move Heuristic
In addition to its move re-ordering property a transposition table automatically yields a search reduction,
because results from traversing one subtree can be retrieved and re-used later. Another search reduction tech-
nique, experimented with by Ken Thompson and others in the 1970s, is the null-move heuristic (Goetsch and
Campbell, 1990); it is also a means of improving search speed with little risk. Abyss tries a null-move search at
the internal nodes with a depth reduction of 1 ply before it starts searching legal moves. If the value returned
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Figure 1: Overwrite Percentages versus Transposition-Table Size.

exceeds the β bound, the value is accepted as a true cutoff; otherwise, it is used to improve the α bound. The
heuristic is not used during the endgame or if the King is in check.
It is straightforward to add the null-move heuristic to any version of the α-β search algorithm, and it can be
applied either at all interior nodes or only at those nodes up to the frontier (the last layer before the search hori-
zon). In our experiments, the latter choice was shown to be better in terms of node search reductions, and with-
out loss of move quality. Clearly there is no point in doing a null-move search at the frontier since no new
information can be gained.

2.2. The Futility Cutoff
Other ideas for forward pruning have appeared many times, e.g., the Gamma Algorithm by Newborn (1975, pp.
177-178), the razoring technique by Birmingham and Kent (1977) and some special forward-pruning methods
used in Chess 4.5 (Slate and Atkin, 1977). All these heuristics are generally applicable but using them involves
some risk. A safer variation is the heuristic which Jonathan Schaeffer calls the futility cutoff (Schaeffer 1986,
pp. 33-34). A futility cutoff differs from the earlier heuristics in the following ways:
• First, use of a futility cutoff is restricted to the frontier nodes in the search tree.
• Second, both the material merit and maximum positional value are used to decide whether to stop the

search.
• Finally, the search does not necessarily stop when the decision criterion above is met. In particular check-

ing moves are not forward pruned this way, nor are those capturing moves for which the material merit
alone yields a score within the current window.

In other words, the futility cutoff is a lower risk transformation of nodes near the frontier into tip (horizon)
nodes when certain criteria are met. Although this heuristic is often mentioned, previously only Schaeffer
(1986) provided quantitative data to show its effectiveness.
To illustrate use of the futility cutoff in the α-β algorithm, Figure 2 presents C-like pseudo code for one imple-
mentation. Function value(side, position) returns the static value (material balance) of position plus a maxi-
mum positional score for side which is used to determine whether to apply the futility cutoff. Figure 2 also
illustrates how a leg al draw by repetition is distinguished from an illegal repetition, as specified in Figure A1 of
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the Appendix. The experimental results for the futility-cutoff heuristic (-null+fcut) are given in Table 2.
The combination of both the futility cutoff and the null-move heuristic (+fcut+null) is also included. The
basis for comparison (-null-fcut) is Abyss using the three move-ordering methods: transposition-table
move, captures, and the history heuristic, i.e., the (+cap+tra+his) entry from Table 1.

Table 2: Null Move and Futility Cutoff Heuristics
Depth = 3 Depth = 4 Depth = 5

nodes ratio hit % nodes ratio hit % nodes ratio hit %
Experiments

−null−fcut 158358 1.00 18 788646 1.00 30 4238259 1.00 34
+null−fcut 133220 0.84 18 706844 0.90 30 2563303 0.60 30
−null+fcut 115169 0.73 18 706245 0.90 30 2392147 0.56 34
+null+fcut 104234 0.66 18 641469 0.81 30 1887356 0.45 30

As can be seen from Table 2 the futility cutoff is the preferred choice, since the success rate at Depth = 5 for the
null-move heuristic is poorer. This deterioration in success rate may come partly from the nature of these two
heuristics, but it could also depend on the test suite we chose; using different test positions may yield other
results. The two heuristics (+null+fcut) combine well, giving greater savings without degrading the perfor-
mance further. For this reason, both the null move heuristic and the futility cutoff are included in the current
version of Abyss and form the new reference program for all the remaining experiments described here. Note
that the null-move heuristic is a search-reduction technique, and so there is some risk in its use (i.e., it may
show a lower success rate). Also, in our implementation the null-move heuristic was applied recursively, thus
increasing the chance of error. Nev ertheless, on balance Goetsch and Campbell (1990) believe that the tech-
nique is worth trying, and so do we.

