A STUDY OF TECHNIQUES FOR GAME-PLAYING PROGRAMS

T.A. MARSLAND and P.G. RUSHTON

Computing Science Department, University of Alberta,
Edmonton, Canada

SUMMARY

An attempt has been made to describe the techniques used
to play 'eophisticated' games, of which chess 1s taken to be
representative. At present, many chess-playing programs use a
polynomial evaluation function, in conjunction with forward
pruning and the minimax backing up procedure, to play the game.
These techniques are discussed along with their associated dif-
difficulties. Some possible means for modifying the coefficients
of the scoring function (which is equivalent to a form of learn-
ing) are outlined, but results indicate that they will not be
successful. Finally, the specifications for a goal-directed
approach based on feature recognition, goal suggestion and plan-
ning are proposed. This approach has greater potential for
producing a program whose play is of the highest standard.

INTRODUCTION

In this paper the techniques used in various game-playing
programs will be surveyed, and an assessment made of their util-
ity and future extensibility. It will be explained why an eval-
uation function should not form the basis for a learning algo-
rithm, and why the lack of continuity in the planning capability
of contemporary methods makes them incapable of producing a pro-
gram whose play is of the highest calibre (even 1f all reason—
able time constraints are removed).

The essential features of games which cannot be solved by
exhaustive means will be identified, and from these features
the specifications of a sophisticated game-playing program
will be developed. A goal directed procedure to meet those
requirements will be discussed, and a partial assessment of the
potential capabilities of this approach presented.

363



364 MARSLAND AND RUSHTON

The sophisticated games which we consider (in particular
Chess, Checkers and Go) are all mathematically trivial, because
an exhaustive method exists for their play; this method is,
however, totally impractical from a programming point of view.
For example, in the game of chess it 1s estimated that there
are 35°° positions (not all of which are unique) in the decision
tree for the first 20 full moves from the start, so it would
take an eternity to enumerate them all. Even for checkers the
method is impractical. Other approaches must obviously be
found, and some of these will be considered.

Most games may be split into three phases: opening, middle
game and ending. Memory plays a very important part in two of
them, because there are relatively few principal variations in
the opening, and few basic strategies in the ending. In com-
puter terms specialized programs are probably most appropriate
in these two places. However, the middle game provides the
greatest degree of complexity and offers the most opportunity
for original behaviour by a program. We shall therefore con-
fine our remarks to that phase.

Two ways of tackling the problem have been considered.
One is evolutionary in that successively bigger, better and
more specilalized programs are written until acceptable solu-
tions are found. The other relies on the implementation of
general learning mechanisms to produce programs which can train
themselves. As might be expected, the evolutionary approach
has met with many early successes, but can only progress very
slowly to the best (master) human level. General learning
algorithms have not yet been developed, though some success
has been achieved on simpler games [1]).

CURRENT TECHNIQUES

Although there had been attempts to build mechanical game
players, it was Shannon's article [2) which initiated the in-
terest in chess-playing programg. One of his main ideas was
to use an evaluation function, in conjunction with a min-max
procedure, to build a reasonable game tree. Subsequent papers
by Newell, Shaw and Simon describing work on a General Problem
Solver and a chess program [3], Samuel's work with Checkers
[4) and Good's article [5), are additional sources of funda-
mental ideas. The common theme behind these papers is the con-
struction of a game tree (a structure of decision points, re-
ferred to as nodes). Practical restrictions ensure that only
a partial tree can be built. The size of the tree is controlled
in two ways: reverse pruning (the alpha-beta or M&N methods)
and forward pruning. The reliability of the alpha-beta method



GAME-PLAYING 365

method is directly related to the precision with which the eval-
uation function measures the relative worth of the 'terminal’
positions. These terminal positions occur either at some pre—
determined depth or at a quiescent node (at which the error in
the scoring function is thought to be small). FPorward pruning
also occurs whenever a subset of the available continuations is
explored, or if some unattractive variation is abandoned. In
order to increase the number of alpha-beta cutoffs, the avail-
able moves at each node are considered in order of decreasing
importance (value). If a relatively sophisticated evaluation
function is employed, it may be possible to explore a subset

of the available moves at each node. Dramatic reductions in
tree size are obtained by this method, at substantial risk.
Three main approaches to the tree-building process have been
tried: -

1) The earliest programs employed an exhaustive search to
a fixed depth, of say five ply (two and a half full moves) and
this approach is again being successfully used by Gillogly in
his TECHnology program [6]). Its intended use is to provide a
lower bound on the expected performance of programs which use
more advanced methods. Even using the standard pruning tech-
niques, the complete tree to fixed depth produces an enormous
number of terminal positions. Thus only a simple calculation,
such as material balance, can be done to assess the relative
merits of the continuations.

