
Evaluation-Function Factors

T.A. Marsland

Computing Science Department
University of Alberta

Edmonton
Canada T6G 2H1

ABSTRACT

The heart of a chess program is its evaluation function, since it is this com-
ponent which characterizes the style of play. A typical program evaluates a
move by computing a weighted sum of the features that it considers.It is impor-
tant to make the best selection of the relative weights of these features.They
may be used not only to assess horizon nodes in the game tree, but also to order
moves at the other nodes so that alpha-beta searching efficiency is improved.
Standard optimization techniques can be used to find the weights, provided a
suitable cost function can be found. This paper assesses the properties of several
cost functions, and presents a method for finding optimum weightings for any set
of features.

Introduction

Some modern chess programs combine knowledge in complex ways; others follow Shan-
non’s suggestion [5] and evaluate material and strategic factors by computing a weighted sum of
the "values" of such features as are recognized.To do so one must first tabulate all the relevant
features in chess. This is difficult enough in itself, but determining their relative importance is
ev en harder. Often the resulting decision is arbitrary and subject to the programmer’s biases. In
principle it is possible to determine those relative weightings mathematically. In practice this is
not only computationally expensive, but also fraught with difficulty because what passes for
chess expertise is sometimes inconsistent.We are all aware of arguments about the preferred
placement of pieces (and yet have no difficulty finding exceptions) and of rules about the advan-
tages of bishops over knights, on which there is little agreement.Similarly, while doubled pawns
are usually weak, there are often compensating advantages such as a half open file or control of a
key square. Mostof these apparent contradictions occur because of interactions between knowl-
edge. Thusnot all features in a chess position are independent; some are important only if others
are present.We must, therefore, seek relative weights for the features, but these can only be cor-
rect in the statistical sense (more often right than wrong).

-2-

In an attempt to find the relative importance of chess features in an early chess program, a
set of about 1000 chess positions were put together. These positions, referred to as the NY1924
data set [3] and taken from games played in the famous Grand Master event in New York [1],
were used to measure the quality of move ordering mechanisms in WITA [4] (an early 1970’s
chess program and forerunner of Awit) and TECH [2].It is customary and possible to base move
ordering on a weighted sum of features. Let us assume thatN features, such as various pawn
formations, doubled rooks and king safety, are to be considered.Associated with theith feature
is a weight,wi. Let there beM legal moves in any giv en chess position; we can then build a fea-
ture matrix,F , having N rows andM columns. Thefeature matrix is produced by the chess pro-
gram itself. The jth column in the matrix contains entries that indicate whether the given fea-
tures are present in the position which results from thejth move out of M. These entries may
also measure how often (or how much of) this feature exists after the move, should it be selected.
For example, how many doubled pawns or how much piece mobility would result. Note: our use
of indices i and j is the reverse of the normal mathematical convention. Finally we use the
knowledge of a chess expert to identify the most desirable move, d. Typically this would be the
move actually played by a Grand Master in some tournament.

Notation

fij = measure of featurei in move j for any position.

d = desired (master) move for a position, where 1≤ d ≤ M .

s j =
N

i=1
Σ wi fij = score for move j

wi = relative weight of featurei, where 1≤ i ≤ N .

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ j ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅M

fij

s j

wi

1

i

N

Figure 1: Relationship between features, weights and scores.

-3-

Problem Statement

It is unlikely that any giv en set of weights will be optimum for even a single position.
What constitutes an optimum may also depend on the intended use of the evaluation function.
For a horizon (terminal) node evaluator, optimum would mean that the score of the desired move
is greatest.For preliminary ordering of moves at the root or interior nodes of the game tree, opti-
mum would mean that the desired move would be rated so highly, that no other weighting of the
features would give the desired move a higher rating in a move list ordered by score. More for-
mally, we wish to find the {wi} such that

C (wi, d, fij)

is minimized over i, whereC is some cost function whose properties are to be specified.For
example, if the score for thejth move is s j , then a simple cost function to count how many
moves hav ea score greater than the desired move, d, would be

C1 (wi, d, fij) =
M

j=1
Σ(if sd ≥ s j then 0 else 1).

The {wi} w hich minimizesC1 has the effect of minimizing the rank-number of the desired
move in a move list ordered by score.This simple scheme has a major flaw in that as much
worth may be given to pushing a move from location 33 to 32 in a move list, as for changing
from location 3 to 2. Generally speaking the latter is much harder to achieve and is far more ben-
eficial in a root or interior node evaluator, since it improves the alpha-beta search efficiency, and
does so more spectacularly as the node in question is nearer to the root.