3. EXTENSIONS WITH DOMAIN-SPECIFIC KNOWLEDGE

No matter how fast computers become there will always be some search horizon beyond which moves must be
neglected. To reduce the damage from this neglect the notion of selective extensions has been introduced,
specifically increasing the search by an extra ply (plies) when certain criteria are met.
For instance, chess-playing programs usually extend the search by an extra ply when the side to move is in
check, since being in check can be a serious threat. This is one example of using domain-specific knowledge to
extend the search. Other approaches include extending on recaptures (Ebeling, 1987, pp. 101-102), on pawn
moves to the 6th and 7th rank in chess (Kaindl 1982, Scherzer et al., 1990), on moves near the territory of the
opponent’s King (Anantharaman, 1991), on strictly forced moves (say if one side has a single legal move) and
on certain evading moves to bring to safety a piece under attack (an ad hoc heuristic tried in Abyss). The latter
two hav e not yet been adequately assessed in the computer-chess literature, but are nonetheless worth consider-
ing. Here, we provide the descriptions of these heuristics with experimental results, and share our experience in
implementing them in the Abyss Chinese chess program.
Note that the implementation of these heuristics is simple and straightforward. Suppose we have a function
called forcing(move, position) which specifies whether the move, if made on the current position, meets the def-
inition of a forcing move (either a check evasion, a recapture, a king threat, an attack-evading move or a strictly-
forced move). The α-β search algorithm can be easily modified to suit this extension strategy, along the lines
shown in Figure 3. So the remaining task is to assess forcing moves to decide when they should cause a search
extension.
It is remarked that the function forcing() invoked in Figure 3 has been tailored to the check evasion case, so that
forcing(move, position) returns true if move is a check, causing all nodes expanded in this layer (where the
opponent’s King is in check) to be searched without a depth reduction. Of course, this is only one way of
adding the extension heuristics on forcing moves. The five forcing moves assessed are:
(a) Check Evasion
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int pvs(side, position, α, β, depth)
int side, position[90], α, β, depth;

{
int successor[90], merit, rept, num_moves, p, score, lower, fcut;
struct { int from, to; } moves[MAX_MOVES];

rept = repetition(side, position); /* Is the position duplicated? */
/* 0, no repetition; -1, illegal repetition; 1, draw repetition. */

if (rept ≡ 1) return(DRAW); /* A legal draw */
if (rept ≡ -1) return(ILLEGAL) /* An illegal repetition */
if(depth ≤ 0) /* A tip node? */
return(evaluate(side, position, α, β));

/* decide whether we should apply futility cutoff;
* value() is material balance plus maximum positional score.
*/
fcut = (depth ≡ 1) && (value(side, position) ≤ α);

num_moves = generate(side, position, moves);
score = -∞; p = 0;

while(p < num_moves && score ≡ -∞) {
successor = nextposition(moves[p], position);
if(!fcut || value(side, successor) > α || check(!side, successor))
score = -pvs(!side, successor, -β, -α, depth-1);

p++;
}

while(p < num_moves) {
if(score ≥ β)

goto out;
successor = nextposition(moves[p], position);
if(!fcut || value(side, successor) > α || check(!side, successor))
{
lower = max(α, score);
merit = -pvs(!side, successor, -lower-1, -lower, depth-1);
if(merit > score)
if(merit > α && merit < β && depth > 1)
score = -pvs(!side, successor, -β, -merit, depth-1);

else
score = merit;

}
p++;

}

out:
return(score);

}

Figure 2: Principal-Variation Search using a Futility Cutoff.

