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1. HISTORICAL PERSPECTIVE

Of the early chess-playing machines the best known was exhibited by Baron von Kempelen of

Vienna in 1769. Like its relations it was a conjurer’s box and a grand hoax [1, 2]. In contrast, about 1890 a

Spanish engineer, Torres y Quevedo, designed a true mechanical player for king-and-rook against king

endgames. A later version of that machine was displayed at the Paris Exhibition of 1914 and now resides in

a museum at Madrid’s Polytechnic University [2]. Despite the success of this electro-mechanical device,

further advances on chess automata did not come until the 1940’s. During that decade there was a sudden

spurt of activity as several leading engineers and mathematicians, intrigued by the power of computers and

fascinated by chess, began to express their ideas on computer chess. Some, like Tihamer Nemes of

Budapest [3] and Konrad Zuse [4], tried a hardware approach but their computer chess works did not find

wide acceptance. Others, like noted computer scientist Alan Turing, found success with a more philosophi-

cal tone, stressing the importance of the stored program concept [5]. Today, best recognized are the 1965

translation of Adriaan de Groot’s 1946 doctoral dissertation [6] and the much referenced paper on algo-

rithms for playing chess by Claude Shannon [7]. Shannon’s inspirational paper was read and reread by

computer chess enthusiasts, and provided a basis for most early chess programs. Despite the passage of

time, that paper is still worthy of study.

1.1. Landmarks in Chess Program Development

The first computer model in the 1950’s was a hand simulation [5]; programs for subsets of chess fol-
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lowed [8] and the first full working program was reported in 1958 [9]. By the mid 1960’s there was an

international computer-computer match [10] between a program backed by John McCarthy of Stanford

(developed by a group of students from MIT [11]) and one from the Institute for Theoretical and Experi-

mental Physics (ITEP) in Moscow [12]. The ITEP group’s program (under the guidance of the well-known

mathematician Georgi Adelson-Velskiy) won the match, and the scientists involved went on to develop

Kaissa†, which became the first world computer chess champion in 1974 [13]. Meanwhile there emerged

from MIT another program, Mac Hack Six [16], which boosted interest in Artificial Intelligence. First, Mac

Hack was demonstrably superior not only to all previous chess programs, but also to most casual chess

players. Secondly, it contained more sophisticated move ordering and position evaluation methods.

Finally, the program incorporated a memory table to keep track of the values of chess positions that were

seen more than once. In the late 60’s, spurred by the early promise of Mac Hack, several people began

developing chess programs and writing proposals. Most substantial of the proposals was the twenty-nine

point plan by Jack Good [17]. By and large experimenters did not make effective use of these works, at

least nobody claimed a program based on those designs, partly because it was not clear how some of the

ideas could be addressed and partly because some points were too naive. Even so, by 1970 there was

enough progress that Monroe Newborn was able to convert a suggestion for a public demonstration of chess

playing computers into a competition that attracted eight participants [18]. Due mainly to Newborn’s care-

ful planning and organization this event continues today under the title "The ACM North American Com-

puter Chess Championship."

In a similar vein, under the auspices of the International Computer Chess Association, a worldwide

computer chess competition has evolved. Initial sponsors were the IFIP triennial conference in Stockholm

(1974) and Toronto (1977), and later independent backers such as the Linz (Austria) Chamber of Com-

merce (1980), ACM New York (1983) and for 1986, the city of Cologne, West Germany. In the first world

championship for computers Kaissa won all its games, including a defeat of the eventual second place

__________________

† The names of programs mentioned here will be written in italics. Descriptions of these programs can be found in various
books [13, 14]. Interviews with some of the designers have also appeared [15].
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finisher, Chaos. An exhibition match against the 1973 North American Champion, Chess 4.0, was drawn

[10]. Kaissa was at its peak, backed by a team of outstanding experts on tree searching methods. In the

second Championship (Toronto, 1977), Chess 4.6 finished first with Duchess [19] and Kaissa tied for

second place. Meanwhile both Chess 4.6 and Kaissa had acquired faster computers, a Cyber 176 and an

IBM 370/165 respectively. The traditional exhibition match was won by Chess 4.6, indicating that in the

interim it had undergone far more development and testing [20]. The 3rd World Championship (Linz,

1980) finished in a tie between Belle and Chaos. In the playoff Belle won convincingly, providing perhaps

the best evidence yet that a deeper search more than compensates for an apparent lack of knowledge. In the

past, this counter-intuitive idea had not found ready acceptance in the Artificial Intelligence community.

More recently, in the New York 1983 championship another new winner emerged, Cray Blitz [21].

More than any other, that program drew on the power of a fast computer, here a Cray X-MP. Originally

Blitz was a selective search program, in the sense that it could discard some moves from every position,

based on a local evaluation. Often the time saved was not worth the attendant risks. The availability of a

faster computer made it possible to use a purely algorithmic approach and yet retain much of the expensive

chess knowledge. Although a mainframe won that event, small machines made their mark and seem to

have a great future [22]. For instance, Bebe with special purpose hardware finished second, and even

experimental versions of commercial products did well.

1.2. Implications

All this leads to the common question: When will a computer be the unassailed expert on chess? This

issue was discussed at length during a "Chess on non-standard Architectures" panel discussion at the ACM

1984 National Conference in San Francisco. It is too early to give a definitive answer, even the experts can-

not agree; their responses covered the whole range of possible answers from "in five years" (Newborn),

"about the end of the century" (Scherzer and Hyatt), "eventually. - it is inevitable" (Thompson) and "never,

or not until the limits on human skill are known" (Marsland). Even so there was a sense that production of

an artificial Grand Master was possible, and that a realistic challenge would occur during the first quarter of
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the 21st century. As added motivation, Edward Fredkin (MIT professor and well-known inventor) has

created a special incentive prize for computer chess. The trustee for the Fredkin Prize is Carnegie-Mellon

University and the fund is administered by Hans Berliner. Much like the Kremer prize for man-powered

flight, awards are offered in three categories. The smallest prize of $5000 has already been presented to

Ken Thompson and Joe Condon, when their Belle program achieved a US Master rating in 1983. The other

awards of $10,000 for the first Grand Master program, and $100,000 for achieving world champion status

remain unclaimed. To sustain interest in this activity, each year a $1500 prize match is played between the

currently best computer and a comparably rated human.

