
Probability-Based Game Tree Pruning

Liwu Li and T. A. Marsland

Computing Science Department
University of Alberta

Edmonton
Canada T6G 2H1

ABSTRACT

In game-tree search, a point value is customarily used to measure position evalua-
tion. If the uncertainty about the value is to be reflected in the evaluation, which is
described with probabilistic distribution or probabilities, the search process must back up
distributions from leaf nodes to the root. It is shown that even though the merit value of
a node is described by probabilities, α-β bounded windows can still be used to cut off
some subtrees from search when a space-efficient depth-first traversal is applied to the
game tree. Several variations of probability-based α-β game tree pruning are presented.
We also show that probability-based α-β pruning can be viewed as a generalization of the
standard α-β game tree search algorithm and that it inherits some good properties from
its point-value version.

To appear, Journal of Algorithms, Fall 1989.

1. Introduction

In computer game playing, α-β pruning is a commonly used technique for speeding

up search processes. Knuth and Moore credit the idea of pruning some nodes from the

search process to McCarthy and his group at MIT, and trace back this search reduction

method to 1958[1]. However, the first formal treatment of this topic appears to be that of

Brudno in 1963[2]. In the α-β pruning algorithm, two bounds—α and β—are assigned

to an interior node in the search tree that has been visited by a depth-first search process,

and all the expected merit values of the node are between these two bounds. As the

search of the game tree proceeds, the value of the best leaf node found so far changes,

and the bounds α and β are also modified according to the value of the newly found best

leaf node. As soon as it is known that the possible merit value of this node is out of this

range, the search of the subtree rooted at this node is terminated.

Since it is rarely possible to search a game tree until truly terminal positions are

- 2 -

reached, sufficiently deep positions have to be considered to be terminal. The part of a

game tree that is to be explored by a search algorithm is usually called a search tree. The

strengths, or merit values, of these "horizon" nodes or leaf nodes are evaluated to gain the

best available information. There are three methods of describing the evaluation results.

A simple but inflexible method uses point-values, such as material-balance, to measure

the strength of a position. In a second method the upper and lower bounds are used to

describe the possible merit values [3]. Finally, Palay suggests using a distribution func-

tion to describe the possible locations of the merit value of a node in the game tree[4]. In

contrast, the point-value representation of game position merit totally ignores our uncer-

tainty about the strength, it forces us to make a conclusion on the merit value of a posi-

tion even when it is unclear. Another representation—range—also suffers from some

similar problems. For example, two positions cannot be distinguished if their estimated

ranges are the same. Probability distribution is a good alternative for describing the pos-

sible locations of the merit value of a position.

In computer game playing, move choice, or decision making, is based on game tree

search. Best-first search strategies [3][4] combine decision making and game tree search

naturally; depth-first game tree search leaves the problem of decision making open.

Therefore, the existing probability-based move choice criterion, like the function

dominance-level employed by algorithm PB* [4], can be applied to the probabilistic dis-

tributions backed up by depth-first search; if the decision cannot be made, some heuris-

tics, like the iterative deepening [5] or some other selective deepening, can be used to

guide the depth-first search to gain more information. As a matter of fact, because of its

lower space requirement and lighter operating overhead, depth-first game tree search is

almost universally used in computer game playing programs. The study of probability-

based depth-first search could lead to some heuristics for selective deepening and so

reduce the errors and costs in game tree search. In summary, the study of probability-

- 3 -

based game tree search is essentially independent of the study of decision making, the

former focuses on gaining more information with less cost, the latter, on analyzing the

gained information. The depth-first search for game trees where the leaf nodes are

evaluated with probability distributions, offers an interesting study of its own.

Since α-β pruning is such a popular and powerful technique, it is tempting to apply

it in probability-based game tree search. All the prior discussions about α-β pruning

have been restricted to point-value game tree search. The problem of how to apply the

α-β pruning technique to probability-based game tree search will be addressed here.