2) Some of the best examples of the approach suggested
by Shannon are to be found in the series of programs, culminat-
ing in MAC HACK (7], which were written at MIT. These programs,
and in fact most of those written in the 1960's, were based on
the premise that a far smaller and more directed game tree can
be constructed, provided more analysis is done at each decision
point. The analysis takes the form of assigning values for
features found in the specific game being played, from which
an ordered list of preferred moves is generated.

Perhaps the major weakness with the evaluation function
approach 18 in the preferred move generator, because by the
very nature of the game-features it is easier to generate tac-
tical moves, which are considered at the expense of positional
ones. Positional moves can only be conceived as part of some
long range plan. Botvinnik [8) suggests the use of a horizon
(minimal length attack path) to help in the conception of these
positional moves, but even his proposal seems to be of greater
merit in forming tactics.

3) One other fundamentally different approach to the tree



366 MARSLAND AND RUSHTON

construction problem is the contribution of the goal seeking
methods, of Newell et al. Their chess-playing program studies
were inconclusive, being de-emphasized in favour of GPS. Although
the program handled the opening fairly well, it was not shown
that its implementation could be successfully extended to the
middle game, where the relevancy of conflicting goals has to be
resolved.

The most important aspect of this scheme is that, of all
feasible moves, only those which satisfy some predetermined
goal are generated. If it is implemented properly, preferred
moves and their game subtree will be analysed less expensively
than with the other methods, because of the high degree of
selectivity at each node. Other advantages are that more op-
portunity for continuity of a plan within a single variation is
provided, and irrelevant moves are neither considered nor gen-
erated.

A major failure of many contemporary programs is that they
treat each node in a continuation as an independent position.
A move is generated at ply N without regard to the reasons which
suggested the preceding move at ply N-2. There is, therefore,
no deliberate continuity of plan within a given variation, which
is much more serious than failing to preserve the subtree of
the principal variation from move to move, since the salvaged
subtree is very small in proportion to the size of the game
tree that is constructed. Some continuity can be achieved by
noting the problems which arise in a given variation. Increased
importance is then given to those moves which counter the newly
uncovered threats, by dynamically re-ordering the preferred
move list at every decision point.

EXTENSIBILITY OF THE METHODS

Gillogly estimates that a 7-fold increase in computing
pover is needed to add an even ply layer to his tree, and some-
what less for an odd ply layer. Theoretical bounds for the cost
of adding layers are given by Slagle and Dixon [9]. The most
likely source of this speed increase 1s from advances in parallel
processors, but the exponential growth in the number of terminal
nodes eliminates any hope of using a complex evaluation function.

Polynomial scoring functions with adjustable weights (coef-
ficients) are fundamentally unsound, being unreliable. They
can give neither an absolute measure of a position’s worth nor
a precise relative assessment. When used to select the order in
which continuations are explored, the scoring method is akin to
employing a maximum gradient scheme with fixed step size to
search a nonconvex surface.



GAME-PLAYING 367

One supposed advantage of the polynomial evaluation function
is that its weights may be adjusted (or 'learned') to improve
its selectivity. Given a set of positions and their correspond-
ing best (master) moves, Slagle [10] suggests several ways of
modifying the weights, to increase the number of correct selec-
tions made by the scoring function. Under the assumption that
there is no perfect scoring function, a directed tree search is
necessary. Thus it may be more satisfactory simply to find a set
of weights which places the master's move within some window (of
say 5 moves) at the top of the preferred move list. Some more
complicated schemes have been tried, but no significant improve-
ment can be reported. For example, Fig. 1 compares the selec-
tivity error rate of a six variable polynomial, whose weights
were generated by the correlation coefficient method, an optimi-
zation method and an experienced player, over 378 positions
selected from 15 master games. Perhaps the most important
observation is that, for a 5-move window only an 802 selectivity
was obtained with this polynomial. In order to develop a master
calibre program, the preferred move generator must have 100%
selectivity. It is unlikely that this requirement can be met
by an evaluation function, with an acceptably small window.

One might hope that by adding terms to the polynomial a
progressively more advanced player would be developed. In
practice such is not always the case, since there is increased
possibility that an unexpected move will be generated for the
wrong reason, when an accumulation of errors cancel some important
feature.

The whole concept of a weighted sum of features, although
computationally satisfying, would appear to be different from
the way in which de Groot has found that humans play [11]. One
now has to decide whether game-playing problems can be re-
formulated in a manner which is amenable to computer solution,
or whether computer hardware/software must be designed to sim-
plify the imitation of human strategies. De Groot has observed
how chess players perform over the board analysis. He noted
that they appear to work in the following stages: -

1) Analysis of very few basic continuations.
2) Re-examination of variations in increasing detail.

3) Selection of a move on a basis of one or two over-
riding features. Even though many factors are considered, no
weighted sum of components is computed nor are minor strengths
or weaknesses in a move allowed to cancel more important fea-
tures.



4 master moves in the prcferred move list

90

80

70

60

50

40

30

20

10

++++ experienced player.