A. First Remedy: Improve the value of the desired move

If we choose a cost function which is well behaved (continuous, differentiable around its
single minimum), then we can apply conventional optimization techniques to find {wi}. For
these reasons consider a cost function based on the following:

C2 =
M

j=1
Σ [Max {0, (s j − sd)}] 2,

which minimizes the difference between the score for the desired move and the score for those
above it. Strangethough this function might appear, it is differentiable and its partial derivatives
are given by:

∂C2

∂wi
= 2

M

j=1
Σ Max {0, (s j − sd)} (fij − fid).

Unfortunately,C2 tries even harder to push upwards the moves near the bottom of the list, at the
expense of those near the desirable top, since there is more scope for improving the score of bot-
tom moves. Thisproblem might be circumvented by striking out all moves with sufficiently poor
scores, since they cannot be assessed by the feature matrix.

One other major disadvantage ofC2 is that it tends to force all thewi to zero; the reason is
clear: one way to achieve a zero value for the set

-4-

{
∂C2

∂wi
}

is to insert zeros into allwi, in turn forcing all thes j to zero inC2. If we assume that we know
which are beneficial and which are detrimental features, then we can assign negative values to
the detrimental ones. The weights,wi, can now all be positive, and we can ensure that they will
not be forced to zero by applying the restriction thatwi ≥ 1. 0 for all i. This is appropriate since
the ordering of the moves is insensitive to a uniform constant of proportionality - even if the
scoress j are not.However, there is still a tendency to reduce as far as possible the weight corre-
sponding to the most prominent feature, namely the one given by:

Max

i

M

j=1
Σ fij

Typically, this most prominent feature represents space and mobility [6].

The problems of restricting thewi can be handled in several ways, including either use of a
penalty function or scaling the smallest weight to 1.A slightly simpler version ofC2 is worth
considering

C3 = [Max { 0, (s* − sd)}] 2

wheres* = Max
j { s j} is the highest score for any move in the current position.ClearlyC2 andC3

have the same problem: undue influence by poorly rated desired moves (i.e., moves based on fea-
tures which are not present inF). For that reason we propose

C4 = [Min { 0, (s* − ε − sd)}] 2 ,

whereε is chosen so that moves which are seriously in error will not be considered. For instance
ε = s* /1 0would ensure that only desired moves which have a value within 10% of the highest for
the position will affect the weights.C4 eliminates the influence of poor moves by only consider-
ing moves when they are close to the best.

Sometimesd, the desired move, is not characterized by the features in the matrix, so that
the desired move always has a poor score.Also the features chosen may not discriminate well
between the desired move and several others, giving them all a high score. For these reasons, one
might be content with a function which maximizes the number of desired moves in the topt of
the move list. With t = 1 one would produce weights for a horizon node evaluator, and for wider
values oft a move ordering mechanism for a selective search program.

-5-

gk

vk

t T

top moves

poor moves

t

T

Figure 2: Incremental Cost Function with Bonus.

B. SecondRemedy: Improve the ranking of the desired move

Of course it makes no sense to improve weights using data from a single position only. Use
therefore a set of P positions, like the 1000 positions of the NY1924 data set, for which thek th

position hasMk moves. Nothingchanges, except that our previous cost functions must contain
sums over all P positions, and we now must consider the consequences of trade-offs between dif-
ferent desired moves. Consider

vk =
Mk

j=1
Σ (if sdk ≥ s jk then 0 else 1)

and

gk = if (vk < t) thenvk − t

elsevk .

If we minimize

P

k=1
Σ gk

then a bonus will be given to any desired move as it passes into the top few of the move list, as
Figure 2 illustrates.The main reason for this bonus is to retain desired moves in the topt, and
not to drop those in favour of minor improvements in the evaluation of positions lacking known

-6-

features. Ofcourse, gk shows step discontinuities, and the most appropriate form of the
derivative is ambiguous, there being a difference on whether one takes the derivative coming
from the left or from the right.Moreover, it likely that the cost function is constant over small
perturbation of weights (but should vary continuously if the derivatives are to be estimated
numerically), quite apart from the fundamental problem of the influence of desired moves that
are located far from the top of the move list.

There are at least two ways of dealing with desired moves which lack features:

(a) Construct a window, based ont andT , within which changes in the ranking of desired moves
have no effect, as illustrated in Figure 2.For example, such a window might changegk to

gk = if (vk < t) then (vk − t)

else if (vk > T) then T

else vk .

This cost function also minimizes the average distance of the desired from the top of the move
list, but does not allow poor moves to affect the weights. Its derivative is not continuous, so the
gradient following method to be described later may not work well.However, variations of that
technique, or integer programming methods, may be used [7].