First, a computational model is presented, and a probability-based α-β pruning scheme is

proposed for that model. The result shows that even though the merit value of a node is

described by probabilities rather than a point-value, the α-β bounded windows can still

be used to cut off the search of some nodes. It can be proven that probability-based α-β

pruning is optimum in the sense that for some ordering of the successor nodes in a search

tree, it will search the least number of leaf nodes to get the probabilities that describe the

root position of the search tree. We show that the probability-based α-β algorithm can be

viewed as a generalization of the α-β pruning employed by point-value search algo-

rithms[1]. Several variations or applications of the probability-based algorithm are also

presented. One of them applies α-β pruning to range-based game tree search. The

heuristic information available at interior nodes of a search tree can also be used to

improve the α-β bounds. We also show how α-β pruning can be incorporated into

probability-based best-first search. Finally, the efficiency of this probability-based game

tree pruning technique is tested with a C-language program which generates random

trees.

In the following, like Knuth and Moore[1], we assume that all successor positions of

a node in a game tree have independent values, or equivalently that the searching algo-

rithms have no knowledge about dependencies between these positions. As observed by

- 4 -

Palay[4], the effects of this assumption tend to be limited.

2. A Model for Probability-Based Game Tree Search

Although the model proposed by Palay [4] applies to our search scheme as well, for

the sake of easy description and straight computation, our model describes the merit

value of a position as a discrete random variable. The domain of merit values is a finite

integer interval [-i, i], for i > 0. The merit value of a position S is described by a set of

probabilities, or a probability function PS , such that PS (v) is the probability that the

merit value is equal to v , for any v ∈ [-i, i]. A list of integer-real number pairs,

<v 1, PS (v 1)>, <v 2, PS (v 2)>, ..., <vk , PS (vk)>, (1)

is used to represent the probability function. The data structure (1) is called a VP-list if

PS (vj) > 0, for each j = 1,...,k . In the following, the terms probability function and VP-

list are used synonymously.

The negamax game tree search description method will be exploited, so that one

player’s winning will be another’s loss, and vice versa. In probability-based game tree

search, the operands are probability functions, and this reversed viewing method can be

reflected by the function P_NEG . Let PS be the VP-list describing the possible locations

of the merit value DS of position S . The probability P_NEG (PS)(v), for any v ∈ [-i , i],

is defined as the probability that the random variable −DS is equal to v :

P_NEG (PS)(v) = Probability (−DS = v).

Therefore, if a player is making use of a probability function P to represent the merit

value of a position, the opponent will make use of P_NEG (P) to describe that same posi-

tion. By the definition of P_NEG , it is easy to deduce the following formula:

P_NEG (P)(v) = Probability (DS = −v) = P (−v)

for any v ∈ [-i , i]. The above equations imply that if a merit value is represented from

- 5 -

the point of view of one player by a VP-list

<v 1, p 1>, <v 2, p 2>, ..., <vk , pk >,

then it will be described by the opponent as

<−vk , pk >, <−vk −1, pk −1>, ..., <−v 1, p 1>.

In other words, to get the probability function for the opponent, just change the sign of

the domain value component of each pair in the VP-list.

Searching a game tree means backing up the probabilities of the leaf nodes to the

root position. The back-up from its successor positions S 1, S 2, ... Sw to a node S can be

described by function P_MAX , the operands of which are also probability functions. For

the probability functions PS1, PS2, ... PSw , P_MAX can be defined in the following way:

When w = 1,

PS = P_MAX (PS1) = PS1;

when w = 2, for any v ∈ [-i, i],

PS (v) = P_MAX (PS1, PS2)(v)

= PS1(v)PS2(v) + PS1(v)
t =−i
Σ

v −1
PS2(t) + PS2(v)

t =−i
Σ

v −1
PS1(t);

when w ≥ 3,

PS = P_MAX (PS1, PS2, ..., PSw)

= P_MAX (P_MAX (PS1, PS2), ..., PSw).