(b) Recaptures
(c) King Threats
(d) Attack-Evading Moves
(e) Strictly-Forced Moves
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int pvs(side, position, α, β, depth)
int side, position[90], α, β, depth;

{
int successor[90], merit, ndepth, num_moves, p, score, lower;
struct { int from, to; } moves[MAX_MOVES];

if(depth ≤ 0)
return(evaluate(side, position, α, β));

num_moves = generate(side, position, moves);
successor = nextposition(moves[0], position);
if(forcing(moves[0], position))
score = -pvs(!side, successor, -β, -α, depth);

else
score = -pvs(!side, successor, -β, -α, depth-1);

for(p = 1; p < num_moves; p++) {
if(score ≥ β)

goto out;
lower = max(α, score);
successor = nextposition(moves[p], position);
if(forcing(moves[p], position))
ndepth = depth

else
ndepth = depth - 1;

merit = -pvs(!side, successor, -lower-1, -lower, ndepth);
if(merit > score)
if(merit > α && merit < β)
score = -pvs(!side, successor, -β, -merit, ndepth);

else
score = merit;

}
}

out:
return(score);

}

Figure 3: Principal-Variation Search with Extension on Forcing Moves.

Because of its simplicity and efficiency, check evasion is perhaps the most commonly found feature in chess
programs. A checking move usually forms a major threat, therefore a one ply deeper search might reveal some
tactics that are beyond the original horizon. The situation is of course substantially the same in Chinese chess,
so one can expect a similar benefit from adding such a heuristic.
Equally, since capturing is the essence of tactics in chess (and Chinese chess), and a capture search (Bettadapur
and Marsland, 1988) forms the kernel of quiescence search, some captures are more or less forced. For exam-
ple, it might be worthwhile to extend one more ply on recaptures, as defined by Ebeling (1987, pp. 101-102),
with the hope that some deep tactics can be revealed. Note that extending all recaptures could be expensive
since a capture does not restrict the move choices by the opponent, therefore care is necessary to avoid a search
explosion. In Abyss, we adopt the same rule as in Hitech (Ebeling, 1987; Berliner and Ebeling, 1989); only
recaptures that bring the material merit into the window of the initial root value are considered.
It has already been mentioned that the king-threat heuristic can be used to alleviate the problem that computer
chess programs normally lack knowledge about long-term threats against the King (Anantharaman, 1991). In
Chinese chess, the King is perhaps more vulnerable to attack than in chess, since it is confined to only nine
squares (called the palace). On the other hand, the need to retain an adequate mating force to assault the King
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is more important, because there is no pawn promotion rule. In fact, there is an adage in Chinese chess which
says: "three pieces beside [the opponent’s palace] wins the game;" On balance, Chinese chess motivates use of
the king-threat heuristic more strongly than chess.
Since the King is confined to the palace, that region can be used to identify the squares around one side’s King,
but such a treatment is too static and might cause evaluation inaccuracies. In Abyss we adopt a definition
(Anantharaman, 1991) equivalent to that used in Deep Thought. We consider the King in jeopardy if the num-
ber of squares around one’s King (exactly one square away) that are under the opponent’s attack exceeds a cer-
tain threshold (3 is chosen); we then extend the search. Several experiments were done. Some were aimed at
deciding how many (1 or 2) plies we should extend when a king threat is detected. Others were used to deter-
mine whether to extend the positions where the attacked squares around one’s King exceed the threshold or
only consider it when such a position occurs after making a move. The best results seem to come from using
the king-threat extension only for one ply, and only considering the situation where the attacked squares around
the King exceed a threshold after one side has made a move. Using this implementation, move quality was
maintained, with only a moderate increase in node expansions. Therefore, this method is chosen in Abyss for
the experiments involving king threats.

