Evaluation-Function Factors

T.A. Mardland

Computing Science Department
University of Alberta
Edmonton
Canada T6G 2H1

ABSTRACT

The heart of a chess program is isleation function, since it is this com-
ponent which characterizes the style of play typical program ealuates a
move by computing a weighted sum of the features that it considers.impor
tant to mak the best selection of the relati weights of these featured hey
may be used not only to assess horizon nodes in the game tree, but also to order
moves at he other nodes so that alpha-beta searchifigegity is improved.
Standard optimization techniques can be used to find the weights, provided a
suitable cost function can be found. This paper assesses the propertiesabf se
cost functions, and presents a method for finding optimum weightingsyfeetin
of features.

I ntroduction

Some modern chess programs combine knowledge in cemalgs; others follv Shan-
non’s auggestion [5] andwluate material and strategic factors by computing a weighted sum of
the "values" of such features as are recogniZeddo so ane must first tallate all the releant
features in chess. This is difficult enough in itself, but determining theirveslatportance is
even harder Often the resulting decision is arbitrary and subject to the programimases. In
principle it is possible to determine those refatweightings mathematicallyn practice this is
not only computationally >@ensve, but also fraught with difficulty because what passes for
chess expertise is sometimes inconsistélé ae all avare of arguments about the preferred
placement of pieces (and yetveawo difficulty finding exceptions) and of rules about theaadv
tages of bishopsver knights, on which there is little agreeme&imilarly, while doubled pans
are usually weak, there are often compensatingradges such as a half open file or control of a
key square. Mosbf these apparent contradictions occur because of interactions betwedn kno
edge. Thusot all features in a chess position are independent; some are important only if others
are presentWe must, therefore, seek reladi weights for the features, but these can only be cor
rect in the statistical sense (more often right than wrong).



-2-

In an attempt to find the relaé importance of chess features in an early chess program, a
set of about 1000 chess positions were put togeffleese positions, referred to as the NY1924
data set [3] and taken from games played in #molus Grand Mastevent in Newv York [1],
were used to measure the quality ofveardering mechanisms in WN[4] (an early 197®
chess program and forerunner of Awit) and TECH [2]s customary and possible to basevmo
ordering on a weighted sum of features. Let us assume\thHaatures, such as variouswra
formations, doubled rooks and king safene to be consideredAssociated with thé" feature
is a weightw;. Let there beéM legad moves in any gven chess position; we can then build a fea-
ture matrix,F, having N rows andM columns. Thdeature matrix is produced by the chess pro-
gram itself. The j™ column in the matrix contains entries that indicate whether tren dgea-
tures are present in the position which results fromjthenove aut of M. These entries may
also measure hwooften (or hav much of) this feature exists after the vepshould it be selected.
For example, hav mary doubled pawns or wo much piece mobility would result. Note: our use
of indicesi and | is the re@erse of the normal mathematical eention. Finally we use the
knowledge of a chess expert to identify the most desirablenab Typically this would be the
move atually played by a Grand Master in some tournament.

Notation

fij = measure of featuriein move j for ary position.

d = desired (master) nve for a position, where¥ d < M.
N

s; = 2 w; fj; = score for moe j
i=L

w; = relatve weight of feature, where 1<i < N.

1 (LTI (T

Sj

Figure 1. Relationship between features, weights and scores.



Problem Statement

It is unlikely that ag given set of weights will be optimum forven a sngle position.
What constitutes an optimum may also depend on the intended use wvélttsi@n function.
For a horizon (terminal) nodewvauator, optimum would mean that the score of the desiresleano
is greatest.For preliminary ordering of mees at tie root or interior nodes of the game tree, opti-
mum would mean that the desiredveaould be rated so highlyhat no other weighting of the
features would ge the desired mee a hgher rating in a mee list ordered by score. More for
mally, we wish to find the {§v;} such that

C(w;, d, fy)

is minimized wer i, whereC is some cost function whose properties are to be specified.
example, if the score for th¢" move is s;, then a simple cost function to countwhanany
moves havea <ore greater than the desiredvead, would be

M
Cl (Wi, d, f”) = Z(lf S42 Sj then O elsel)

e

The {w;} which minimizesC, has the effect of minimizing the rank-number of the desired

move in a nove Ist ordered by scoreThis simple scheme has a majomflan that as much
worth may be gien to pushing a mee from location 33 to 32 in a mue list, as for changing
from location 3 to 2. Generally speaking the latter is much harder tovachie is far more ben-
eficial in a root or interior nodevauator, snce it improves the alpha-beta searchiefency, and
does so more spectacularly as the node in question is nearer to the root.