(b) Construct a cost function in which costs alter sharply when moves are near the top of the list,
and more slowly in proportion to their distance from the top.This method is attractive and will
be dealt with in more detail.

C. ThirdRemedy: Promote moves in rev erse proportion to their rank

One final class of cost function is

P

k=1
Σ 1

Rk

whereRk is the relative ranking of the desired move in the ordered move list, andP is the num-
ber of positions in the data set.Rk is given by

Rk =
Mk

j=1
Σ (if sdk ≥ s jk then 0 else 1).

By this means, changing the ranking of a move which is near the bottom of the list has signifi-
cantly less effect than moving one near the top.For example, changing a desired move from
location 33 to 32 gives an incremental change in cost of 1/32- 1/33, while changing from loca-
tion 3 to 2 gives an incremental change of 1/2- 1/3. Someof the earlier objections can be over-
come by this means, andRk can be further refined so that greater importance is given to rating
the desired moves in comparison to the best, rather than to force moves to the top of the list.
Although Rk can be approximated by a continuous function, Figure 3, it is of course only defined
at integral values. Convergence problems are to be expected, since small changes in weights
may not achieve the desired move locations.

-7-

1

Rk

vk

1

t

Figure 3: Inverse Cost Function.

Gradient Following Methods

The general problem we have posed is that of finding the set of weights, {wi}, which mini-
mizes

H(wi) = C(wi, dk, fijk)

subject to the restrictionwi ≥ 1. Whenthere are no restrictions on thewi the minimum occurs
when the gradient (slope) ofH is zero. That is, when

∂H(wi)

∂wi
= 0 for all i,

and the minimum can be found in a variety of ways. Fromany initial set of weights, one general
technique perturbs each of the weights by a small amount.Thus the gradient of the function can
be estimated, and then by "stepping" in the direction of the negative gradient one can reduce the
cost function. This produces a new set of weightsw*

i such thatH(w*)
i < H(wi). Theprocess is

applied successively until there is no significant change in the function value (indicating that the
gradient is almost zero).

Solving this minimization problem under the linear constraintwi ≥ 1 is not difficult. Only
when some of thewi are equal to1 is special handling required. If the slope component associ-
ated with such a variable is negative, as one might reasonably expect, then that component is set
to zero. In other words, once a variable attains the constraining value of 1 it will be held at that

-8-

value while the other weights are altered. The slope components may be estimated by

∂H(wi)

∂wi
=

H(wi + δ wi) − H(wi)

δ wi

Hereδ wi represents a small perturbation and will be less than 10% ofwi. The step size may be
the same for each slope direction, although this is not the most efficient.

Conclusion

This paper has outlined the issues in designing and selecting a cost function to help the
search for the optimum set of weights for chess features. Depending on the cost function
selected one can produce weights for a horizon node evaluator, or a root node move ordering
mechanism. Ourexperience has been that it is enough to improve the weights so that they hold
the desired moves within a small window, t, at the top of the move list. Further optimizations to
force more of the desired moves into the first position, although technically more correct, tend to
be counter-productive. The main problem is that the values returned do not assess the merit of the
position in a realistic fashion. Ina sense the weights have been tuned to the data set of positions,
and they no longer measure reliably the quality of chess as a whole.

References

1. A. Alekine and H. H. (editor), The New York International Tournament 1924, Dover, New
York, 1961.

2. J.J. Gillogly, Performance Analysis of the Technology Chess Program, CMU, Computer
Science Dept., Carnegie-Mellon Univ., Pittsburg, March 1978.

3. T. A. Marsland and P. G. Rushton, "Mechanisms for Comparing Chess Programs,"ACM
Annual Conference, Atlanta, 1973, 202-205.

4. T. A. Marsland and P. G. Rushton, ‘‘A Study of Techniques for Game-playing Programs’’
in J. Rose (ed.),Advances in Cybernetics and Systems, vol. 1, Gordon & Breach, 1974,
363-372.

5. C. E. Shannon, ‘‘Programming a Computer for Playing Chess,’’ Philosophical Magazine
41, 256-275 (1950).

6. E. Slater, "Statistics for the Chess Computer and the Factor of Mobility," Symposium on
Information Theory, Ministry of Supply, London, 1950, 150-152.

7. A. Wouk, A Course of Applied Functional Analysis, Wiley Interscience, 1979.

Appendix

Some typical values for the quantities used in this paper are:

top move window t = 5
poor move window T = 15
Moves in a position Mk ≤ 80 , with mean of37
Positions in data set 100 ≤ P ≤ 1000
Features being considered 1≤ N ≤ 50
but often fewer than ten primary features.