Similar formulae can be used to define another function—P_MIN , which is used to

describe the complement operation of P_MAX :

When w = 1,

P_MIN (PS1) = PS1;

- 6 -

when w = 2, for any v ∈ [-i, i],

P_MIN (PS1, PS2)(v)

= PS1(v)PS2(v) + PS1(v)
t =v +1
Σ
i

PS2(t) + PS2(v)
t =v +1
Σ
i

PS1(t);

when w ≥ 3,

P_MIN (PS1, PS2, ..., PSw) = P_MIN (P_MIN (PS1, PS2), ..., PSw).

3. Probability-Based αα-ββ Pruning

Two concepts will be used in the information-lossless pruning of game trees. The

lower bound of a probability function P , denoted as lower_bound (P), is defined as the

smallest domain value v ∈ [-i , i] for which P (v) ≠ 0; the upper bound,

upper_bound (P), is the greatest v ∈ [-i , i] for which P (v) ≠ 0.

Proposition 1. Given two probability functions P 1 and P 2,

(1) if lower_bound (P 1) ≥ upper_bound (P 2), then

P_MAX (P 1, P 2) = P 1;

(2) if

lower_bound (P 1) < upper_bound (P 2)

and

lower_bound (P 2) < upper_bound (P 1),

then

P_MAX (P 1, P 2) ≠ P 1

and

P_MAX (P 1, P 2) ≠ P 2.

Proof.

- 7 -

By the definitions of lower_bound , upper_bound and P_MAX .

Suppose the current state of a node S is represented by PS and that of one successor

node Sj is represented by PS j . The current state of S will be described by

P_MAX (PS , P_NEG (PS j)).

The property of operation P_MAX presented in Proposition 1 suggests that only if

lower_bound (PS) ≥ -lower_bound (PS j) can the search of the remaining successors of Sj

be cut off. Based on this observation, a probability-based α-β algorithm can be designed.

The standard α-β pruning technique, which uses α-β bounded windows to limit the

backed-up point-values[1], will be generalized for probability-based game tree search.

The lower bounds of the probability functions that describe the current states of the

ancestor nodes will be used in setting the cut-off bounds α and β before searching a node;

these bounds are also improved dynamically when searching the subtree rooted at the

node.

Algorithm 1. Probability-Based α-β Pruning Algorithm.

The recursive function P_AB(S : position; α, β: integer) will return a VP-list, the

upper bound of which is less than or equal to β and the lower bound greater than or equal

to α. In this function, two local variables (TP0 and TP1, respectively) maintain the

current state of position S and that of the successor being explored. The special VP-list

<v , 1> with a single integer-real pair represents a probability function that takes value v

without doubt (i.e., with probability 1).

function P_AB(S : position; α, β: integer): VP-list;
var

TP0, TP1: VP-list;
j: integer ;

- 8 -

begin
1. if S is a leaf node then

return P_MIN (P_MAX (PS , <α, 1>), <β, 1>);
comment: Probability function PS is obtained by evaluating S

from the corresponding player’s viewpoint.
2. determine the successor positions, S 1, ..., Sw , of S , where w > 0;
3. TP0 := <α, 1>;
4. for j := 1 to w do

begin
5. TP1 := P_NEG (P_AB(Sj , -β, -α));
6. TP0 := P_MAX (TP0, TP1);
7. α := lower_bound (TP0)
8. if α = β

then return TP0;
end;

9. return TP0;
end.

The properties of function P_AB proposed in the following lemma will be used to

prove the above algorithm.

Lemma 1. If PS is the probability function that describes the merit value of a position S

in a negamax game tree search, and integers α < β, then

P_AB(S , α, β) = <α, 1>, if upper_bound (PS) ≤ α;

P_AB(S , α, β) = P_MIN (P_MAX (PS , <α, 1>), <β, 1>),

if upper_bound (PS) > α and lower_bound (PS) < β;

P_AB(S , α, β) = <β, 1>, if lower_bound (PS) ≥ β.

Proof.

These three loop invariant statements can be summarized by the following generali-

zation,

P_AB(S , α, β) = P_MIN (P_MAX (PS , <α, 1>), <β, 1>).

The separation of this statement is just for convenience in proving Theorem 1 later.

- 9 -

Lemma 1 will be proved by induction on the height of position S in the search tree.