One might well ask whether such a problem is worth all this effort, but when one considers some of

the emerging uses of computers in important decision-making processes the answer must be positive. If

computers cannot even solve a decision making problem in an area of perfect knowledge (like chess), then

how can we be sure that computers make better decisions than humans in other complex domains -- espe-

cially in domains where the rules are ill-defined, or those exhibiting high levels of uncertainty? Unlike

some problems, for chess there are well established standards against which to measure performance, not

only through a rating scale [23] but also using standard tests [24] and relative performance measures [25].

The ACM sponsored competitions have provided fifteen years of continuing experimental data about the

effective speed of computers and their operating system support. They have also afforded a public testing

ground for new algorithms and data structures for speeding the traversal of search trees. These tests have

provided growing proof of the increased understanding about chess by computers, and the encoding of a

wealth of expert knowledge. Another potentially valuable aspect of computer chess is its usefulness in

demonstrating the power of man-machine cooperation. One would hope, for instance, that a computer

could be a useful adjunct to the decision-making process, providing perhaps a steadying influence, and pro-

tecting against errors introduced by impulsive short-cuts of the kind people might try in a careless or angry

moment. In this and other respects it is easy to understand Donald Michie’s belief that computer chess is

the "Drosophila melanogaster [fruit fly] of machine intelligence" [26].
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2. TERMINOLOGY

There are several aspects of computer chess of interest to Artificial Intelligence researchers. One area

involves the description and encoding of chess knowledge, in a form that enables both rapid access and log-

ical deduction in the expert system sense. Another fundamental domain is that of search. Since computer

chess programs examine large trees, a depth-first search is commonly used. That is, the first branch to an

immediate successor of the current node is recursively expanded until a leaf node (a node without succes-

sors) is reached. The remaining branches are then considered as the search process backs up to the root.

Other expansion schemes are possible and the domain is fruitful for testing new search algorithms. Since

computer chess is well defined, and absolute measures of performance exist, it is a useful test vehicle for

measuring algorithm efficiency. In the simplest case, the best algorithm is the one which visits fewest nodes

when determining the true value of a tree. For a two-person game-tree this value, which is a least upper

bound on the merit for the side to move, can be found through a minimax search. In chess, this so called

minimax value is a combination of both the "MaterialBalance" (i.e., the difference in value of the pieces

held by each side) and the "StrategicBalance," e.g., a composite measure of such things as mobility, square

control, pawn formation structure and king safety. Usually MaterialBalance is dominant.

2.1. Minimax Search

For chess, the nodes in a two-person game-tree represent positions and the branches correspond to

moves. The aim of the search is to find a path from the root to the highest valued terminal node that can be

reached, under the assumption of best play by both sides. To represent a level in the tree (that is, a play or

half move) the term "ply" was introduced by Arthur Samuel in his major paper on machine learning [27].

How that word was chosen is not clear, perhaps as a contraction of "play" or maybe by association with

forests as in layers of plywood. In either case it was certainly appropriate and it has been universally

accepted.

A true minimax search is expensive since every leaf node in the tree must be visited. For a tree of

uniform width W and fixed depth D there are W D terminal nodes. Some games, like Fox and Geese [28],
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produce narrow trees (fewer than 10 branches per node) that can often be solved exhaustively. In contrast,

chess produces bushy trees (average branching factor about 35 moves). Because of the magnitude of the

game tree, it is not possible to search until a mate or stalemate position (a leaf node) is reached, so some

maximum depth of search (i.e., a horizon) is specified. Even so, an exhaustive search of all chess game

trees involving more than a few moves for each side is impossible. Fortunately the work can be reduced,

since it can be shown that the search of some nodes is unnecessary.

2.2. Alpha-beta Algorithm

As the search of the game tree proceeds, the value of the best terminal node found so far changes. It

has been known since 1958 that pruning was possible in a minimax search [29], but according to Knuth and

Moore the ideas go back further, to John McCarthy and his group at MIT. The first thorough treatment of

the topic appears to be Brudno’s 1963 paper [30]. The alpha-beta algorithm employs lower (alpha) and

upper (beta) bounds on the expected value of the tree. These bounds may be used to prove that certain

moves cannot affect the outcome of the search, and hence that they can be pruned or cut off. As part of the

early descriptions about how subtrees were pruned, a distinction between deep and shallow cut-offs was

made. Some versions of the alpha-beta algorithm used only a single bound (alpha), and repeatedly reset the

beta bound to infinity, so that deep cut-offs were not achieved. Knuth and Moore’s recursive F2 algorithm

[31] corrected that flaw. In Figure 1, Pascal-like pseudo code is used to present the alpha-beta algorithm,

AB, in Knuth and Moore’s negamax framework. A Return______ statement has been introduced as the convention

for exiting the function and returning the best subtree value or score. Omitted are details of the game-

specific functions Make_____ and Undo_____ (to update the game board), Generate________ (to find moves) and Evaluate_______ (to

assess terminal nodes). In the pseudo code of Figure 1, the max(alpha,merit) operation represents

Fishburn’s "fail-soft" condition [32], and ensures that the best available value is returned (rather than an

alpha/beta bound). This idea is usefully employed in some of the newer refinements to the alpha-beta algo-

rithm.
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FUNCTION AB (p : position; alpha, beta, depth : integer) : integer;
{ p is pointer to the current node }
{ alpha and beta are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR merit, j, value : integer;
posn : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN
IF depth = 0 THEN { horizon node, maximum depth? }

Return(Evaluate(p));

posn := Generate(p); { point to successor positions }
IF empty(posn) THEN { leaf, no moves? }

Return(Evaluate(p));
{ find merit of best variation }

merit := -MAXINT;
FOR j := 1 TO sizeof(posn) DO BEGIN

Make(posn[j]); { make current move }
value := -AB (posn[j], -beta, -max(alpha,merit), depth-1);
IF (value > merit) THEN { note new best score }

merit := value;
Undo(posn[j]); { retract current move }
IF (merit ≥1 beta) THEN { cutoff? }

GOTO done;
END ;

done:
Return(merit);

END ;

Figure 1: Depth-limited Alpha-beta Function.