3.1. Attack-Evading and Strictly-Forced Moves
Another possibility is to extend the search for moves that bring to safety a piece under attack. This may be
viewed as a generalization of the check-evasion heuristic, since otherwise the piece under attack will be cap-
tured by the opponent on the next move, resulting in a material loss. Moving the piece to safety (to a square
where it is no longer under the opponent’s attack or is protected by pieces of its own side) can be considered the
equivalent of a forced move.
Another reason for using this ad hoc extension heuristic in Abyss’ search algorithm stems from consideration of
the repetition rule of Chinese chess. Null moves can be used to detect threats, but not all threats identified by
the null move follow the rules of Chinese chess, and the expense of detection is high. Therefore, some simplifi-
cation to restrict the type of moves which are considered "threats" is made in Abyss. As a byproduct of detect-
ing an attack-evading move, we gain information distinguishing a legal repetition from an illegal one.
In Abyss, a simplified version of this heuristic is included; it only considers moving a major piece out of attack,
since including all types of pieces proved to be too expensive. Two experiments were conducted: in the first,
we determine whether there is at least one opponent’s piece under attack after one side has made a move
(including discovering attacks). In the second, we restrict ourselves to those pieces attacked during the last
move by the opponent. Although the former implementation yields a better performance in terms of hit rate,
we believe that it is not cost-effective since the search ratio is too high. Thus, for further experiments here, we
consider only the pieces attacked by the piece that moved last.
There is still another heuristic which can be used for extensions: strictly-forced moves. This heuristic has been
implemented in the chess-playing program Touch†. If there is only one legal move in a position, it is of course
forced and a less turbulent and more reliable measure of the position may be found by extending the search
with an extra ply. Moreover, such an extension may also be useful in situations where one side can make a
move which leads to a decisive advantage (such as a mate threat) but the opponent can temporarily "thwart" this
threat by some delaying move such as a check. Without these extension moves, one can be "fooled" into miss-
ing the threat. Note that positions where there is only one legal move are common when the King of the side to
move is in check. Therefore a total of two extra plies will be searched when strictly-forced moves are combined
with the check-evasion heuristic, allowing a deeper search in a forced line without incurring too much extra
cost.

3.2. Combining Extensions with Domain-Specific Knowledge
The experimental results of different combinations of search extensions with domain-specific knowledge have
been provided in Table 3, based on the key of extension combinations given in Table 4. To decide the relative
importance of each extension heuristic (and their combinations), we must compare not only the performance

† Private communication, J.W.H.M. Uiterwijk, 3rd Computer Olympiad, Maastricht, The Netherlands, August 1991.
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measures, but also the search efficiency. Since the importance grows as the hit % increases, but is inversely
related to the node ratio, a function defined as hit % rate (H) over node ratio (R) was used to measure the rela-
tive importance (RI) of each extension heuristic (but note, R is computed relative to the node count of Experi-
ment No. 1). From this an average weighted relative importance (Ave. RI) is computed, made up of the H/R
values for depths 3, 4 and 5 in proportion of 1:2:5, respectively. This ad hoc biasing of the average RI to the
results from the greater depths serves as a good discriminator between the various contributions of the knowl-
edge extensions, as Table 3 shows.

Table 3: Experimental Results for Different Knowledge Extensions
Expt. Depth = 3  Depth = 4 Depth = 5 Av e.

nodes R H nodes R H nodes R HNo. RI
1 104234 1.00 18 641469 1.00 30 1887356 1.00 30 28.50
2 121842 1.17 32 659071 1.03 38 2684653 1.42 50 34.65
3 111711 1.07 22 661337 1.03 28 2290755 1.21 34 26.93
4 144948 1.39 24 802759 1.25 30 2890065 1.53 34 22.05
5 125612 1.21 18 705624 1.10 32 2420428 1.28 34 25.73
6 107812 1.03 18 678275 1.06 30 2013468 1.07 36 30.29
7 127350 1.22 32 658167 1.03 36 3062946 1.62 48 30.54
8 155909 1.50 30 869377 1.36 42 4493750 2.38 52 23.88
9 167284 1.60 34 759998 1.18 38 3510887 1.86 50 27.51
10 136747 1.31 30 854828 1.33 42 3645802 1.93 50 26.95
11 167878 1.61 30 893620 1.39 40 5309546 2.81 52 21.09
12 166342 1.60 34 784635 1.22 36 4040137 2.14 46 23.47
13 144298 1.38 30 855107 1.33 42 4467591 2.37 50 23.80
14 214200 2.05 32 1033796 1.61 40 6248260 3.31 52 17.98
15 190384 1.83 30 1104580 1.72 46 6693856 3.55 54 18.24
16 195093 1.87 32 1140422 1.78 42 7364632 3.90 52 16.37
17 249328 2.39 32 1632788 2.55 46 11574022 6.13 58 12.10

Table 4: Key to Different Combinations of Knowledge Extensions
Expt. No. Combinations

1 no extensions (+cap+tra+his+null+fcut) (Table 2, line 4)
2 check evasions
3 recaptures
4 king threats
5 evading moves
6 strictly-forced moves
7 check evasions + recaptures
8 check evasions + evading moves
9 check evasions + king threats