If the height of S is 0, statement 1 will return a probability function

P_MIN (P_MAX (PS , <α, 1>), <β, 1>).

Therefore, the loop invariant is true for a leaf node S .

Suppose that the lemma is true for all nodes of height less than h , and S is a posi-

tion whose height in the search tree is h . In the for statement of function P_AB, state-

ment 5 returns a probability function

TP1 = P_NEG (P_MIN (P_MAX (PS j , <-β, 1>), <-α, 1>))

= P_MIN (P_MAX ((P_NEG (PS j)), <α, 1>), <β, 1>)).

If lower_bound (TP1) is equal to β for some j , by the definition of the backed-up merit

value, we must have lower_bound (PS) ≥ β. Therefore,

P_AB(S , α, β) = P_MIN (P_MAX (PS , <α, 1>), <β, 1>)

= <β, 1>.

This justifies the return of statement 8. Otherwise, we can prove

P_MIN (P_MAX (PS , <α, 1>), <β, 1>)

= P_MIN (P_MAX (P_MAX (P_NEG (PS1), ..., P_NEG (PSw)), <α, 1>), <β, 1>)

= P_MAX (P_NEG (P_MIN (P_MAX (PS1, <-β, 1>), <-α1, 1>)), ...,

P_NEG (P_MIN (P_MAX (PSw , <-β, 1>), <−αw , 1>))),

for any integers α1, ..., αw , where α = α1 ≤ α2 ≤ ... ≤ αw = max(lower_bound (PS), α).

Hence the lemma is proved.

By the above lemma, given a position S as the root of a search tree, probability function

PS can be calculated by calling

P_AB(S , -i , +i).

- 10 -

Theorem 1. For any position S , function call P_AB(S , -i , +i) will return a probability

function that describes the merit value of S .

Note that in function P_AB we can replace statement 1 by

if S is a leaf node then

return PS ,

provided we change statement 8 into

if α ≥ β

then return TP0.

But statement 1

return P_MIN (P_MAX ((Pp), <α, 1>), <β, 1>)

made the proof of Lemma 1 easier, and it usually returns a VP-list with tighter bounds.

4. A Generalization of Standard αα-ββ Pruning

Probability-based α-β pruning algorithm, in fact, is a generalization of the standard

α-β algorithm analyzed by Knuth and Moore[1]. If the evaluation result for each leaf

node S is a point-value, i.e.

PS (v) = 1

for some domain value v , then the function P_AB has a form that is essentially the same

as the algorithm F2 encoded by Knuth and Moore[1]. Therefore, our probability-based

α-β algorithm will have similar properties to the point-valued version. In particular,

since for any search tree there always exists an ordering of nodes for which the α-β algo-

rithm examines the fewest leaf nodes, an equivalent property must exist for the

probability-based version.

- 11 -

Theorem 2. Probability-based pruning is optimum in the sense that for any search tree

and any algorithm, denoted as algorithm X, that computes the probability function for the

root position, there is a way of ordering successor nodes so that every leaf node examined

by probability-based α-β pruning method under this reordering is also examined by the

algorithm X.

Before proving the theorem, let us introduce a symbol ψ into the functions P_NEG ,

P_MAX and P_MIN . The symbol ψ stands for an unknown real value between 0 and 1

that satisfies

ψ × r = ψ, ψ × ψ = ψ,

ψ + t = ψ, ψ + ψ = ψ,

where × and + are the arithmetic multiplication and addition, r is a non-zero real number,

and t is any real number. Then the "probability function" PS for a node S in the given

search tree will be defined as follows:

If S is a leaf node left unexamined by algorithm X, for each value v ∈ [-i , i]

PS (v) = ψ;

if S is an examined leaf node, then PS is determined by the evaluation function of

algorithm X;

if S is a non-leaf node, then

PS = P_MAX (P_NEG (PS1), ..., P_NEG (PSw)).

If there is only one value v ∈ [-i , i] for which PS (v) = ψ, then let

PS (v) = 1 -
j ≠v
ΣPS (j).