A. FirstRemedy: Impree the value of the desired w®

If we choose a cost function which is well beddh (continuous, differentiable around its
single minimum), then we can apply eentional optimization techniques to findvf{}. For
these reasons consider a cost function based on the following:

Co= 5 [Max{0, (5, - so)}] 2

j=1

which minimizes the difference between the score for the desired md the score for those
above it. Strangehough this function might appeatris differentiable and its partial deetives
are gven by:

oC M

—2 =23 Max{0, (s;—sq)} (i~ fig).

aWi j=1
Unfortunately,C, tries even harder to push upards the mees near the bottom of the list, at the
expense of those near the desirable top, since there is more scope faingpine score of bot-
tom moves. Thisproblem might be circunented by striking out all nves with sufficiently poor
scores, since tlyecannot be assessed by the feature matrix.

One other major disadvantage@jf is that it tends to force all thg, to zero; the reason is
clear: one way to achie a zro value for the set



-4-

aC,

aWi
is to insert zeros into all;, in turn forcing all thes; to zero inC,. If we assume that we kno
which are beneficial and which are detrimental features, then we can asgajnen@lues to
the detrimental ones. The weightg, can nav al be positve, and we can ensure that thwill
not be forced to zero by applying the restriction tlwae 1. Ofor all i. This is appropriate since
the ordering of the mes is insensitve © a wiform constant of proportionality -ven if the
scoress; are not. However, there is still a tendeydo reduce as far as possible the weight corre-
sponding to the most prominent feature, namely the omea gy:
Max M
| =
Typically, this most prominent feature represents space and mobility [6].

The problems of restricting the can be handled in geral ways, including either use of a
penalty function or scaling the smallest weight toALslightly simpler \ersion ofC, is worth
considering

Cs =[Max {0, (§ —s4)}] 2

wheres = j""x {s;} is the highest score for mmove n the current positionClearlyC, andCs;
have the same problem: undue influence by poorly rated desirgdsnfce., mwes based on fea-
tures which are not presenth). For that reason we propose

C,=[Min{0, S —e-5s4)}] 2,

wheree is chosen so that mes which are seriously in error will not be considered. For instance
£ = s [10would ensure that only desired wes which hare a \alue within 10% of the highest for
the position will affect the weight<C, eliminates the influence of poor res by anly consider

ing moves when thg are close to the best.

Sometimed, the desired mee, is not characterized by the features in the matrix, so that
the desired mee dways has a poor scoréilso the features chosen may not discriminate well
between the desired w® and seeral others, giving them all a high scor@rkhese reasons, one
might be content with a function which maximizes the number of desir@dsnmothe topt of
the mave list. With t =1 one would produce weights for a horizon nodelaator, and for wider
values oft a move adering mechanism for a seleaisarch program.



poor moves

Ok

top moves

Figure2: Incremental Cost Function with Bonus.

B. SecondRemedy: Impruee the ranking of the desired wv®

Of course it ma&s no sense to impre weights using data from a single position otlge
therefore a set of P positions, dithe 1000 positions of the NY1924 data set, for whichkife
position hasM, moves. Nothingchanges, »xxept that our previous cost functions must contain
sums oer al P positions, and we momust consider the consequences of trade-offs between dif-
ferent desired maes. Consider

My
Vi = 2 (if sg=sj then O else 1)
j=1
and

Ok = if (Vk<t) thend -t

elsevy .

If we minimize
P
2 Ok
k=1
then a bonus will be gén to any desired mee @ it passes into the topveof the mwe list, as

Figure 2 illustrates.The main reason for this bonus is to retain desiredesnm the topt, and
not to drop those inalvaur of minor impravements in the \eluation of positions lacking kmen



-6-

features. Ofcourse, g, shavs step discontinuities, and the most appropriate form of the
derivative is ambiguous, there being a difference on whether one takes thetericoming
from the left or from the rightMoreover, it likely that the cost function is constanveosmall
perturbation of weights (but should vary continuously if thewdgvies ae to be estimated
numerically), quite apart from the fundamental problem of the influence of desines that

are located far from the top of the weolist.

There are at least tways of dealing with desired mes which lack features:

(a) Construct a winde, based ort andT, within which changes in the ranking of desiredveso
have ro efect, as illustrated in Figure Zor example, such a windomight changey, to

Ok = if (v, <t) then (v —t)
elseif (vy >T) then T

esev,.

This cost function also minimizes theeeage distance of the desired from the top of th@emo
list, but does not alle poor moves to dfect the weights. Its demtive is not continuous, so the
gradient follaving method to be described later may not work welawever, variations of that
technique, or integer programming methods, may be used [7].