10 check evasions + strictly-forced moves
11 check evasions + recapture + evading moves
12 check evasions + recapture + king threats
13 check evasions + recapture + strictly-forced moves
14 check evasions + recapture + king threats + evading moves
15 check evasions + recapture + strictly-forced moves + evading moves
16 check evasions + recapture + strictly-forced moves + king threats
17 check evasions + recapture + strictly-forced moves + evading moves + king threats
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3.3. Interpretation
Although the criterion used here to calculate the relative merits of the heuristics is crude, these statistics provide
evidence to support use of certain extension heuristics. From Table 3, we see that check evasion is the heuristic
with the highest relative merit, both among those with a single extension heuristic and also when the extensions
are combined. Using more than two extension heuristics leads to far more nodes being searched without
improving the success rate significantly. Also, we see that when pairing extension heuristics, the combination
of check evasions plus recaptures performs best, although the other two combinations, check evasions plus king
threats and check evasions plus strictly-forced moves, are not far behind (based on average RIs). Of course, the
strictly-forced move heuristic alone costs little in node expansions, but does not in itself lead to an improved hit
rate.
From our experiments in the application of domain-specific knowledge we offer three conclusions. First, check
evasion (Experiment 2) always performs well and should be included in all chess-playing programs. Second,
combining two extension heuristics yields better correct-move hits, but it is perhaps not worth going beyond
two, since then the increase in nodes searched spoils the performance (e.g., Experiment 17). Third, when com-
bining two extension heuristics, the best choice is to use check evasions plus recaptures (Experiment 7, already
the most popular choice in chess-playing program design), although further experiments may be necessary to
see whether the two other choices, check evasions plus king threats (Experiment 9) and check evasions plus
strictly-forced moves (Experiment 10), also adequately improve the strength of play.
We note one final point. Although some of these extensions search more nodes by a factor of two or three
(though with a much improved success rate), the node counts are still below those in the basic reference pro-
gram (cf. Table 1). Thus, any combination of extensions is still effective relative to a program which uses cap-
tures-first as its sole move-ordering mechanism.

4. CONCLUSION

In this paper we have compared several basic search-extension mechanisms designed for computer-chess pro-
grams and applied them to the Chinese-chess variant, which has different board geometry, additional piece
types and move restrictions and a different draw-by-repetition rule. Aside from providing useful quantitative
data showing clearly the effect on nodes (positions) visited during tree searches to nominal depths of 3, 4 and 5
ply, so that the potential benefits of different combinations of heuristics can be clearly seen, the paper also
shows how these heuristics can have both beneficial and harmful effects on the search quality (the success rate).
Although the heuristics show the benefits of deeper searches, there comes a stage when some may lose there
effectiveness (the transposition table and history heuristic, for example). Also, this study was done only on a
node-count basis. Had it been possible to obtain accurate timing measurements, then no doubt implementation
techniques would play a greater role and could lead to slightly different interpretations from those assuming
that the time taken is directly proportional to the number of nodes (positions) visited during the search. Thus
the results presented here are only a guide to the potential benefits of some search-extension heuristics, since
their times of execution have not been measured. Some of the heuristics mentioned here might not be worth
implementing at all when other search-extension heuristics, such as singular extensions, are included. One
might note that a strictly-forced move is subsumed as a special case of a PV-singular move since the only move
is also the significantly best move (Anantharaman et al., 1988). Whether the strictly-forced-moves extension
becomes redundant when applying PV-singular extensions is beyond the scope of this paper.
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APPENDIX

1. The Repetition Rule in Chinese Chess and its Effects
Chinese chess has a significantly different repetition rule from that for chess. For instance, repetition by perpet-
ual check is considered a draw in chess, but such a repetition is not allowed in Chinese chess. In general, the
rules of Chinese chess disallow the use of certain repetitions after a threat move (ev en so there are exceptions).
Three types of moves are considered as threats: checking moves, moves that threaten to win material, moves
that threaten mate. Nevertheless, the rule allows certain repetitions via a threat, provided the current position is
a repetition and is reached by a threat move as well (again there are exceptions to this).
Since the repetition rule of Chinese chess is so complicated, none of the current Chinese chess programs can
claim that they handle all situations correctly. Tsao et al. (1990) proposed a means for their program Chess
Master to handle most of the commonly occurring situations. The commercial Chinese chess program Xian
(Jacobs, 1989) guarantees never to make an illegal repetitive move, but still lacks the knowledge to handle cases
when a repetition would be legal, and in some cases it allows the opponent to make an illegal repetitive move.
Another program, Surprise, a participant at the 3rd Computer Olympiad, allows certain illegal repetitions when
it finds that all alternatives are significantly worse (as evidenced by some pre-tournament testings and casual
plays against Surprise during the 3rd Computer Olympiad).