By induction on the height of a node S in the given search tree, we can prove that if

function PS (v) = ψ for some v ∈ [-i , i], then different probability functions can be

assigned to the unexamined leaf nodes to get different backed-up probability functions

- 12 -

for the node S . The appearance of symbol ψ in a probability function PS means that

algorithm X cannot solve the game tree rooted at node S , because by assigning different

probabilities to unexamined leaf nodes, PS will be changed.

For each such generalized probability function PS , two integer ranges, CS and US ,

can be defined so that the lower bound of CS is the minimum domain value v for which

PS (v) ≠ ψ and PS (v) > 0, and that the upper bound of CS is the maximum domain value

v for which PS (v) ≠ ψ and PS (v) > 0. Similarly, the lower bound of US is the minimum

domain value v for which PS (v) = ψ, the upper bound of US is the maximum domain

value v for which PS (v) = ψ. Note that for a position S , one, but not both, of the ranges

CS and US may be empty.

Lemma 2. For a node S , if both the ranges CS and US are not empty, then one of the

following two situations must be true.

lower_bound (CS) > upper_bound (US),

or

lower_bound (US) > upper_bound (CS).

Proof.

By induction on the height of the position S in the given game tree, and the details

are omitted here.

The above lemma characterizes the structure of the probability function PS for any

position S . In fact, we can prove that if the range US is nonempty, then for any v ∈ US ,

we have

PS (v) = ψ.

For any such value v , PS (v) can assume at least two (in fact, infinitely many) different

probabilities by independently varying the probability function of an unexamined leaf

- 13 -

node.

According to the ranges US and CS , we will say that the position S is solved ,

semi -solved or live if the range US is empty, not empty and not equal to [-i , i], or equal

to [-i , i], respectively. Note that algorithm X computes the probability function for the

merit value of a position only if the status of the corresponding node is solved.

Lemma 3. For any solved non-leaf node S in the given tree, one of its successors St

must be a solved node such that the upper bound of CSt is less than or equal to the lower

bound of US j , for all j ≠ t .

Proof.

Without loss of generality, suppose node S has only two successors, S 1 and S 2.

First, let us assume both ranges US1 and US2 are non-empty. We will show that this

assumption will lead to a conclusion that node S is not a solved position.

Let US1 = [l 1, u 1] and US2 = [l 2, u 2], and suppose u 1 ≤ u 2. Then

P_MAX (P_NEG (PS1), P_NEG (PS2))(v) = ψ

for any v ∈ [-u 1, -l 1]. This shows that S cannot be solved by algorithm X.

Now assume range US1 is empty and US2 is not empty. If the upper bound of CS1 is

greater than the lower bound of US2, the probability function PS will have

PS (−c 1) = ψ

and

PS (−c 1 + 1) = ψ,

where c 1 is the upper bound of the range CS1. Therefore, we must have c 1 ≤ l 2, and this

implies the conclusion presented in Lemma 3.

If the range US is understood as the uncertain part of the domain range [-i , i] for

- 14 -

the position S , we will say that the α-β algorithm P_AB(S , α, β) visits the certain part of

position S when the intersection of the two ranges [α, β] and US consists of at most one

integer, which is either α or β.

Lemma 4. If algorithm P_AB visits an interior solved node S , then there is an ordering

of the nodes under S such that P_AB will visit a successor Sj of S only if algorithm X

visits it, and when P_AB visits Sj , P_AB will visit its certain part.

Proof.

Let P_AB visit St first, as determined by Lemma 3. Note that St is such a solved

node that the upper bound of CSt is less than or equal to the lower bound of US j for all

j ≠ t . Then the reset of α and β will make P_AB either visit the certain part of a succes-

sor, Sj (j ≠t), or return from S .

Lemma 5. If algorithm P_AB visits the certain part of a non-leaf node S , there is an ord-

ering of the nodes under S such that P_AB will visit a leaf node under S only if that leaf

is visited by algorithm X.

Proof.