(b) Construct a cost function in which costs alter sharply wheresree near the top of the list,
and more slowly in proportion to their distance from the tdpis method is attracte and will
be dealt with in more detail.

C. ThirdRemedy: Promote nves in revase proportion to their rank
One final class of cost function is

P 1

2 R,

k=L Rk
whereR, is the relatre ranking of the desired me in the ordered mee list, andP is the num-
ber of positions in the data s&, is given by

M
Rk = Zk (lf Sk 2 Sjk then O elsel)

=

By this means, changing the ranking of ave@hich is near the bottom of the list has signifi-
cantly less effect than mmg one near the topFor example, changing a desired weofrom
location 33 to 32 gies an ncremental change in cost of 1/321/33, while changing from loca-

tion 3 to 2 gves an hcremental change of 1/2 1/3. Someof the earlier objections can been

come by this means, ariRl can be further refined so that greater importanceviengo rating

the desired mees in comparison to the best, rather than to forceveado the top of the list.
Although R, can be approximated by a continuous function, Figure 3, it is of course only defined
at integral alues. Cowergence problems are to bapected, since small changes in weights
may not achiee the desired mee locations.



Figure3: Inverse Cost Function.

Gradient Following Methods

The general problem we e posed is that of finding the set of weighte; ¥, which mini-
mizes

H(w;) = C(w;, dy, fijk)

subject to the restrictiom; =1. Whenthere are no restrictions on tiag the minimum occurs
when the gradient (slope) bf is zero. That is, when

I ~ o tor alli,

0Wi

and the minimum can be found in ariety of ways. Fromary initial set of weights, one general
technique perturbs each of the weights by a small amdumis the gradient of the function can
be estimated, and then by "stepping” in the direction of thdime gadient one can reduce the
cost function. This produces ameet of weightsw; such thatH (w? < H(w;). Theprocess is
applied succesatly until there is no significant change in the functi@ue (indicating that the
gradient is almost zero).

Solving this minimization problem under the linear constraint 1 is rot difficult. Only
when some of they; are equal td is ecial handling required. If the slope component associ-
ated with such a variable isgative, as sme might reasonably expect, then that component is set
to zero. In other words, once anable attains the constraining value of 1 it will be held at that



-8-

value while the other weights are altered. The slope components may be estimated by
oH(w;) _ H(w; +ow;) = H(w))
6Wi B 5Wi

Heredw,; represents a small perturbation and will be less than 108¢. dthe step size may be
the same for each slope direction, although this is not the most efficient.

Conclusion

This paper has outlined the issues in designing and selecting a cost function to help the
search for the optimum set of weights for chess features. Depending on the cost function
selected one can produce weights for a horizon nedeator, or a oot node mwee adering
mechanism. Ouexperience has been that it is enough to imprbe weights so that tiiéhold
the desired mees within a small windwy, t, at the top of the mee list. Further optimizations to
force more of the desired mes into the first position, although technically more correct, tend to
be countesproductve. The main problem is that the values returned do not assess the merit of the
position in a realisticashion. Ina £nse the weights fia been tuned to the data set of positions,
and thg no longer measure reliably the quality of chess as a whole.

References
1. A Alekine and H. H. (editor), The MeYork International Tournament 192Bover, New
York, 1961.

2. J.J. Gillogly, Performance Analysis of thee€hnology Chess Program, CMU, Computer
Science Dept., Carnegie-Mellon WniRttsburg, March 1978.

3. T. A. Marsland and .RG. Rushton, "Mechanisms for Comparing Chess PrograiSVi
Annual Conference, Atlanta, 1973, 202-205.

4, T. A. Marsland and.RG. Rushton, ‘A Study of Techniques for Game-playing Programs’
in J. Rose (ed.)Advances in Cybernetics and Systems, vol. 1, Gordon & Breach, 1974,
363-372.

5. C.E. Shannon,'Programming a Computer for Playing Ché&sBhilosophical Magazine
41, 256-275 (1950).

6. E. Slater "Statistics for the Chess Computer and the Factor of MgbiBymposium on
Information Theory, Ministry of Supply London, 1950, 150-152.

7. A.Wouk, A Course of Applied Functional Analys\&/iley Interscience, 1979.

Appendix
Some typical values for the quantities used in this paper are:
top move window t=5
poor mae window T =15
Moves in a psition M, < 80, with mean of37
Positions in data set 100 < P <1000
Features being considered <IN <50

but often fewer than ten primary features.



