Management of block-structured programs

T.A. Marsland

Computing Science Department,
University of Alberta,
Edmonton T6G 2H1
Canada

DRAFT for Software - Practice and Experience

submitted: March 1981.

returned: March 1984.

revised: June 1984.
Experience with a technique for compiling subsets of the procedural elemeitga@® programs is
described. Thenethod does not require modifications to the compilérdoes presume the existence of a
random access file syster@omplete management of the usexurce and object files is provided by sup-
plementary directory and environment files. Because of its nature, the basic method should be equally
applicable to other block-structured languages, suchaasaR which also require recompilation of the
whole program whemner a snall change is made.

Acknowledgements

The separate compilation technique described here has bastapdd ver the past decadeSeveral people hee revised
the support programs including: Wayne Chelak, Granivioral, Ron Kostuik, and Earl Culham. More recently Terry Cenck
and Murray Campbell deloped a better way of generating the environment.



1. Introduction

In mary block-structured languages, dildlgol and Pascal, the support facilities are such that individual procedural com-
ponents of a program cannot be compiled. Non block-structured languages do not suffer this grabéxample the scope
of a variable in the 'C’ language is the file in which it is declared. [1] A large program may thus betditaer mary files;
alterations to part of the program then only require recompilation of the file with the altered code. In 'C’, program-wide glo
variables are madevailable by a method analogous to the Common statememiriraR®. InAlgol, on the other handa minor
change to the source code usually requires the subsequent recompilation of the whole phbtirasmall programs this is of
no great consequence, but with increasing size the extra processing time may be sub&tentiéted language Pascal suf-
fers from similar difficulties. [2]

2. Procedural Element Recompilation

Both AlgolW [3] and Pascal/VS [4] contain, as part of the language specification, a facility for independent compilati
of those procedures which communicate solely via their parameteAlisbugh it is entirely possible to write complete pro-
grams which enforce this communication wantion, it is rarely done. The problem is especially acute witpel@rograms,
containing may procedures, that manipulate comptiata structures. Prohibigly long parameter lists for procedures ave-b
densome, especially in the case where a subprocedure is spawned simply because the amount of codexgeeegsadethe
arbitrary size restriction (e.g. 8K bytes of code for AlgolW aascRl/VS). Ofourse, if all procedures were required to com-
municate via parameters, there would be little need for glasables, which in turn means that the whole concept of block-
structure and variable scope is loglternative lutions to this maintenance problemvadeen proposed, [2, 5] but typically
these entail modifications to the compiler itself. The scheme described heeeethoequires no such support, but a program-
ming comwention or discipline is imposed, to ensure a logical consigtbatween the source program and object code mod-
ules.

In languages which alothe programmes’ view of the procedure name to be an arbitrary sequence alpha-numeric chal
acters, one other small difficulty has to be faced. An association must be made betweersttexteseal name" for the pro-
cedure and the compiler’internal name".For practical reasons the compilenriew of the procedure name is as a short
sequence of characters,g. eightThese internal names must be unique, and for AlgolW ta&k form AWXSCnnn, where
nnn represents a three digit integer which in some sense measures e pedition of the corresponding procedure in the
source program. There is nothing special about the pr&fiX2C; it could equally well be the first &vcharacters of the
external or programmes’ name for the procedure. It was chosen perhaps for simplicity and for e&serdiation from
AlgolW run time library routines, and from other system wide functions.

Those procedures which are not dependent on global variables, and so can be anedgdpjication program, also
need a unique internal name. In AlgolW this is aetdeby taking the first fie characters of the procedure name (padded with
'# as necessary) and appending ‘001’ to form an eight character internal rmaseidTambiguity some care must be ¢akin
the choice of procedure nameSven though independent procedures cannot access global variables/functions thiesctly
can access other independent procedures.

In the general case, for procedures that manipulate glabables, a separate compilation capability becomes desirable
wheneer the cost of compiling a single typical procedure is small (less than 5%) compared to the cost of recompiling
whole program. The facility is essential for all large programs, those which cannot be compiled as a whole because of con
design limitations. For one version of Algaly8] executing under the Michign Terminal System (MTS), [7] this was the case
for ary program with more than about 900 occurrences of 'BEGIN'OREDURE’ and 'FOR’, almost independent of appli-
cation. Theprobability of this happening rises dramatically when the number of statements in the proggads 8000, Ui
can occur at gntime for a variety of reasons. This then is one definition of a large programtheugh it would be modest by
commercial standards.