2.3. Minimal Game Tree

If the "best" move is examined first at every node, then the tree traversed by the alpha-beta algorithm

is referred to as the minimal game tree. This minimal tree is of theoretical importance since its size is a

measure of a lower bound on the search. For uniform trees of width W branches per node and a search

depth of D ply, there are

W

���
2
D___ � ��

 + W

���
2
D___ ���

 − 1

terminal nodes in the minimal game tree. Although others derived this result, the most direct proof was

given by Knuth and Moore [31]. Since a terminal node is rarely a leaf it is often called a horizon node, with
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D the distance to the horizon [33].

2.4. Aspiration Search

An alpha-beta search can be carried out with the initial bounds covering a narrow range, one that

spans the expected value of the tree. In chess these bounds might be (MaterialBalance -Pawn, MaterialBal-

ance +Pawn). If the minimax value falls within this range, no additional work is necessary and the search

usually completes in measurably less time. The method was analyzed by Brudno [30], referred to by Ber-

liner [34], and experimented with in Tech [35], but was not consistently successful. A disadvantage is that

sometimes the initial bounds do not enclose the minimax value, in which case the search must be repeated

with corrected bounds as the outline of Figure 2 shows.

{ Assume V = estimated value of position p, and }
{ e = expected error limit }
{ depth = current distance to horizon }
{ p = position being searched }

alpha := V - e; { lower bound }
beta := V + e; { upper bound }

V := AB (p, alpha, beta, depth);
IF (V ≥1 beta) THEN { failing high }

V := AB (p, V, +MAXINT, depth)
ELSE
IF (V ≤ alpha) THEN { failing low }

V := AB (p, -MAXINT, V, depth);

{ A successful search has now been completed }
{ V now holds the current value of the tree }

Figure 2: Narrow Window Aspiration Search.

Typically these failures occur only when material is being won or lost, in which case the increased cost of a

more thorough search is warranted. Because these re-searches use a semi-infinite window, from time to

time people experiment with a "sliding window" of (V, V +PieceValue), instead of (V, +MAXINT). This

method is often effective, but can lead to excessive re-searching when mate or large material gain/loss is in

the offing. After 1974, "iterated aspiration search" came into general use, as follows:
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"Before each iteration starts, alpha and beta are not set to -infinity and +infinity as one might
expect, but to a window only a few pawns wide, centered roughly on the final score [value]
from the previous iteration (or previous move in the case of the first iteration). This setting of
’high hopes’ increases the number of alpha-beta cutoffs" [36].

Even so, although aspiration searching is still popular and has much to commend it, minimal window

search seems to be more efficient and requires no assumptions about the choice of aspiration window [37].

2.5. Minimal Window Search

Theoretical advances, such as Scout [38] and the comparable minimal window search techniques

[32, 37] were the next products of research. The basic idea behind these methods is that it is cheaper to

prove a subtree inferior, than to determine its exact value. Even though it has been shown that for bushy

trees minimal window techniques provide a significant advantage [37], for random game trees it is known

that even these refinements are asymptotically equivalent to the simpler alpha-beta algorithm. Bushy trees

are typical for chess and so many contemporary chess programs use minimal window techniques through

the Principal Variation Search (PVS) algorithm. In Figure 3, a Pascal-like pseudo code is used to describe

PVS in a negamax framework, but with game-specific functions Make_____ and Undo_____ omitted for clarity. Here

the original version of PVS has also been improved by using Reinefeld’s depth=2 idea [39], which ensures

that re-searches are only done when the remaining depth of search is greater than 2.
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FUNCTION PVS (p : position; alpha, beta, depth : integer) : integer;
{ p is pointer to the current node }
{ alpha and beta are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR merit, j, value : integer;
posn : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN

IF depth = 0 THEN { horizon node, maximum depth? }
Return(Evaluate(p));

posn := Generate(p); { point to successor positions }
IF empty(posn) THEN { leaf, no moves? }

Return(Evaluate(p));
{ principal variation? }

merit := -PVS (posn[1], -beta, -alpha, depth-1);
FOR j := 2 TO sizeof(posn) DO BEGIN

IF (merit ≥1 beta) THEN { cutoff? }
GOTO done;

alpha := max(merit, alpha); { fail-soft condition }
{ zero-width minimal-window search }

value := -PVS (posn[j], -alpha-1, -alpha, depth-1);
IF (value > merit) THEN { re-search, if "fail-high" }

IF (alpha < value) AND (value < beta) AND (depth > 2) THEN
merit := -pvs (posn[j], -beta, -value, depth-1)

ELSE merit := value;
END ;

done:
Return(merit);

END ;

Figure 3: Minimal Window Principal Variation Search.

2.6. Forward Pruning

To reduce the size of the tree that should be traversed and to provide a weak form of selective search,

techniques that discard some branches have been tried. For example, tapered N-best search [11, 16] consid-

ers only the N-best moves at each node. N usually decreases with increasing depth of the node from the root

of the tree. As Slate and Atkin observe

"The major design problem in selective search is the possibility that the lookahead process will
exclude a key move at a low level in the game tree."
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Good examples supporting this point are found elsewhere [40]. Other methods, such as marginal forward

pruning [41] and the gamma algorithm [18], omit moves whose immediate value is worse than the current

best of the values from nodes already searched, since the expectation is that the opponent’s move is only

going to make things worse. Generally speaking these forward pruning methods are not reliable and should

be avoided. They have no theoretical basis, although it may be possible to develop statistically sound

methods which use the probability that the remaining moves are inferior to the best found so far.

One version of marginal forward pruning, referred to as razoring [42], is applied near horizon nodes.

The expectation in all forward pruning is that the side to move can improve the current value, so it may be

futile to continue. Unfortunately there are cases when the assumption is untrue, for instance in zugzwang

positions. As Birmingham and Kent point out, their Master program

"defines zugzwang precisely as a state in which every move available to one player creates a
position having a lower value to him (in its own evaluation terms) than the present bound for
the position" [42].