This lemma is proved by induction on the height of S in the given search tree. In

the following, it is assumed that S is visited with a window [α, β]. By Lemma 4, we can

suppose position S is semi-solved and, for simplicity, it has only two successors S 1 and

S 2. If both of the ranges US1 and US2 are subsets of [-upper_bound (US),

-lower_bound (US)], when algorithm P_AB visits S 1 or S 2, P_AB will also visit the cer-

tain part, and the lemma is true by the induction hypothesis. If one of the ranges, for

example, US1, is not contained in [-upper_bound (US), -lower_bound (US)], then,

because

P_NEG (PS) = P_MIN (PS1, PS2),

- 15 -

we must have

-lower_bound (US) < upper_bound (US1).

This fact implies

-β ≥ upper_bound (US2)

and

PS2(v) = 0

for any v ∈ [upper_bound (US2)+1, i], or -α ≤ min(lower_bound (US1),

lower_bound (US2)). In the former case, if P_AB visits S 2 first, then P_AB will visit the

certain part of node S 2 with window [-β, -α], and the function P_AB(S 2, -β, -α) returns

<-β, 1>. Therefore, P_AB will prune S 1. In the latter case, the visiting window [-β, -α]

does not intersect with either of the two ranges, US1 or US2. This proves the lemma.

Lemma 5 implies that there is an ordering of successor nodes in the given search

tree such that if P_AB visits the certain part of a node S that is visited by algorithm X,

then P_AB will visit only those nodes under S that are also visited by algorithm X. We

now turn to the proof of Theorem 2.

Proof of Theorem 2.

Because the root position S 0 of the given tree must be a solved node, P_AB(S 0, -i ,

i) visits the certain part of S 0. By Lemma 5, Theorem 2 follows.

Since a search tree is finite, there must be an algorithm, say A, that visits the least

number of leaf nodes among all the algorithms that solve the search tree. Theorem 2

implies that by ordering successors in the search tree, P_AB will visit only those leaf

nodes that are visited by the algorithm A. Therefore, by reordering successor nodes in a

search tree, the algorithm P_AB will visit the least number of leaf nodes among all the

- 16 -

algorithms that solve the tree.

5. Applications

Some variations or applications of the probability-based α-β algorithm P_AB are

now presented. It is expected that the algorithm P_AB will have as many applications as

its point-value version, as studied by Knuth and Moore[1]. For example, P_AB can be

used in the iterative deepening search version for point-value game tree search[5], and

also to other well-studied α-β pruning based algorithms[6]. Only three examples of the

applications of P_AB will be briefly described here.

5.1. Range-Based Game Tree Search

In range-based game tree search, the merit value DS of a position S is described by

a range [l , u], where l and u are the lower and upper bounds of all possible merit values

of S [3]. If S is a leaf node in the search tree, the bounds are returned by an evaluation

function; otherwise, they will be backed-up from its successors S 1, ..., Sw by

u = max (−l 1, ..., −lw) and l = max (−u 1, ..., −uw),

where S 1, ..., Sw are described by the ranges [l 1, u 1], ..., [lw , uw], respectively.

The probability-based α-β algorithm can be directly used as a range-based one if we

assume that the merit value DS for any leaf node S is uniformly distributed among the

values of the range [l , u], and then ignore the probabilities of the values between the

lower and upper bounds of the backed-up probability function for the root position. In

this way, the range for the possible merit values of an initial position can be backed up by

P_AB. Since the formulas for the operations of range-based game tree search are much

simpler than those for probability operations, the following range functions R_NEG ,

R_MAX and R_MIN can be substituted for P_NEG , P_MAX and P_MIN in the function

P_AB

- 17 -

R_NEG ([l , u]) = [−u , −l],

R_MAX ([l 1, u 1], ..., [lw , uw]) = [max (l 1, ..., lw), max (u 1, ..., uw)]

R_MIN ([l 1, u 1], ..., [lw , uw]) = [min (l 1, ..., lw), min (u 1, ..., uw)]

to get the so called range-based α-β pruning algorithm R_AB. Note that this range-based

algorithm makes use of depth-first traversing to search a tree, and so is different from

B*[3].

function R_AB(S : position; α, β: integer): range;
var

TR0, TR1: range;
j: integer ;

begin
1. if S is a leaf node then

return R_MIN (R_MAX (RS , [α, α]), [β, β]);
comment: Range RS is obtained by evaluating S

from the corresponding player’s viewpoint.
2. determine the successor positions, S 1, ..., Sw , of S , where w > 0;
3. TR0 := [α, α];
4. for j := 1 to w do

begin
5. TR1 := R_NEG (R_AB(Sj , -β, -α));
6. TR0 := R_MAX (TR0, TR1);
7. α := lower_bound (TR0)
8. if α = β

then return TR0;
end;

9. return TR0;
end.