In order to @ercome these restrictions on program size, and also to reduce computational requirements for re-comy
tions, | hae devdoped a source program management scheme which draws on the notion arkiad'vprogram eviron-
ment". Thebasic facility provides methods for updating the source and object modules and for producing the warkimg en
ment. All these componentsvgabeen drawn together into a single program, hereafter referred to as the Mawdgey the
whole maintenance process automatic, eliminating the possibility for error and significantly reducing the need for the user 1
familiar with the finer details of the procesA. general outline and more specific information about the Marsagatlire-
ments can be found in a report. [8]

It should be noted that the Manager relies/itg@n the random access properties of the MTS file system. [9] Of partic-
ular importance is the use of line numbers to ensure that parts of one file mayldid by another This is done by making



use of the indeed read/write capabilities of MTS line files, so updates may be made in an arbitrary non-sequential manr
Extension of our technique to systems which support only sequential files may therefore be difficult oreexpensi

To dmplify the management process a namingvention for the files accessed was established. Thus the "root name’
for the source file of the ussrAlgolW program is shared by the maintenance files produced by the Matder selected
root name is 'prog’, then the useurce file must be named 'prog.ALG’, and the Manager will initially produce (and subse-
quently presumexésts) three permanent files 'prog.OBJ’, containingcetable object modules, 'prog.ENV’, to hold the
skeletal structure of the AlgolW program, and 'prog.DIR’, towslibe update status and the names and locations of the proce:
dures. Inaddition, four temporary files are created to hold error messages, source listing, compiatiormemt and object
codes.

3. Environment Creation

An important feature of the Manager is the generation of an AlgolW compilatioroement. B do tis, certain
AlgolW reserved wrds are recognized using the state transition table presented in our report. [8] The major features of
environment are:

(&) Nestedbottom level) procedures are ceated to dummy procedures; i.e. the procedure heading and parametey} (if an
remain, toit the procedure body is replaced by a suitable ngllmaent. Br example, a proper procedure wouldétne
body replaced by a semicolon, whereas a function procedwriel weed an appropriate expression type, say TRUE for a
logical function.

(b) A block (procedure) containing nested procedures retains all its declarations and its spanning BEGIN-END, though
(procedure) body itself is either omitted far a function, is replaced by a suitable expression.

(c) Theouter block declarations (globals) are included, as well as the spanning BEGIN-END.

(d) Globallabels which are accessed from internal procedures must be included by hand, giving another reason such |
are undesirable.

(e) Linenumbers for the working environment correspond exactly to the those of the original source.

The ewironment thus created is a syntactically correct AlgolW program which, when compiled, produces object modules v
a e to one correspondence to the original progsatject modules (though of course the program bodies feetieély null
programs). Consideghe sample program of Figure 1 and its corresponding compilation environment of Figure 2. Figure
illustrates a program with nested procedures and functions, and has been primarily designedhe fhim of the wrking
ervironment, Figure 2. The important points to note are the correspondence between the line-numbers of the sample prc
and its environment, and the form of the null program body that is provided for each function/procedure.



BEGIN COMMENT contrived purely for illustration;

PROCEDURE FIRST;
BEGIN
WRITE(" This is a Factorial program!");
FACTORIAL;
END;
PROCEDURE RACTORIAL;
10 BEGIN COMMENT an outer procedure;
11 INTEGERNUMBER, SPARE;
11.5
12 LOGICAL PROCEDURE VALID;
13 BEGIN COMMENT a nested procedure;
14 IFNUMBER > 12 OR NUMBER <0
15 THENFALSE ELSE TRUE
16 END;
17
18 WRITE("Input a number!"); WRITE(" ");
20 READ(NUMBER);

O~NOOOTDWNPER

21

22 IFVALID

23 THENWRITE(" Number was", NUMBER, "Factorial is",
24 PHASE1(NUMBERY))

26 ELSEWRITE(" This number is inappropriate!");

27 END;

29 INTEGERPROCEDURE PHASE1(INTEGER VALUE NUMBER);
30 BEGIN

31 INTEGERPROCEDURE PHASE2(INTEGER VALUE NUMBER);
32 BEGIN

33 IFNUMBER =0 THEN 1

34 ELSENUMBER * PHASE1(NUMBER-1)
35 END;

36

37 IFNUMBER =0 THEN 1
38 ELSENUMBER * PHASE2(NUMBER-1)

39 END;

40

41 COMMENT Main program ;
42 FIRST

43 END.

Figure 1: prog.ALG, a sample program with nested procedures.