Marginal pruning may also break down when the side to move has more than one piece en__ prise____ (e.g., is

forked), and so the decision to stop the search must be applied cautiously.

Despite these disadvantages, there are sound forward pruning methods and there is every incentive to

develop more, since it is one way to reduce the size of the tree traversed, perhaps to less than the minimal

game tree. A good prospect is through the development of programs that can deduce which branches can

be neglected, by reasoning about the tree they traverse.

2.7. Move Re-ordering Mechanisms

For efficiency (traversal of a smaller portion of the tree) the moves at each node should be ordered so

that the more plausible ones are searched soonest. Various ordering schemes may be used. For example,

"since the refutation of a bad move is often a capture, all captures are considered first in the
tree, starting with the highest valued piece captured" [43].

Special techniques are used at interior nodes for dynamically re-ordering moves during a search. In the

simplest case, at every level in the tree a record is kept of the moves that have been assessed as being best,



- 12 -

or good enough to refute a line of play and so cause a cut-off. As Gillogly observed

"If a move is a refutation for one line, it may also refute another line, so it should be considered
first if it appears in the legal move list" [43].

Referred to as the killer heuristic, a typical implementation maintains only the two most frequently occur-

ring "killers" at each level [36].

Recently a more powerful scheme for re-ordering moves at an interior node has been introduced.

Named the history heuristic it

"maintains a history for every legal move seen in the search tree. For each move, a record of
the move’s ability to cause a refutation is kept, regardless of the line of play" [44].

At an interior node the best move is the one that either yields the highest merit or causes a cut-off. Many

implementations are possible, but a pair of tables (each of 64x64 entries) is enough to keep a frequency

count of how often a particular move (defined as a from-to square combination) is best for each side. The

available moves are re-ordered so that the most successful ones are tried first. An important property of this

so called history table is the sharing of information about the effectiveness of moves throughout the tree,

rather than only at nodes at the same search level. The idea is that if a move is frequently good enough to

cause a cut-off, it will probably be effective whenever it can be played.

2.8. Quiescence Search

Even the earliest papers on computer chess recognized the importance of evaluating only those posi-

tions which are "relatively quiescent" [7] or "dead" [5]. These are positions which can be assessed accu-

rately without further search. Typically they have no moves, such as checks, promotions or complex cap-

tures, whose outcome is unpredictable. Not all the moves at horizon nodes are quiescent (i.e., lead immedi-

ately to dead positions), so some must be searched further. To limit the size of this so called quiescence

search, only dynamic moves are selected for consideration. These might be as few as the moves that are

part of a single complex capture, but can expand to include all capturing moves and all responses to check

[43]. Ideally, passed pawn moves (especially those close to promotion) and selected checks should be

included [21, 25], but these are often only examined in computationally simple endgames. The goal is
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always to clarify the node so that a more accurate position evaluation is made. Despite the obvious benefits

of these ideas, the realm of quiescence search is unclear; because no theory for selecting and limiting the

participation of moves exists. Present quiescent search methods are attractive because they are simple, but

from a chess standpoint they leave much to be desired, especially when it comes to handling forking moves

and mate threats. Even though the current approaches are reasonably effective, a more sophisticated

method of extending the search, or of identifying relevant moves to participate in the selective quiescence

search, is needed [45]. On the other hand, Sargon managed quite well without quiescence search, using

direct computation to evaluate the exchange of material [46].

2.9. Horizon Effect

An unresolved defect of chess programs is the insertion of delaying moves that cause any inevitable

loss of material to occur beyond the program’s horizon (maximum search depth), so that the loss is hidden

[33]. The "horizon effect" is said to occur when the delaying moves give up additional material to postpone

the eventual loss. The effect is less apparent in programs with more knowledgeable quiescence searches

[45], but all programs exhibit this phenomenon. There are many illustrations of the difficulty; the example

in Figure 4, which is based on a study by Kaindl [45], is clear. Here a program with a simple quiescence

search involving only captures would assume that any blocking move saves the queen. Even an 8-ply

search (b3-b2, Bxb2; c4-c3, Bxc3; d5-d4, Bxd4; e6-e5, Bxe5) would not see the inevitable, "thinking" that

the queen has been saved at the expense of four pawns! Thus programs with a poor or inadequate quies-

cence search suffer more from the horizon effect. The best way to provide automatic extension of non-

quiescent positions is still an open question, despite proposals such as bandwidth heuristic search [47].
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Figure 4: The Horizon Effect.

2.10. Progressive and Iterative Deepening

The term progressive deepening was used by de Groot [6] to encompass the notion of selectively

extending the main continuation of interest. This type of selective expansion is not performed by programs

employing the alpha-beta algorithm, except in the sense of increasing the search depth by one for each

checking move on the current continuation (path from root to horizon), or by performing a quiescence

search from horizon nodes until dead positions are reached.

In the early 1970’s several people tried a variety of ways to control the exponential growth of the tree

search. A simple fixed depth search is inflexible, especially if it must be completed within a specified time.

Jim Gillogly, author of Tech [43], coined the term iterative deepening to distinguish a full-width search to

increasing depths from the progressively more focused search described by de Groot. About the same time

David Slate and Larry Atkin sought a better time control mechanism, and introduced the notion of an

iterated search [36] for carrying out a progressively deeper and deeper analysis. For example, an iterated

series of 1-ply, 2-ply, 3-ply ... searches is carried out, with each new search first retracing the best path from

the previous iteration and then extending the search by one ply. Early experimenters with this scheme were
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surprised to find that the iterated search often required less time than an equivalent direct search. It is not

immediately obvious why iterative deepening is effective; as indeed it is not, unless the search is guided by

the entries in a transposition table (or the more specialized refutation table), which holds the best moves

from subtrees traversed during the previous iteration. All the early experimental evidence indicated that the

overhead cost of the preliminary D-1 iterations was often recovered through a reduced cost for the D-ply

search. Later the efficiency of iterative deepening was quantified to assess various refinements, especially

memory table assists [37]. Today the terms progressive and iterative deepening are often used

synonymously.