5.2. Informed Game Tree Search

Ibaraki[7] recently proposed an "informed" game tree search model based on the

availability of some heuristic information, embodied as upper bound, U_bound (S), and

lower bound, L_bound (S), on the merit value of an interior node S . The utilization of

- 18 -

this kind of information has been recognized as a key factor for designing good game-

playing programs[7][6]. The heuristic information available at interior nodes can be used

in probability-based α-β pruning by replacing the statement 3 of P_AB with the follow-

ing series of statements:

3.1 α := max(α, L_bound (S));

3.2 β := min(β, U_bound (S));

3.3 if α = β then return <β, 1>;

3.4 TP0 := <α, 1>;

Because the new window after the execution of statement 3.4 is usually a proper subset

of the parameter window, this narrower window can be used to prune more nodes.

5.3. Probability-Based B*—PB*

The generalization of B* algorithm, PB*[4], makes use of a best-first search stra-

tegy. Since relatively reliable bounds for a leaf position can be generated with some such

technique as the null-move[8], we can suppose that the expansion of a leaf node in the

best-first search, and back-up of information from its successors will not increase the

upper bound or decrease the lower bound of the possible merit values of the expanded

node. This assumption is similar to the one employed by Ibaraki[7].

It can be proved that PB* works in the model proposed in Section 2 as well. As a

matter of fact, the probability-based α-β pruning technique can be incorporated into PB*

to cut off some nodes from the search. In PB*, the following three operations are

repeated until a best-move is found: find a potential best node, find a path from the root

position of search tree to a leaf, and expand the leaf node. Suppose a node S is called

with a search window [α, β]. When we choose one node Sj from the successors S 1, ...,

Sw of a node S according to the ProveBest or DisproveRest strategy (cf. [4]), the proba-

- 19 -

bility function

P = P_MIN (P_MAX (P_NEG (P_MIN (PS1, ..., PSw)), <α, 1>), <β, 1>)

can be used to set a new α by

α := lower_bound (P).

If α = β, then the node Sj should not be searched and a new strategy should be chosen;

otherwise, the node Sj will be visited with search window [-β, -α]. When a node S is

expanded, each successor Sj is examined as above, and if α = β, the successors will not

be included in the search tree. In this way, both the search time and the memory required

to store the search tree will be reduced.

6. Pruning Efficiency

Random trees can be used to assess the pruning efficiency of algorithm P_AB.

Given integers d and w , a random tree can be generated so that each interior node has

less than w successor nodes and the tree consists of at most d levels. The lower and

upper bounds of the probability function for the merit value of each node is also gen-

erated randomly. An assumption is that the root position of each such random tree has a

preselected probability function for its merit value. Therefore, using a variation on an

earlier scheme [6], the probability function (or its bounds) for the root position is gen-

erated first, followed by the probability functions for the successor positions. To gen-

erate consistent probability functions for the successor nodes, if a node S has lower and

upper bounds l and u respectively, one of the successors is randomly chosen and its

upper bound is set to the minimum upper bound -l . The minimum lower bound -u is

similarly assigned to another successor. The lower bounds of other successor nodes will

be determined by randomly choosing integers between -u and i , and the upper bounds by

choosing integers between -l and i , where i is the domain bound. Since the lower

bound and upper bound of a successor are chosen randomly and independently, the

- 20 -

former may be greater than the latter; if this is so, the two bounds are exchanged.