1 BEG N COVWMENT contrived purely for illustration;
2

3PRCCEDURE FI RST; ;

9 PROCEDURE FACTORI AL;

10 BEG N COMMENT an outer procedure;
11 | NTEGER NUMBER, SPARE;

11.5

12 LOG CAL PROCEDURE VALI D; TRUE;

27 END;

291 NTEGER PROCEDURE PHASE1( | NTEGER VALUE NUMBER);

30BEG N

31 | NTEGER PROCEDURE PHASE2( | NTEGER VALUE NUMBER); O;

39 0 END;

43 END.

Figure 2: prog. ENV, a working environnment for the sanple program

The environment is created directly from gdeversion of the uses’AlgolW source programThe creation process con-
sists of a subroutine which is called with a parameter giving the address of a table intcertaoh data is to be placedhis
table will be 16(N+1) bytes long, where N is a count of tt@ieit proceduresn the AlgolW program. Information returned
has the following format:

Procedure Nameg  First Linge  Last Line
(8 bytes) (4 bytes) (4 bytes)

The "Procedure Name" is an eight charadd#dt justified version of the corresponding procedugeternal name. It is either

truncated, or padded on the right with blanks to get8hzyte length. Thelefinition of the "First-Line" field differs depend-
ing upon whether the procedure is at the bottord & not. For nested (bottomwel) procedures, this field is the line-number
of the procedure heading, whereas for "outer" procedures it is the line-number of tivaifisieasource line after the declara-
tions. The'Last Line" field is alvays the line-number of the closing END for that procedure.

The file 'prog.DIR’ is a directory and each entry has fismponents:
(a). Theexternal and internal names of the procedure.
(b). Thestarting and ending line numbers of the object code for the procedure.
(c). Acount of the times the procedure has been modified.
(d). Thedate and time of the last update.
(e). Thestarting and ending line numbers of the source code for the procedure.

A directory of the type shown in Figure 3 is produced by the Manager from informatianted from the table entries formed
during the environment creation. Note that there is one entrywéoy procedure in the program, including one for the euter
most block, '(MAIN)™™.



lines lastupdate lines

external internal object mod date time source
(MAIN) AWXSCO001 5.0 11.0 1 JuL27, ..:26 39.1 43.0
FIRST ANXSC002 40.0 46.0 1 JuL2v, ....26 3.0 7.0
FACTORIA AWXSCO003 27.0 34.0 2 JuL2s, ...:45 16.1 27.0
VALID AWXSC004 34.0 40.0 1 JuL2v, ..:26 12.0 16.0
PHASE1 ANVXSC005 11.0 19.0 1 JuL2v, ...26 35.1 39.0
PHASE?2 ANVXSC006 19.0 27.0 1 JuL27, ...26 31.0 35.0

Figure 3: prog.DIR, a directory file for the sample program.

The information in the directory is used to maintain the source and object files in the follayinghe environment is
copied to a temporary file, which in turn igedaid by the contents of the selected procedures. This subset of the program |
then compiled. The object file produced is scanned for the selected modules and these are extracted, and theailirectory
used to delete the old object modules prior to their replacenreour system it is possible to do this replacement with an in
situ update, so there is no need to change the line number range associated with the object modules. The modification
and the date and time to the update are finally altered in the directory.

4. Programming Conventions

To avoid some of the hidden features of our compiler it was necessary to program in a discipin&desprimary pur
pose of the following carentions was to ensure a one to one correspondence between the procedures generated by the
piler and those declared by the user.

(&) All external (independent) procedures must be declared as globals

This restriction is not sere, since there is no disadvantage in making the external procedures global.

(b) Any construct which causes the compiler to produce additional (implicit) procedures, transparent to, tisenoser
allowed.