2.11. Transposition and Refutation Tables

The results (merit, best move, status) of the searches of nodes (subtrees) in the tree can be held in a

large hash table [16, 36, 48]. Such a table serves several purposes, but primarily it enables recognition of

move transposition, leading to a subtree that has been seen before, and so eliminate the need to search.

Thus, successful use of a transposition table is an example of exact forward pruning. Many programs also

store their opening book, where different move orders are common, in a way that is compatible with access

to the transposition table. Another important purpose of a transposition table is as an implied move re-

ordering mechanism. By trying first the available move in the table, an expensive move generation may be

avoided [48].

By far the most popular table-access method is the one proposed by Zobrist [49]. He observed that a

chess position constitutes placement of up to 12 different piece types {K,Q,R,B,N,P,-K ... -P} on to a 64-

square board. Thus a set of 12x64 unique integers (plus a few more for en__ passant______ and castling privileges),

{Ri }, may be used to represent all the possible piece/square combinations. For best results these integers

should be at least 32 bits long, and be randomly independent of each other. An index of the position may

be produced by doing an exclusive-or on selected integers as follows:

Pj  = Ra  xor  Rb  xor    . . .   xor  Rx

where the Ra etc. are integers associated with the piece placements. Movement of a "man" from the piece-
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square associated with Rf to the piece-square associated with Rt yields a new index

Pk  = (Pj  xor  Rf ) xor  Rt

One advantage of hash tables is the rapid access that is possible, and for further speed and simplicity only a

single probe of the table is normally made. More elaborate schemes have been tried, but often the cost of

the increased complexity of managing the table swamps any benefits from improved table usage. Table 1

shows the usual fields of each entry in the hash table. Figure 5 contains sample pseudo code showing how

the entries Move, Merit, Flag and Height are used. Not shown there are functions Retrieve_______ and Store_____,

which access and update the transposition table.

_______________________________________________
Lock To ensure the table position is identical

to the tree position._______________________________________________
Move Best move in the position, determined from

a previous search._______________________________________________
Merit Value of subtree, computed previously._______________________________________________
Flag Indicates whether merit is upper bound,

lower bound or true merit._______________________________________________
Height Length of subtree upon which merit is based._______________________________________________

��
��
��
��
��
�

��
��
��
��
��
�

Table 1: Typical Transposition Table Entry.

A transposition table also identifies the preferred move sequences used to guide the next iteration of a

progressive deepening search. Only the move is important in this phase, since the subtree length is usually

less than the remaining search depth. Transposition tables are particularly advantageous to methods like

PVS, since the initial minimal window search loads the table with useful lines that are used in the event of a

re-search. On the other hand, for deeper searches, entries are commonly lost as the table is overwritten,

even though the table may contain more than a million entries [50]. Under these conditions a small fixed

size transposition table may be overused (overloaded) until it is ineffective as a means of storing the con-

tinuations. To overcome this fault, a special table for holding these main continuations (the refutation

lines) is also used. The table has W entries containing the D elements of each continuation. For shallow

searches (D < 6) a refutation table guides a progressive deepening search just as well as a transposition

table. In fact, a refutation table is the preferred choice of commercial systems or users of memory limited
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processors. A small triangular workspace (DxD/2 entries) is needed to hold the current continuation as it is

generated, and these entries in the workspace can also be used as a source of killer moves [51].

2.12. Summary

The various terms and techniques described have evolved over the years. The superiority of one

method over another often depends on how the elements are combined. The utility of iterative deepening,

aspiration search, PVS, and transposition and refutation tables is perhaps best summarized by a revised ver-

sion of an established performance graph [37], Figure 6. That graph was made from data gathered by a

simple chess program when analyzing the twenty-four standard positions of the Bratko-Kopec test [24].

Analysis of those positions requires the search of trees whose nodes have an average width of W = 34

branches. Thus it is possible to use the formula for the terminal (horizon) nodes in a uniform minimal

game tree as an estimate of the lower bound on the search size, see Figure 6. For the results presented in

Figure 6 the transposition table was fixed at eight thousand entries, so that the effects of table overloading

may be seen. Figure 6 shows that:

(a). Iterative deepening has low cost, so is useful as a time-control mechanism.
(b). PVS is superior to aspiration search.
(c). A refutation table is a space efficient alternative to a transposition table for guiding both the
next iteration and a re-search.
(d). Odd-ply alpha-beta searches are more efficient than even-ply ones.
(e). Transposition table size must increase with depth of search.
(f). Transposition and/or refutation tables plus the history heuristic are an effective combina-
tion, achieving search results close to the minimal game tree for odd-ply search depths.
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FUNCTION AB (p : position; alpha, beta, depth : integer) : integer;
VAR value, height, merit : integer;

j, move : 1..MAXWIDTH ;
flag : (VALID, LBOUND, UBOUND);
posn : ARRAY [1..MAXWIDTH] OF position;

BEGIN
{ retrieve merit and best move for the current position }

Retrieve(p, height, merit, flag, move);

{ height is the effective subtree length. }
{ height < 0 - position not in table. }
{ height ≥1 0 - position in table. }

IF (height ≥ depth) THEN BEGIN
IF (flag = VALID) THEN

Return(merit);
IF (flag = LBOUND) THEN

alpha := max(alpha, merit);
IF (flag = UBOUND) THEN

beta := min(beta, merit);
IF (alpha ≥ beta) THEN

Return(merit);
END;

{ Note: update of the alpha or beta bound }
{ is not valid in a selective search. }
{ If merit in table insufficient to end }
{ search try best move (from table) first, }
{ before generating other moves. }

IF (depth = 0) THEN { horizon node? }
Return(Evaluate(p));

IF (height ≥ 0) THEN BEGIN
{ first try move from table }

merit := -AB (posn[move], -beta, -alpha, depth-1);
IF (merit ≥ beta) THEN

GOTO done;
END ELSE merit := -MAXINT;

{ No cut-off, generate moves }
posn := Generate(p);
IF empty(posn) THEN { leaf, mate or stalemate? }

Return(Evaluate(p));

FOR j := 1 TO sizeof(posn) DO
IF j ≠ move THEN BEGIN

{ using fail-soft condition }
value := -AB (posn[j], -beta, -max(alpha,merit), depth-1);
IF (value > merit) THEN BEGIN

merit := value;
move := j;
IF (merit ≥ beta) THEN

GOTO done;
END;

END;
done:

flag := VALID;
IF (merit ≤ alpha) THEN

flag := UBOUND;
IF (merit ≥ beta) THEN

flag := LBOUND;
IF (height ≤ depth) THEN { update hash table }

Store(p, depth, merit, flag, move);
Return(merit);

END;
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Figure 5: Alpha-beta with Transposition Table.