For the efficiency experiment on the probability-based α-β pruning scheme, ten ran-

dom trees were generated for each combination of d and w , where d = 5, ..., 8 and w =

4, ..., 7. Here, the domain value i was set to 6, i.e., the domain of the probability func-

tions was the integer range [-6, 6]. With these settings, Table 1 presents the total number

of leaf nodes for each set of ten trees. In the recursive function P_AB, probability func-

tions are passed as parameters, but only their lower and upper bounds are used in the

pruning. In this case, since only the bounds of the probability functions are used, P_AB

reduces to the range-based pruning algorithm, R_AB. For our test data, the number of

leaf nodes visited by P_AB (or R_AB) for each combination of d and w is shown in

Table 2. Table 3 presents the efficiency of the pruning and also shows that the relative

efficiency, as measured by the fraction of leaf nodes that are pruned by P_AB, increases

as either the width or depth of search tree increases. Informally speaking, the larger the

search tree, the greater the fraction of nodes that will be pruned by probability-based α-β.

Table 1. The Number of Leaf Nodes in Ten (d, w)-Random-Trees

Depth Width Limit (w)

(d)
4 5 6 7_______________________________________

5 323 919 1943 2022
6 623 2865 5621 9827
7 2149 9529 21820 30402
8 3537 26371 70289 220723_______________________________________

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

- 21 -

Table 2. The Number of Leaf Nodes Visited by P_AB

Depth Width Limit (w)

(d)
4 5 6 7______________________________________

5 250 692 1100 1044
6 538 1481 3074 3827
7 1371 5110 10076 11528
8 2593 14268 29867 72564______________________________________

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 3. The Efficiency of P_AB for Different (d, w)

Depth Width Limit (w)

(d)
4 5 6 7_____________________________________

5 .22 .24 .43 .48
6 .13 .48 .45 .61
7 .36 .46 .53 .62
8 .26 .45 .57 .67_____________________________________

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

7. Concluding Remarks

The efficient search scheme—depth-first traversal—is introduced into probability-

based game tree search. We show that the α and β bounded search windows can still be

used here, and generalize the α-β pruning technique for probability-based game tree

search. The so-called probability-based game tree pruning technique inherits some good

properties from the point-value version. Several applications of this pruning method are

illustrated, one of which is the "degeneration" of this probability-based algorithm into a

range-based one. It is expected that this probability-based game tree pruning technique

will have as many applications as its point-value version. Probability experiments are

used to show that it can be exploited to effectively prune the search of some subtrees.

- 22 -

Acknowledgement

Partial funding of this research was provided through Grant A7902 from the

Natural Sciences and Engineering Research Council of Canada.

References

1. D. E. Knuth and R. W. Moore, An Analysis of Alpha-Beta Pruning, Artificial

Intelligence 6, (1975), pp. 293-326.

2. A. L. Brudno, Bounds and Valuations for Abridging the Search of Estimates,

Problems of Cybernetics 10, (1963), pp. 225-241. Translation of Russian original

appearing in Problemy Kibernetiki 10, pp. 141-150.

3. H. Berliner, The B* Tree Search Algorithm: A Best-First Proof Procedure,

Artificial Intelligence 12, (1979), pp. 23-40.

4. A. J. Palay, Searching with Probabilities, Pitman Advanced Publishing Program,

Boston, 1985. Also, Ph.D. Thesis, CMU, 1983.

5. D. J. Slate and L. R. Atkin, Chess 4.5-The Northwestern University Chess

Program, in Chess Skill in Man and Machine, P. Frey (ed.), Springer-Verlag, 1977,

pp. 82-118.

6. T. A. Marsland, A. Reinefeld and J. Schaeffer, Low Overhead Alternatives to

SSS*, Artificial Intelligence 31, (1987), pp. 185-199.

7. T. Ibaraki, Generalization of Alpha-Beta and SSS* Search Procedures, Artificial

Intelligence 29, (1986), pp. 73-117.

8. D. Beal, A Generalized Quiescence Search Algorithm, Artificial Intelligence, 1988,

(to appear). Also, Experiments with the null move, Advances in Computer Chess

5, Elsevier.