The elimination of these implicit object modules is really a blessing in disguise. lemion/of AlgolW [6]
these hidden procedures can be createdvsys. Wheneer a redundant BEGIN-END block isuilt, a hid-
den procedure is generated and igmgithe unversal internal name of <BLOCK>. Construction of redun-
dant BEGIN-END blocks is sometimes done deliberately withingelatock, e.g., in order tovercome a
restriction that no procedure generate more than 8K bytes of &ather than forcing the compiler to pro-
duce those@rocedures implicitlyit is better for the user to do samicitly, so hat one akays knows where
procedures are beingvioked. Morebizarrely these <BLOCK> procedures are generated wieei@ dock
expression is used-or example, the sequence:

WHILE (BEGIN <statements>; <expression> END)
DO <statement> ;

causes a procedure to be created awnokendl whenever the while condition is tested. Our management system requires
that such constructs be modified so that a function is ug@itidy. In the past, an error in the AlgolW compiler itself
lead to the unnecessary construction of hidden procedures for innocuous IF-THEN-ELSE statements. By aisimple
sion to the 1975 version of the compiler [6] that effect was eliminated.

(c) Afterinitial environment creation some "hand-fixing" may be necessary.

Global labels which are accessed from inner procedures must be inserted by hand. If one forgets to do this, a
later attempt to recompile a procedure that needs an external labdililitfthat time the label may be
inserted into the etronment, and the compilation repeated. Such labels should be uncommon, gince the
are normally used only for errokies. Of course the adherents to go-to-less programming wikrreave

problems here.



(d) Variables and procedures must be added in a controlled way.

During product deelopment, aside from wsing source program logic, one is constantly creating and delet-
ing variables. Under the management scheme described here, these alterations require som®#ieught.
tions of procedures or global variables can be done simply lsertiog them into dummy variables (place
holders). Creationf nav globals must be done carefyliysing the following technique. Eitherweleclara-

tions are added to the end of the appropriate declaration list, or previously allocated dummy entries (place
holders of the right type) are renamed to form operaticaglvies. Thentroduction of procedures can sim-
ilarly be done by reaatsting previously deactated procedures, or by appendingu@ocedure declarations

to the declaration list of the outer block. These techniques are adequate toeptesestablishedcorre-
spondence between internal and external procedure names, and to ensure that the allocated lox&tions of e
ing globals is not alteredClearly creation of ng variables must be done to both the source program and the
ervironment. Havever, dteration to the directory file will be necessary only fr@ocedures are generated.
Although these entries can be created simiplynay be better to treat this case as a major revision, and
recompile the whole program under the control of the Managdnat all the support files will be re-initial-

ized.

5. Large Program Problems and Costs

Usually it is more &pensve oth to maintain and toxecute large programs. Almosvesy operation is affected.of
example, it costs more to delete orwadines in a large source file, because the line directory portion of the filegorder
more substantial wésion. Onesolution to that problem is to distribute the source progreen seveal small files. Although
some cost savings are possible by this means, there is an increase in complexity of the management process.

5.1. Subfilehierarchy: The following proposal generalizes the Managduhctions, and reduces the cost of handlingdar
files. Themethod ivolves the use of a Manager to manipulate a hieyas€files, in a vay which is transparent to the user
The benefits of this hierarchic structure are carried across to manipulations on object files, which will be structuegd in a
analogous to the source. In the simplest case, the original file 'prog.ALG’ could be brokenirdo ten subfiles:
'prog.0.ALG’ to 'prog.9.ALG’. For sanity one would want to foll® a convention which requires that line numbers in a spe-
cific range appear only in a single subfilg.for example, line numbers in the range 2000 to 2999 were restricted to the subfil
'prog.2.ALG’, the editor could be woked through a small filter (preprocessor) which, in turould hare a §mple criterion

for switching from file to file automaticallyAlthough this approach is clean and conceptually satisfying it is not a technica
necessitysince all the information garding the ranges ofvery procedure already exists in the file 'prog.DIR’, so there are no
practical difficulties hereAs a matter of discipline, lever, one would probably want to keep these subfiles disjoint and non-
overlapping.

6. ManagerEfficiency

The Manager was originally deoped to support a program made up of 109 AlgolW proceduvesafge size 40 state-
ments), and a ¥ small independent éttran and PL360 procedures for system dependent functions. In the following discus
sion, the cost of compiling these independent components was igr@oeapilation of this program as a whole under our
AlgolW compiler was not possible, because of a block tai#eflow. By replacing six major procedures with dummy state-
ments, so that theverflow condition was not violated, the program was handled and from this a lower bound on the compil
tion time was estimated at 16 seconds Amdahl V/6 time. Thus without the Manager the application weuteenaaban-
doned. Orthe other hand, the initialization phase to generate a compilatimorement and a directoryo compile the origi-
nal source in tw parts, and to merge the resultant object modules into 'prog.OBJ’ required 33.5 seconds uralglitgur f
While this appeared to bepensve it provided a working program and was done only once; thereafter procedures were re
compiled a fev at a ime. Recompilingand updating a single sample procedure, consisting of about 90 statements, requir
2.85 seconds. Of this about 2.25 seconds wasvéraend associated with the Manggdecluding opening files, compiling the
ervironment and replacing a null program. In fact, for this application, direct compilation of the environment alone requir
1.04 seconds. One might therefore deduce that at least 16/(2.85°-2.25)"="26 procedures could be recompiled at one
before a compilation of the whole program would be cheapbe more detailed statistics of Table 1 support thaw,vie
although the estimate itself is dependent on procedure sizes.