Figure 6: Node Comparison of Alpha-beta Enhancements
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3. STRENGTHS AND WEAKNESSES

3.1. Anatomy of a chess program

A typical chess program contains the following three distinct elements: Board description and move

generation, tree searching/pruning, and position evaluation. Many people have based their first chess pro-

gram on Larry Atkin’s instructive Pascal-based model [52]. Although several good proposals exist in

readily available books [14, 20] and articles [53, 54], the most efficient way of representing all the tables

and data structures necessary to describe a chess board is not yet known. From these tables the move list

for each position can be generated. Sometimes the Generate________ function produces all the feasible moves at

once, which has the advantage that the moves may be sorted to improve the probability of a cut-off. In

small memory computers, on the other hand, the moves are produced one at a time. This saves space and

perhaps time whenever an early cut-off occurs. Since only limited sorting is possible (captures might be

generated first) the searching efficiency is generally lower, however.

In the area of searching/pruning methods, variations on the depth-limited alpha-beta algorithm

remain the preferred choice. All chess programs fit the following general model. A full width "exhaustive"

search (all moves are considered) is done at the first few ply from the root node. At depths beyond this

exhaustive layer some form of selective search is used. Typically, unlikely or unpromising moves are sim-

ply dropped from the move list. More sophisticated programs carry out an extensive analysis to select those

moves which are to be discarded at an interior node. Even so, this type of forward pruning is known to be

error prone and dangerous; it is attractive because of the big reduction in tree size that ensues. Finally, the

Evaluate_______ function is invoked at the horizon nodes to assess the merits of the moves. Many of these are cap-

tures or other forcing moves which are not "dead," and so a limited quiescence search is carried out to

resolve the unknown potential of the move. The evaluation process is the most important part of a chess

program, because it estimates the value of the subtrees that extend beyond the horizon. Although in the

simplest case Evaluate_______ simply counts the material balance, for superior play it is also necessary to measure

many positional factors, such as pawn structures. These aspects are still not formalized, but adequate
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descriptions by computer chess practitioners are available in books [14, 36].

3.2. Hardware Advances

Computer chess has consistently been in the forefront of the application of high technology. With

Cheops [55], the 1970’s saw the introduction of special purpose hardware for chess. Later networks of com-

puters were tried; in New York, 1983, Ostrich used an eight processor Data General system [56] and Cray

Blitz a dual processor Cray X-MP [21]. Some programs used special purpose hardware (see for example

Belle [57, 58], Bebe, Advance 3.0 and BCP [14]), and there were several experimental commercial systems

employing custom VLSI chips. This trend towards the use of custom chips will continue, as evidenced by

the success of the latest master-calibre chess program, Hitech from Carnegie-Mellon University, based on a

new chip for generating moves [59]. While mainframes will continue to be faster for the near future, it is

only a matter of time before massive parallelism is applied to computer chess. The problem is a natural

demonstration piece for the power of distributed computation, since it is processor intensive and the work

can be partitioned in many ways. Not only can the game trees be split into similar subtrees, but parallel

computation of such components as move generation, position evaluation, and quiescence search is possi-

ble.

Improvements in hardware speed have been an important contributor to computer chess performance.

These improvements will continue, not only through faster special purpose processors, but also by using

many processing elements.

3.3. Software Advances

Many observers attributed the advances in computer chess through the 1970’s to better hardware,

particularly faster processors. Much evidence supports that point of view, but major improvements also

stemmed from a better understanding of quiescence and the horizon effect, and a better encoding of chess

knowledge. The benefits of aspiration search [43], iterative deepening [36] (especially when used with a

refutation table [51]), the killer heuristic [43] and transposition tables [16, 36] were also appreciated, and by

1980 all were in general use. One other advance was the simple expedient of "thinking on the opponent’s
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time" [43], which involved selecting a response for the opponent, usually the move predicted by the com-

puter, and searching the predicted position for the next reply. Nothing is lost by this tactic, and when a suc-

cessful prediction is made the time saved may be accumulated until it is necessary or possible to do a

deeper search. Anticipating the opponent’s response has been embraced by all microprocessor based sys-

tems, since it increases their effective speed.

Not all advances work out in practice. For example, in a test with Kaissa the method of analogies

"reduced the search by a factor of 4 while the time for studying one position was increased by a
factor of 1.5" [60].

Thus a dramatic reduction in the positions evaluated occurred, but the total execution time went up and so

the method was not effective. This sophisticated technique has not been tried in other competitive chess

programs. The essence of the idea is that captures in chess are often invariant with respect to several minor

moves. That is to say, some minor moves have no influence on the outcome of a specific capture. Thus the

true results of a capture need be computed only once, and stored for immediate use in the evaluation of

other positions that contain this identical capture! Unfortunately, the relation (sphere of influence) between

a move and those pieces involved in a capture is complex, and it can be as much work to determine this

relationship as it would be to simply re-evaluate the exchange. However, the method is elegant and appeal-

ing on many grounds and should be a fruitful area for further research, as a promising variant restricted to

pawn moves illustrates [61].

3.4. Endgame Play

During the 1970’s there developed a better understanding of the power of pawns in chess, and a gen-

eral improvement in endgame play. Even so, endgames remained a weak feature of computer chess. Almost

every game illustrated some deficiency, through inexact play or conceptual blunders. More commonly,

however, the programs were seen to wallow and move pieces aimlessly around the board. A good illustra-

tion of such difficulties is a position from a game between Duchess and Chaos (Detroit, 1979), which was

analysed extensively in an appendix to a major reference [20].
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: : : : K b B b C h a o s

: : : : : : : : P w

: : B w : : K w P w P w

: : : : : : : :

: : : : : : : :

P b : : : : : :

P w : : : : : : : :

: : : : : : : : D u c h e s s

W h i t e t o m o v e

Figure 7: Lack of Endgame Plan.

