Editorial Notes

Two of the papers published in this volume of the
Journal are invited contributions from the University of
Alberta, Canada, and the Istituto di Elettrotecnica ed
Elettronica, Politecnico di Milano, ltaly.

In the first paper A Study of Techniques for Game
Playing Programs”’, Drs. Marsland and Ruston describe the
techniques used to play sophisticated games, of which
chess is taken to be representative. At present, many
chess-playing programs use a polynomial evaluation func-
tion, in conjunction with forward pruning and the
minimax backing up procedure, to play the game.
These techniques are discussed along with their associated
difficulties. Some possible means for modifying the
coefficients of the scoring function (which is equivalent
to a form of learning)— are outlined, but results indicate
that they will not be successful. Finally, the specifications
for agoal-directed approach based on feature recognition,
goal suggestions and planning are proposed. This approach
has greater potential for producing a program whose
play is of the highest standard.

Professors Camerini, Fratta and Maffioli in the second
invited paper consider a heuristically guided search tech-
nique for constructing the shortest hamiltonian path of a
graph thus yielding the solution to the travelling salesman
problem. Very good lower bounds to direct the search
are obtained by an iterative procedure of the type
already used by Held and Karp in a previous approach
to the travelling salesman problem. Some computational
results are reported.

The remaining paper published in this volume is by
Professor D. C. Rine of the West Virginia University. He
develops syntactic rules (production rules — BNF) for a
language that can be used to construct undergraduate
computer science course structure and organisation.
This kind of language is not only helpful from the
instructor’s point of view but it also helps the computer
science student see how his knowledge about programming
is organised. Also, it would seem that a special language
for developing courses and curricula could be helpful.
He calls the language, AL which stands for Instructional
Aids Language.

25

T Frwrrad of lwpnbs Stenmce Unlle, K pf 354

(973%

A STUDY of TECHNIQUES

- for GAME-PLAYING PROGRAMS

by Thomas Anthony Marsland and Paul Gerald Rushton*

*Computing Science Department, University of Alberta, Edmonton, Canada.

Abstract

In this paper the technigues used in various game-
playing programs will be surveyed, and an assessment
made of their utility and future extensibility. It will be
explained why an evaluation function should not form
the basis for a learning algorithm, and way the lack of
continuity in the planning capability of contemporary
methods makes them incapable of producing a program
whose play is of the highest calibre (even if ali
reasonable time constraints are removed).

The essential features of games which cannot be
solved by exhaustive means will be identified, and from
these features the specifications of a sophisticated
game-playing program will be developed. A goal directed
procedure to meet those requirements will be discussed,
and a partial assessment of the potential capabilities of
this approach presented.

Introduction

The sophisticated games which we consider {in
particular Chess, Checkers and Go) are all mathe-
matically trivial, because an exhaustive method exists for
their play; this method is, however, totally impractical
for a programming point of view. For example, in the
game of Chess it is estimated that there are 35%°
positions (not all of which are unique) in the decision
tree for the first 20 full moves from the start, so it
would take an eternity to enumerate them all. Even for
Checkers the method is impractical. Other approaches
must obviously be found, and some of these will be
considered.

Most games may be split into three phases: opening,
middle game and ending. Memory plays a very important
part in two of them, because there are relatively few
principal variations in the opening, and few basic
strategies in the ending. In computer terms specialized
programs are probably most appropriate in these two
places. However, the middle game provides the greatest
degree of complexity and offers the most opportunity
for original behaviour by a program. We shall therefore
confine our remarks to that phase.

Two ways of tackling the problem have been con-
sidered. One is evolutionary in that successively bigger,
better and more specialized programs are written until
acceptable solutions are found. The other relies on the
implementation of general learning mechanisms to
produce programs which can train themselves. As might
be expected, the evolutionary approach has met with
many early successes, but can only progress very slowly
to the best (master) human level. General learning
algorithms have not yet been developed, though some
success has been achieved on simpler games' .

26

Current Techniques

Although there had been attempts to build
mechanical game players, it was Shannon's article?
which initiated the interest in chess-playing programs.
One of his main ideas was to use an evaluation function,
in conjunction with a min-max procedure, to build a
reasonable game tree. Subsequent papers by Newell,
Shaw and Simon describing work on a General Problem
Solver and a chess program®, Samuel’s work with
Checkers* and Good's article® , are additional sources of
fundamental ideas. The common theme behind these
papers is the construction of a game tree {a structure of
decision points, referred to as nodes). Practical restric-
tions ensure that only a partial tree can be built. The size
of the tree is controlled in two ways; reverse pruning
{the alpha-bets or M&N methods) and forward pruning.