1.1 A Repetition-Check Algorithm
In Abyss, we tried a more general repetition-detection algorithm, differentiating between detection at the root
and at interior nodes. The rationale behind this is to use a more strict rule for the root node and a more lenient
one at internal nodes.
For internal nodes, some approximation is made and only check repetition and some simple piece-winning
threats are considered. Two positions are considered identical if their transposition-table locks (Zobrist, 1970;
Marsland, 1986) are the same. A stack (sequential table) is used to store all such locks from the first move in
each game, but no count of the number of repetitions is kept. If a repetition under this definition is detected, we
determine not only whether the move reaching this position is a check, or a threat to win a lone piece, but also
that the previous move is not such a simple threat. If the preceding move was not a threat, then a threatening
move leading to a repeated position is assigned an illegal score (almost as poor as a mate score). Any other
combination of moves to a repeated position is given a draw score. In both cases there is no further search. The
reason for using an illegal score is because the definition of repetition here is approximate, and so we might
miss the only possible defense if an illegal score is no better than a mate score.
Nevertheless, at the root node an illegal move will be disallowed, so a more strict repetition-check algorithm is
adopted. For each move being considered at the root, we check backwards to see if this position is being
repeated for the third time. If so, and the move that reaches this position falls in the category of threat (defined
below), we backup to see if the previous position is also a repetition (not necessarily for the third time) and
whether the move reaching that position is also a threat. If the test of the second position fails (the position is
not repeated or the move to it is not a threat), we assign the value of the current move as forbidden, a score
worse than mate. In all other cases when a threefold repetition is detected, a draw score is assigned. We think
such an approach can correctly handle many of the difficult repetition conditions in Chinese chess. Also, it pro-
vides a conceptually sound base for further improvements and should be able to encompass even more repeti-
tions as the definition of a threat is refined.

1.2 The Definition of Threat
In Abyss, a threat is defined as a:
Checking threat

If a move delivers check, it is a threat. This is the simplest case.
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Mate threat
If after one side has made a move, the opponent can be mated by a series of checking moves, the first
move is considered to be a mate threat. In Abyss, an approximation is adopted. We search to a depth of 3
ply, considering only checking moves and replies to check, and assume that there is a mate if a mate
score is returned for this search. To reduce the search cost to a reasonable level, detection of a mate-in-n
(n > 3) threat is not considered at present, although according to rules, all mate threats should be equally
treated. For faster hardware, however, it may be better to search to unlimited depth, terminating only
when a repetition (of any kind) or a mate is seen or when there are no more checking moves.

Piece-winning threat
Again some simplifications are made, and we consider only those moves that threaten to win an unpro-
tected piece (all minor and major pieces and Pawns beyond the river). The expense of threat detection is
not as large as it seems, because the operations above are carried out only when a third-time-repetition is
seen, and the test is only done once during the search.

Figure A1 summarizes how we distinguish a legal repetition from an illegal one. Further work is required to
consider even earlier positions once a repetition is found. At the moment we can handle some difficult repeti-
tion situations, e.g., two threats over two threats (a draw) or two threats over one threat (a loss). Also, because
of time limits, search to some predefined fixed depth might be required to detect whether a side has a piece-
winning threat. By restricting the moves to only captures, checking moves and replies to checks (an extended
quiescence search), we can do a search after making a null move (in this case making two consecutive moves
for the side causing the repetition). If the value returned exceeds a certain amount (the threat margin), the first
move can be thought of as a threat and can be treated accordingly.

Previous
Position

Current
Position

Current
Position

Legal
Repetition

Draw

Legal
Repetition

Draw

Illegal
Repetition

Legal
Repetition

Draw

threat non-threat

threat non-threat threat non-threat

Figure A1: Legal and Illegal Repetitions.