After more than ten hours of play the position in Figure 7 was reached, and since neither side was making

progress the game was adjudicated after white’s 111th move of Bc6-d5. White had just completed a

sequence of 21 reversible moves with only the bishop, and black had responded correctly by simply moving

the king to and fro. Duchess had only the most rudimentary plan for winning endgames. Specifically, it

knew about avoiding a 50-move rule draw. Had the game continued, then within the next 29 moves it

would either play an irreversible move like Pf6-f7, or give up the pawn on f6. Another 50-move cycle

would then ensue and perhaps eventually the possibility of winning the pawn on a3 might be found. Even

six years later I doubt if many programs could handle this situation any better. There is simply nothing

much to be learned through search. What is needed here is some higher notion involving goal seeking

plans. All the time a solution must be sought which avoids a draw. This latter aspect is important since in

many variations black can simply offer the sacrifice bishop takes pawn on f6, because if the white king

recaptures a stalemate results.

Sometimes, however, chess programs are supreme. At Toronto in 1977, in particular, Belle demon-

strated a new strategy for defending the lost ending KQ vs KR against chess masters. While the ending still
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favors the side with the queen, precise play is required to win within 50 moves, as several chess masters

were embarrassed to discover. In speed chess Belle also often dominates masters, as many examples in the

literature show [20]. Increasingly, chess programs are teaching even experts new tricks and insights. As

long ago as 1970 Thomas Strohlein built a database to find optimal solutions to several simple three and

four piece endgames (kings plus one or two pieces) [62]. Using a Telefunken TR4 (48-bit word, 8 µsec.

operations) he obtained the results summarized in Table 2. Many other early workers on endgames built

databases of the simplest endings. Their approach was to develop optimal sequences backward from all

possible winning positions (mate or reduction to a known subproblem) [63, 64]. These works have recently

been reviewed and put into perspective [65].

_________________________________________
Pieces Moves Computation time_________________________________________
Queen 10 6.5 mins.
Rook 16 9 mins.
Rook vs Bishop 18 6 hours 30 mins.
Rook vs Knight 27 14 hours 16 mins.
Queen vs Rook 31 29 hours 9 mins._________________________________________

		
		
		
		

		
		
		
		

		
		
		
		

		
		
		
		

Table 2: Maximum Moves to Win Simple Endgames.

The biggest contributions to chess theory, however, have been made by Belle and Ken Thompson.

They have built databases to solve five piece endgames. Specifically, KQX vs KQ (where X = Q, R, B or

N), KRX vs KR and KBB vs KN. This last case may prompt another revision to the 50-move rule, since in

general KBB vs KN is won (not drawn) and less than 67 moves are needed to mate or safely capture the

knight [66]. Also completed is a major study of the complex KQP vs KQ ending. Again, often more than

50 manoeuvres are required before a pawn can advance [66]. For more complex endings involving several

pawns, the most exciting new ideas are those on chunking. Based on these ideas, it is claimed that the

"world’s foremost expert" has been generated for endings where each side has a king and three pawns

[67, 68].
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3.5. Memory Tables

Others have pointed out [36, 50] that a hash table can also be used to store information about pawn

formations. Since there are usually far more moves by pieces than by pawns, the value of the base pawn

formation for a position must be re-computed several times. It is a simple matter to build a hash key based

on the location of pawns alone, and so store the values of pawn formations in a hash table for immediate

retrieval. Hyatt found this table to be effective [21], since otherwise 10-20% of the search time was taken

up with evaluation of pawn structures. A high (98-99%) success rate was reported [21]. King safety can

also be handled similarly [36, 50], since the king has few moves and for long periods is not under attack.

Transposition and other memory tables come into their own in endgames, since there are fewer pieces

and more reversible moves. Search time reduction by a factor of five is common, and in certain types of

king and pawn endings, it is claimed that experiments with Cray Blitz and Belle have produced trees of

more than 30 ply, representing speedups of well over a hundred-fold. Even in complex middle games,

however, significant performance improvement is observed. Thus, use of a transposition table provides an

exact form of forward pruning and as such reduces the size of the search space, in endgames often to less

than the minimal game tree! The power of forward pruning is well illustrated by the following study of

"Problem No. 70" [69], Figure 8, which was apparently first solved [52] by Chess 4.9 and then by Belle.
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P b : : P w : : P b : :
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: : : : : : : :

: : : : : : : :

K w : : : : : :

W h i t e t o m o v e

Figure 8: Transposition Table Necessity.

The only complete computer analysis of this position was provided later [21]. As Robert Hyatt puts it, a

solution is possible because "The search tree is quite narrow due to the locked pawns." Here Cray Blitz is

able to find the correct move of Ka1-b1 at the 18th iteration. The complete line of the best continuation

was found at the 33rd iteration, after examining four million nodes in about 65 seconds of Cray-1 time.

This was possible because the transposition table had become loaded with the results of draws by repetition,

and so the normal exponential growth of the tree was inhibited. Also, at every iteration, the transposition

table was loaded with losing defences corresponding to lengthy searches. Thus the current iteration often

yielded results equivalent to a much longer 2(D-1) ply search. Ken Thompson refers to this phenomenon as

"seeing over the horizon."

3.6. Selective Search

Many software advances came from a better understanding of how the various components in evalua-

tion and search interact. The first step was a move away from selective search, by providing a clear separa-

tion between the algorithmic component, search, and the heuristic component, chess position evaluation.

The essence of the selective approach is to narrow the width of search by forward pruning. Some selection
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processes removed implausible moves only [70], thus abbreviating the width of search in a variable manner

not necessarily dependent on node level in the tree. This technique was only slightly more successful than

other forms of forward pruning, and required more computation. Even so, it too could not retain sacrificial

moves. So the death knell of selective search was its inability to predict the future with a static evaluation

function. It was particularly susceptible to the decoy sacrifice and subsequent entrapment of a piece. Inte-

rior node evaluation functions that attempted to deal with these problems became too expensive. Even so,

in the eyes of some, selective methods remain as a future prospect since

"Selective search will always loom as a potentially faster road to high level play. That road,
however, requires an intellectual break-through rather than a simple application of known tech-
niques" [58].