The reliability of the alpha-beta method is directly
related to the precision with which the evaluation
function measures the relative worth of the ‘terminal’
positions. These terminal positions occur either at some
predetermined depth or at a quiescent node (at which
the error in the scoring function is thought to be small),

Forward pruning also occurs whenever a subset of the
available continuations is explored, or if some unattrac-
tive variation is abandoned. In order to increase the
number of alpha-bets cutoffs, the available moves at
each node are considered in order of decreasing impor-
tance (value). If a relatively sophisticated evaluation
function is employed, it may be possible to explore a
subset of the available moves at each node. Dramatic
reductions in tree size are obtained by this method, at
substantial risk. Three main approaches to the tree-
building process have been tried: —

1. The earliest programs employed an exhaustive
search to a fixed depth, or say five ply {two and a
haif full moves) and this approach is again being
successfully used by Gillogly in his TECHnology
program®. Its intended use is to provide a lower
bound on the expected performance of programs
which use more advanced methods. Even using the
standard pruning techniques, the complete tree to
fixed depth produces an enormous number of
terminal positions. Thus only a simple calculation,
such as material balance, can be done to assess the
relative merits of the continuations.

2.Some of the best examples of the approach
suggested by Shannon are to be found in the series
of programs, culminating in MAC HACK", which
were written at MIT. These programs, and in fact
most of those written in the 1960’s, were based on
the premise that a far smatler and more directed
game tree can be constructed, provided more
analysis is done at each decision point. The analysis
takes the form of assigning values for features found
in the specific game being played, from which an
ordered list of preferred moves is generated.

Perhaps the major weakness with the evaluation
function approach is in the preferred move
generator, because by the very nature of the
game-features it is easier to generate tactical moves,
which are considered at the expense of positional
ones. Positional moves can only be conceived as part
of some long range plan. Botvinnik® suggests the use
of a horizon (minimal length attack path) to help in
the conception of these positional moves, but even
his proposal seems to be of greater merit in forming
tactics.

3. One other fundamentally different approach to the
tree construction problem is the contribution of the
goal seeking methods, of Newell et al. Their
chess-playing program studies were inconclusive,
being de-emphasized in favour of GPS. Although the
program handled the opening fairly well, it was not
shown that its implementation could be successfully
extended to the middle game, where the relevancy
of conflicting goals has to be resolved.

The most important aspect of this scheme is that,
of all feasible moves, only those which satisfy some
predetermined goal are generated. If it is imple-
mented properly, preferred moves and their game
subtree will be analysed less expensively than with
the other methods, because of the high degree of
selectivity at each node. Other advantages are that
more opportunity for continuity of a plan within a
single variation is provided, and irrelevant moves are
neither considered nor generated.

A major failure of many contemporary programs is
that they treat each node in a continuation as an
independent position. A move is generated at ply N
without regard to the reasons which suggested the
preceding move at ply N-2. There is, therefore, no
deliberate continuity of plan within a given variation,
which is much more serious than failing to preserve the
subtree of the principal variation from move to move,
since the salvaged subtree is very small in propoertion to
the size of the game tree that is constructed. Some
continuity can be achieved by noting the problems
which arise in a given variation. Increased importance is
then given to those moves which counter the newly
uncovered threats, by dynamically re-ordering the pre-
ferred move list at every decision point.

27

Extensibility of the Methods

Gillogly estimates that a 7-fold increase in computing
power is needed to add an even ply layer to his tree, and
somewhat less for an odd ply layer. Theoretical bounds
for the cost of adding layers are given by Slagle and
Dixon®. The most likely source of this speed increase is
from advances in parallel processors, but the exponential
growth in the number of terminal nodes eliminates any
+ope of using a complex evaluation function.

Polynomial scoring functions with adjustable weights
(coefficients) are fundamentally unsound, being un-
reliable. They can give neither an absolute measure of a
position’s worth nor a precise relative assessment. When
used to select the order in which continuations are
explored, the scoring smethod is akin to employing a
maximum gradient scheme with fixed step size to search
a nonconvex surface,

One supposed advantage of the polynomial evaluation
function is that its weights may be adjusted (or
‘learned’} to improve its selectivity. Given a set of
positions and their corresponding best {master) moves,
Slagle!? suggests several ways of modifying the weights,
to increase the number of correct selections made by the
scoring function. Under the assumption that there is no
perfect scoring function, a directed tree search is
necessary. Thus it may be more satisfactory simply to
find a set of weights which places the master's move
within some window (of say 5 moves) at the top of the
preferred move list. Some more complicated schemes
have been tried, but no significant improvement can be
reported. For example, Figure 1 compares the selectivity
error rate of a six variable polynomial, whose weights
were generated by the correlation coefficient method, an
optimization method and an experienced player, over
378 positions selected from 15 master games. Perhaps
the most important observation is that, for a 5-move
window only an 80% selectivity was obtained with this
polynomial. In order to develop a master calibre
program, the preferred move generator must have 100%
selectivity. It is unlikely that this requirement can be
met by an evaluation function, with an acceptably small
window.

