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Abstract 

The scientific utility of computer chess 
tournaments is questioned and two 
alternative means of comparing chess 
programs are examined. Regardless of the 
programming language employed or the 
background load on the host machine, a 
means is provided for measuring the 
efficiency of chess algorithms. 

!nt~d_uction 
The occasion of the ACM National 

Conference has been used to stage a 
computer-chess match for the past four 
years. After each tournament the 
proficiency of the individual programs is 
assumed to be measured by their relative 
scores. Unfortunately, even though the 
time used by the various programs is often 
recorded, no account is taken of the power 
or workload of the computing machinery 
being used. For instance, the OSTRICH 4 
executes on a dedicated minicomputer, 
while Northwestern,s CHESS 4 operates in a 
multiprogramming environment. How then 
can any scientifically meaningful 
comparison be made of the relative 
efficiency of the two programs? The basic 
efficiency of the algorithms used is 
further obscured by the choice of 
programming language. Some are written at 
the systems programming level while 
others, like COKO a, use a higher level 
language for its portability and 
flexibility. 

Two alternative means of comparing 
programs are discussed briefly and some 
performance measurements on a chess 
program (WI~A s, which is now being used 
only as a test bed for analysing chess- 
playing algorithms), are presented. 

Common Machine  ~R~Rarison 

Programs which can execute on a variety 
of computers should play each other on the 
same machine. By this means the 
variations in CPU and memory cycle time, 
plus competition for the CPU with the 

background load, can be equalized. 
Recently one such experiment was performed 
at the University of Alberta, on an IBM 
360/67, with the programs talking to each 
other via a special monitor. A complete 
technical description of this execution 
monitor and its capabilities is available 
from the authors. In essence, the monitor 
traps all i/o transfers, manages an 
alterable communication buffer, and 
maintains independent CPU and elapsed time 
clocks for all three programs. The main 
advantage of this approach is that the 
various programs can be written in any 
language. For instance, the CPU 
utilization for parts of two games between 
COKO (March 1972 version, written in 
Fortran) and an Algolw version of WITA is 
presented in Figures I and 2. Only a few 
minor modifications were necessary to the 
programs in order to make their move 
descriptions compatible. 

A series of experiments is planned in 
which these programs will play each other. 
Starting from a set of initial board 
positions, each program will play both 
sides in all their different modes of 
operation. Because of the wide variety of 
tree building structures and heuristics it 
is too much to expect that programs will 
have any equivalent modes of operation. 
However, by allowing them to play both 
sides of the same game, some relative 
assessment of the CPU efficiency of the 
programs is possible. For instance, 
Figure I shows the cumulative CPU 
consumption for part of a game in which 
WITA played without lookahead and COKO 
also used its fastest mode (Blitz, at 
about I secs./move). Figure 2 is a 
similar graph, but in this case WITA and 
COKO have changed sides, and also COKO is 
in fast mode (10 secs./move), while WITA 
is using a fixed 3-ply tree (without 
extensions for checking and captures). It 
should be noted that the CPU times include 
the overhead associated with our 
multiprogrammed, paging operating system 
(the Michigan Terminal System). 

Because this series of experiments is 
not complete it is premature to draw any 
conclusions. It is suspected however, 
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that our version of COKO was having some 
problem anticipating the consequences of a 
promotion, for in the 15 moves of the 
first game it lost the pawn it promoted 
while in the second 10 move sequence (in 
which the colours were reversed) it was 
unable to stop the promotion. There is 
also a possibility that COKO's attempts to 
meet its timing constraints interfered 
with its tree building mechanism. 

In terms of resource utilization, the 
combined programs required some 146 pages 
(584K bytes} of virtual memory, of which 
COKO needed 75 pages. Although both 
programs are CPU bound, since neither does 
any explicit i/o while generating a move, 
and do not compete with each other for the 
CPU, they only received about 25~ of the 
available CPU time (the balance going to 
the background load) . The data for 
Figures I and 2 was generated on the same 
evening in consecutive experiments. 

Common G ~ m ~  ~Rm_~ris~.~on 

For those programs which can execute 
only on a single machine, direct 
comparison should be made on a basis of 
their analysis of a standard set of games. 
In part of another paper an attempt to 
optimize some of the coefficients in 
WITA's scoring function is described, and 
a graph showing the improvements is 
presented 3. To obtain those results a 
subset from about 760 positions in 32 
games was used, taken from the 1924 
International Tournament in New York, and 
is available from the authors. Figure 3 
shows the improvement of WITA's fixed 
depth 3-ply tree over its basic scoring 
function. For reasons of economy, the 
relative positions of the moves selected 
by the masters is plotted for only the 
first half of the NY1924 set. A series of 
experiments is planned in which WITA's 
tree building parameters, such as width, 
depth, selection threshold and others, are 
to be altered to determine in a 
statistical way how they affect the 
performance. 

A lower bound on the performance of a 
chess program is given by that of a random 
player, such a bound is shown in Figure 3 
over the same set of positions as 
considered by WITA. If we have H 
positions, with Ni moves per position, 
then the fraction of the time that the 
master's move is found in a random window 
of size K is given by:- 

K H 
( > > ( D_iij ))IS, 

j=1 i=1 Ni 

where DiJ = 0 if Ni < K, otherwise Dij =I. 
Although this bound takes into account 
those positions in which there are very 
few legal variations, it does not account 
for the cases in which there are only a 
few meaningful continuations. Such cases 

ari~ most commonly in capture sequences, 
and constitute about 15~ of the moves. 

These results suggest that WITA is now 
an adequate player, but clearly has no 
potential for superior chess. The results 
have also helped us to gain some insight 
into the deficiencies of current 
techniques and leads us to believe that a 
goal seeking approach is needed 3. It is 
clear that in order to play superior chess 
all of the master calibre moves must be 
within the window of prefered moves that 
are examined during the tree building 
process. This criterion is most easily 
met by the TECH-type approach 3 4. Whether 
the window size is static or dynamically 
variable during the course of a game is of 
no consequence. What is important is that 
after the tree search the scores for the 
master-calibre variations place them 
within the top three continuations. De 
Groot* has indicated that on the average 
there are only 1.5 master calibre moves in 
any given position, so even our 
requirement for generating master moves 
with one of the top three scores is rather 
weak. 

By using a standard set of consecutive 
positions from master games, programs can 
be compared by observing the relative 
assignments given to moves played by 
masters. These standard positions have 
been carefully chosen to cover only the 
middle game play(the average number of 
moves per position is 36), so that the 
opening and endgame transitions can be 
avoided. 

For the experiment whose results are 
presented in Figure 3, the basic window 
size was set at 7, because earlier results 
had indicated that only about 20% of the 
master moves would lie outside that 
window. Of those, about half were not 
being selected by the primary scoring 
function, whose job it is to trim the move 
list to about two thirds of its length and 
thus reduce the execution time of the non- 
linear scoring function. Without the 
primary function a further 104 of the 
moves might be within the window, but only 
at the expense of doubling the CPU cost of 
the secondary function. 

Although the customary benchmark methods 
for comparing chess programs exist, they 
are not yet being used effectively. The 
possibilities for two programs to play 
each other on the same machine are 
extremely limited, and communication 
problems are not necessarily trivial. The 
main weakness in the annual computer-chess 
tournament is that no handicapping of the 
various programs is performed, giving 
advantage to the user of the fastest, most 
lightly loaded computer. However, the 
event is certainly not sterile, since it 
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captures the imagination and permits the 
rapid dissemination of new ideas and 
concepts. 
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