The reason for this belief is that chess game trees grow exponentially with depth of search. Ultimately it

will become impossible to obtain the necessary computing power to search deeper within normal time con-

straints. For this reason most chess programs already incorporate some form of selective search, often as

forward pruning. These methods are quite ad__ hoc___ since they are not based on a theory of selective search.

Although nearly all chess programs have some form of selective search, even if it is no more than the

discarding of unlikely moves, at present only two major programs (Awit and Chaos) do not consider all

moves at the root node. Despite their occasional successes, these programs can no longer compete in the

race for Grand Master status. Nevertheless, while the main advantage of a program that is exhaustive to

some chosen search depth is its tactical strength, it has been shown that the selective approach can also be

effective in tactical situations. In particular, Wilkin’s Paradise program demonstrated superior perfor-

mance in "tactically sharp middle game positions" on a standard suite of tests [71]. Paradise was designed

to illustrate that a selective search program can also find the best continuation when there is material to be

gained, though searching but a fraction of the game tree viewed by such programs as Chess 4.4 and Tech.

Furthermore it can do so with greater success than either program or a typical A-class player [71]. How-

ever, a nine to one speed handicap was necessary, to allow adequate time for the interpretation of the

MacLisp program. Paradise’s approach is to use an extensive static analysis to produce a small set of

plausible winning plans. Once a plan is selected "it is used until it is exhausted or until the program
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determines that it is not working." In addition, Paradise can "detect when a plan has been tried earlier

along the line of play and avoid searching again if nothing has changed" [71]. This is the essence of the

method of analogies too. As Wilkins says the

"goal is to build an expert knowledge base and to reason with it to discover plans and verify
them within a small tree."

Although Paradise is successful in this regard, part of its strength lies in its quiescence search, which is

seen to be "inexpensive compared to regular search," despite the fact that this search "investigates not only

captures but forks, pins, multimove mating sequences, and other threats" [71]. The efficiency of the pro-

gram lies in its powerful evaluation, so that usually "only one move is investigated at each node, except

when a defensive move fails." Jacques Pitrat has also written extensively on the subject of finding plans that

win material [72], but neither his ideas nor those in Paradise have been incorporated into the competitive

chess programs of the 1980’s.

3.7. Search and Knowledge Errors

The following game was the climax of the 15th ACM NACCC, in which all the important programs

of the day participated. Had Nuchess won its final match against Cray Blitz there would have been a 5-way

tie between these two programs and Bebe, Chaos and Fidelity X. Such a result almost came to pass, but

suddenly Nuchess "snatched defeat from the jaws of victory," as chess computers are prone to do. Com-

plete details about the game are not important, but the position shown in Figure 9 was reached.
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Figure 9: A Costly Miscalculation.

Here, with Rf6xg6, Nuchess wins another pawn, but in so doing enters a forced sequence that leaves Cray

Blitz with an unstoppable pawn on a7, as follows:

45. Rf6xg6 ? Rg8xg6+
46. Kg5xg6 Nc8xd6
47. Pc5xd6

Many explanations can be given for this error, but all have to do with a lack of knowledge about the value

of pawns. Perhaps black’s passed pawn was ignored because it was still on its home square, or perhaps

Nuchess simply miscalculated and "forgot" that such pawns may initially advance two rows? Another pos-

sibility is that white became lost in some deep searches in which its own pawn promotes. Even a good

quiescence search might not recognize the danger of a passed pawn, especially one so far from its destina-

tion. In either case, this example illustrates the need for knowledge of a type that cannot be obtained easily

through search, yet which humans are able to see at a glance [6]. The game continued 47. ... Pa5 and white

was neither able to prevent promotion nor advance its own pawn.

There are many opportunities for contradictory knowledge interactions in chess programs. Some-

times chess folklore provides ground rules which must be applied selectively. Such advice as "a knight on

the rim is dim" is usually appropriate, but in special cases placing a knight on the edge of the board is
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sound, especially if it forms part of an attacking theme and is unassailable. Not enough work has been done

to assess the utility of such knowledge and to measure its importance. Recently, Jonathan Schaeffer com-

pleted an interesting doctoral thesis [73] which addressed this issue; a thesis which could also have some

impact on the way expert systems are tested and built, since it demonstrates that there is a correct order to

the acquisition of knowledge, if the newer knowledge is to build effectively on the old.

3.8. Areas of Future Progress

Although most chess programs are now using all the available refinements and tables to reduce the

game tree traversal time, only in the ending is it possible to search consistently less than the minimal game

tree. Selective search and forward pruning methods are the only real hope for reducing further the magni-

tude of the search. Before this is possible, it is necessary for the programs to reason about the trees they see

and deduce which branches can be ignored. Typically these will be branches which create permanent

weaknesses, or are inconsistent with the current themes. The difficulty will be to do this without losing

sight of tactical factors.

Improved performance will also come about by using faster computers, and through the construction

of multiprocessor systems. One early multiprocessor chess program was Ostrich [56, 74]. Other experi-

mental systems followed including Parabelle [75] and ParaPhoenix [76]. None of these systems, nor the

strongest multiprocessor program Cray Blitz [21], consistently achieves more than a 5-fold speed-up, even

when eight processors are used [76]. There is no apparent theoretical limit to the parallelism, but the practi-

cal restrictions are great and may require some new ideas on partitioning the work, as well as more

involved scheduling methods.

Another major area of research is the derivation of strategies from databases of chess endgames. It is

now easy to build expert system databases for the classical endgames involving four or five pieces. At

present these databases can only supply the optimal move in any position (although a short principal con-

tinuation can be provided by way of expert advise). What is needed now is a program to deduce from these

databases optimally correct strategies for playing the endgame. Here the database could either serve as a



- 31 -

teacher of a deductive inference program, or as a tester of plans and hypotheses for a general learning pro-

gram. Perhaps a good test of these methods would be the production of a program which could derive stra-

tegies for the well-defined KBB vs KN endgame. A solution to this problem would provide a great advance

to the whole of Artificial Intelligence.
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