An alternatve viewpoint can be obtained from a smaller constructed application with 59 identical procedures, each
about 50 statements, which required 8.4 seconds to compile and generate objetheddéialization phase of building the



supplementary files, compiling the whole program and updating the object modules took 18.27 demdhiscase thever-

head was 2.09 seconds and since updating 10 procedures took 4.15 seconds, up to 84/(4.157-2.09)"="40 procedures c(
replaced at a time before the process became uneconomic. This same experiment was repeated with a second sample
gram of 110 procedures, each of 25 statements, and the results summarized with the etiaengles in Table 1.

Chess prog. Samplel Sample 2

No. procedures 109 59 110
Ave. proc. size 90* 50 25
Initialization time (secs) 33.5 18.27 18.16
Stand alone compilation (secs) 16.0(est) 8.40 7.60
Overhead time (secs) 2.25 2.09 2.57
Time to update 5 procs. (secs) 4.90 3.05 291
Time to update 10 procs. (secs) 7.05 4.15 3.63
Est. max. no. updates 33 40 71

* Average for (1-10) procedures updated in this test.

Table 1: Separate compilation/replacement of procedures.

7. Conclusions

The Manager is a costfettive and corvenient way of maintaining large AlgolW programs. An a@iént system to
handle Pascal could baiili. The major change would be awestate transition table to accommodate the different nature of
Pascals Hock structure. Our approach is efficient, though dependent owvehagga procedure size. It is especially valuable if
the program is still undergoing substantialisen to a subset of its procedural components. Sincevidsbead does notavy
significantly with application, we assert thayaigolW program that needs more than about 2.5 seconds of Amdahl V6 CPL
time to compile and generate object modules is sufficiently largar@ami the use of a Managedur data shows that grpro-
gram of more than 15 procedures or 800 statements can be handled fioirmlgfreliably, and quickly than by another
locally existing support program. [10] The use of a directory to maintain not only the association betweensthenusdor
procedures and the compiled name, but also vel&ications of the various object modules, is responsible for thiseaty
improvement.

A logical extension to the present scheme has also been describedlvisrdividing a lage source file into a set of
subfiles, and thus benefit from the reduced cost of manipulating smallefigpecial filter to interface the user to the editor
would have © be huilt.

REFERENCES

References
1. D.M. Ritchie and K. Thompson, “The UNIX time-sharing systeBACM 17, pp. 365-375 (1974).
2. R.J.LeBlanc, “Extensions to PASCAL for separate compilati@®GPLAN Notices 13(9), pp. 30-33 (1978).

3. ComputingCentre Staff MTS Vol16: Algolw in MTS, document R25.0881, Urersity of Alberta, Edmonton (August
1981). 505pages.

4. IBM Staff, Pascal/VS Language Reference Manual, IBM Corporation, document SH20-6168-1 (1980). 172pages.

5. D.R.Hanson, A simple technique for controlled communication among separately compiled mbdolésare - Prac-
tice and Experience 9, pp. 921-924 (1979).

6. ComputelCentre StaffAn AlgolW compiler, Computer Centre, The Urrsity, Newcastle upon Tyne, U.K. (May 1975).
200pages.

7. D.W. Boettner and M.TAlexandey“The Michigan Terminal SystemZroc. |EEE 63(6), pp. 912-918 (1975).



10.

T.A. Marsland, T Crocket and M. Campbell, “Brtial compilation and support functions for block structure language
programs, TR78-6, Computing Science Dept., Mnif Alberta (1978). 35pages.

G.C.Pirkola, ‘A file system for a general purpose time sharing environnienag. |EEE 63(6), pp. 918-924 (1975).
ComputingCentre Staff,Object File Manipulation, document R15.0682, Urersity of Alberta, Edmonton (1982).
126pages.