One might hope that by adding terms to the
polynomial a progressively more advanced player would
be developed. In practice such is not always the case,
since there is increased possibility that an unexpected
move will be generated for the wrong reason, when an
accumulation of errors cancel some important feature.

The whole concept of a weighted sum of features,
although computationally satisfying, would appear to be
different from the way in which de Groot has found that
humans play''. One now has to decide whether game-
playing problems can be re-formulated in a manner
which is amenable to computer solution, or whether
computer hardware/software must be designed to
simplify the imitation of human strategies. De Groot has
observed how chess players perform over the board
analysis. He noted that they appear to work in the
following stages: —

il

151| anow pasisjaid 3yl JO 2IS (MOPUIM)

9l SL bL €l zL i oL] 8 L 9] v

] [i 1 1 1 i [l L]

-

-

‘Poyiaw uoneziwndo

‘POY1atl 1UBIDH 80D UOIIL|3410D —— —— e

19Ae|d paosuaadxa eeen--nn

181 dN0W P31134a1d By Ul SIAOW J3ISEW JO UORNGIASIP AIGINWND | 84nbi4

- 0L

- 0€

- Ob

- 05

- 09

- 0L

- 08

- 06

1si| anow pasigjasd Byl Ul SBAOW JBlSeW 9

28

1. Analysis of very few basic continuations.
2. Re-examination of variations in increasing detail.

3. Selection of a move on a basis of one or two
overriding features. Even though many factors are
considered, no weighted sum of components is
computed not are minor strengths or weaknesses
in a move allowed to cancel more important
features.

it would seem that the fact that relatively few
features dominate the selected move can be more easily
exploited by the goal-seeking methods, as will be shown
later, Even so, it does not necessarily follow that
programs to play these games must model human
behaviour, but rather that our ability to employ the
computer’s facility for rapid execution of repetitive
algorithms has so far proved inadequate.

Goal Seeking Approach

The general hope with the evaluation function
method is that if nearly all the locally important moves
from each decision point are explored, there is high
probability that the globally best (within the limits of
the tree) continuation will be found. Since the method
has no known destination, it has to asses the relative
merits of the terminal positions. There is not much
advantage in making this assessment with a function
which contains more features than the one which
generated the preferred move list, since the tree growth
has not been controlled (biased) to develop nodes that

exhibit those extra properties.

With the goal seeking methods it is anticipated that
by specifying a desirable goal, and only generating thoes
moves which are relevant to that goal plan, one can
narrow the search task. The opponent’s moves are
restricted to those which either inhibit one’s plan or help
him achieve a more desirable goal. The method therefore
hinges on accurate recognition of attainabie goals, that
is, accurate predictions of desirable global continuations.
H successful, one is assured that all terminal positions
are valuable.

The approach we are exploring has three distinct
phases: —

1. Feature recognition and evaluation. 2. Goal

list construction. 3. Planning.
All of these phases draw upon the knowledge state,
which consists of the current position, the current plans
and the status of the relevant features that has been
found so far.

The feature recognition programs receive the current
knowledge state as input and provide a measure of the
degree of presence of specific features. For chess typical
features might be:— <weak King> ==>> <badly castied>
OR < K held in centre> OR ... <badly castled> ==
<castled K-side> AND <weak K-side pawns> OR ..
<K held in centre> ==> <K in centre>> AND <K unable
to castle>. All the features are game specific, more
advances ones being built up from such primitivés as
material balance, control of key sqaures, and under/over
committed pieces. Goal statements are constructed in

Editor

Dr. J. Rose

College of Technology
BLACKBURN, BB2 1LH
England

Tel: Blackburn 64321

Four advisory Editors of International
repute including a Nobel Laureate.

The Editorial Board comprises
38 experts from 13 countries.

The International Journal of CYBERNETICS AND GENERAL SYSTEMS

KYBERNETES

Executive Board

(Assistant Editors)

Dr. W. H. von Alven

Late Chairman, Systems, Man
and Cybernetics Group of the
I.E.E.E. {(US.A)

Professor T. C. Helvey
University of Tennessee
Space Institute {US.A.)

Professor E. Nicolau,
Polytechnic Institute,
(Rumania)

Publishers: — Gordon and Breach Ltd. 12 Bloomsbury Way, London WC1, Engiand.

Published Quarterly from January 1972, with the aim to
endow Cybernetics with an authoritative voice of its own
and establish a competent international forum for the
exchange of knowledge and information.

Special concessionary subscription of £4.50 per volume of
4 issues for Members of the Institution of Computer Sciences.
(Full rate of subscription £6).

29

terms of these features, as illustrated by: ACHIEVE
<centre control> BUT NOT <double pawns>UNLESS
<material advantage>. The goal statements are now
passed on to the planner, whose job it is to break each
component of the goal statement into more fundamental
subgoals. This process is continued until a subgoal
becomes a piece configuration for which a move can be
generated. The terms in the goal statement are ordered,
so that a simple tree structure can be built to help
explore the subgoals. During the planning stage,
weaknesses in the initial goal statement may be dis-
covered; the planner modifies the statement to correct
those deficiencies,

Although there will initially be a fixed list of feature
recognition procedures, not all of them will be active at
one time. There will be feature management routines,
working during the opponent’s thinking time, to elimi-
nate searching for irreversible features like castling.
Feature procedures could be removed from the active
list on a least recently useful basis, allowing the
activation of such endgame features as pawn promotion.
In summary:—

1. The knowledge state consists of the board descrip-
tion and the current goal plan.

2. This plan allows information to be gathered about
the position, by the execution of the active feature
procedures,

3. Initial goal statements are formed which seek to
preserve the extant good features and eliminate
the bad, and existing features of the opponent are
negated. Desirable goals that could be achieved
from this position are also added.

4. The planning programs now elaborate the goal
statements, until a time limit expires.

5. A preferred move list is generated. At this stage
such factors as the length of the move sequence
and the number of goals that the moves satisfy will
be taken into account. f no moves are proposed a
standard evaluation function technique will be
applied,

6. Once a move is made, the goals and the elabora-
tions which caused its generation will be added to
the knowledge state, allowing continuity of plan
from move to move.

Conclusions

From our studies of games we have concluded that a
master calibre program cannot be written on a basis of
either building a complete tree to a fixed depth or using
an evaluation function to build a tree from a subset of
the available moves. The first method cannot afford an
adequate evaluation function, while the second is in
grave danger of building an irrelevant tree, since it
cannot be certain that the master move is within its
window. The goal directed method, although technically
more difficult to implement, is well established as the
basis for successful algorithms, since it is the product of
human evolution.

30

Two deficiencies of most contemporary programs are
that they cannot generate either apparently sacrificial or
“quiet’” positional moves. A return to the goal-seeking
approach is suggested, in the manner outlined. Not only
is this approach capable of overcoming the weaknesses
of the evaluation function method, but it also allows
greater potential for the implementation of learning
algorithms, especially in the area of feature creation.

References

1. N. V. Findler, “Some new approaches to machine
learning”, IEEE Transactions on Systems Science and
Cybernetics, July 1969, pp. 173-182.

2. C. E. Shannon, “Programming a digital computer for
playing chess”, March 1950, Philosophical Magazine, vol
41, pp. 358-375.

3. A, Newell, and H. A, Simon. Human Problem Solving,
Prentice Hall 1972, pp. 678-698,

4. A. L. Samuel, “Some studies in machine learning
using the game of checkers. || — recent progress”, Nov.
1967, IBM Joumal of Research and Development. pp.
601617,

5. 1. J..Good, “A five year plan for automatic chess’,
1967, Machine Intelligence 2, American Elsevier 1968,
pp. 89-105,

6. J. J. Gillogly, “The Technology Chess Program”,
Report CMU-CS-71-109, Nov. 1971, Dept. of Computer
Science, Carnegie-Mellon Univ.

7. R.D. Greenblatt, D. F. Eastlake 11l and S. D. Crocker.
“The Greenblatt Chess Program’”, 1967, AFIPS
Conference Proceedings, Vol 31, pp. 801-810.

8. M. M. Botvinnik, Computers, Chess and Long Range
Planning, Springer-Verlag 1970.

9. J. R. Slagle, and J. Dixon. “"Experiments with some
programs that search game trees”’, Journal of ACM, April
1969.

10. J. R. Siagle, Artificial Intelligence: The Heuristic
Programming Approach, McGraw-Hill 1971, pp.
143-162.

11. A. D. de Groot, Thought and Choice in Chess,
Mouton 1965.