= — = correlation coefficient method.

R optimization method.

1 2 3 4 5 6 7 8 9 10 11 12 i3 14 15 1€ 17 lg
(window) size of the preterred move list

Fig. 1. Cumulative distribution of master moves in the preferred move list.

89¢

NOLHSOY ONV ANYTISYVK



GAME-PLAYING 369

It would seem that the fact that relatively few features
dominate the selected move can be more easily exploited by the
goal-seeking methods, as will be shown later. Even so, it does
not necessarily follow that programs to play these games must
model human behaviour, but rather that our ability to employ
the computer's facility for rapid execution of repetitive algo~
rithms has so far proved inadequate.

GOAL SEEXING APPROACH
The genera)l hope with the evaluation function method 1s

point are explored, there is high probability that the globally
best (within the limits of the tree) continuation will be found.
Since the method has no known destination, it has to assess the
relative merits of the terminal positions. There is not much
advantage in making this assessment with 8 function which con-
tains more features than the one which generated the preferred
move list, since the tree growth has not been controlled (biased)
to develop nodes that exhibit those extra properties.

With the goal seeking methods it is anticipated that by
specifying a desirable goal, and only generating those moves
which are relevant to that goal plan, one can narrow the search
task. The opponent's moves are restricted to those which either
inhibit one's plan or help him achieve a more desirable goal.
The method therefore hinges on accurate recognition of attain-
able goals, that is, accurate predictions of desirable global
continuations. If successful, one 1s assured that all terminal
positions are valuable.

The approach we are exploring has three distinct phases: -

1) Feature recognition and evaluation.
2) Goal 1list comstruction.
3) Planning.

All of these phases draw upon the knowledge state, which
consists of the current position, the current plans and the
status of the relevant features that have been found so far.

The feature recognition programs receive the current knowl-
edge state as input and provide a measure of the degree of pres-
ence of specific features. For chess typical features might be:
<weak King> ==> <badly castled> OR <K held in centre> OR ...
<badly castled> ==> <castled K-side> AND <weak K-side pawns> OR ..
<K held in centre> ==> <K in centre> AND <K unable to castle>.



370 MARSLAND AND RUSHTON

All the features are game specific, more advanced ones being
built up from such primitives as material balance, control of

key squares, and under/over committed pieces. Goal statements
are constructed in terms of these features, as ifllustrated by:
AQHTIEVE <centre control> BUT NOT <double pawns> UNLESS <material
advantage>. The goal statements are now passed on to the planner,
whose job it is to break each component of the goal statement
into more fundamental subgoals. This process is continued until
a subgoal becomes a pilece configuration for which a move can be
generated. The terms in the goal statement are ordered, so that
a simple tree structure can be built to help explore the subgoals.
During the planning stage, weaknesses in the initial goal state-
ment may be discovered; the planner modifies the statement to
correct those deficiencies.

Although there will initially be a fixed list of feature
recognition procedures, not all of them will be active at one
time. There will be feature management routines, working during
the opponent's thinking time, to eliminate searching for irrevers-
ible features like castling. Feature procedures could be removed
from the active list on a least recently useful basis, allowing
the activation of such endgame features as pawn promotion. In
summary: -

1) The knowledge state consists of the board description
and the current goal plan.

2) This plan allows information to be gathered aboyt the
position, by the execution of the active feature procedure.

3) Initial goal statements are formed which seek to pre-
serve the extant good features and eliminate the bad, and exist-
ing features of the opponent are negated. Desirable goals that
could be achieved from this position are also added.

4) The planning programs now elaborate the goal statements,
until a time limit expires.

5) A preferred move list is generated. At this stage
such factors as the length of the move sequence and the number
of goals that the moves satisfy will be taken into account. If
no moves are proposed a standard evaluation function technique
will be applied.

6) Once a move is made, the goals and the elaborations
which caused its generation will be added to the knowledge
state, allowing continuity of plan from move to move.



GAME-PLAYING m
CONCLUS IONS

From our studies of games we have concluded that a master
calibre program cannot be written on a basis of either building
a complete tree to a fixed depth or using an evaluation function
to build a tree from a subset of the available moves. The first
method cannot afford an adequate evaluation function, while the
second is in grave danger of building an irrelevant tree, since
it cannot be certain that the master move is within its window.
The goal directed method, although technically more difficult to
implement, is well established as the basis for successful algo-
rithms, since it is the product of human evolution.

Two deficiencies of most contemporary programs are that they
cannot generate either apparently sacrificial or "quiet” posi-
tional moves. A return to the goal-seeking approach is suggested,
in the manner outlined. Not only is this approach capable of
overcoming the wealnesses of the evaluation function method, but
it also allows greater potential for the implementation of learn-
ing algorithms, especially in the area of feature creation.

REFERENCES

1. N.V. FINDLER, "Some new approaches to machine learning”,
IEEE Transactions on Systems Soience and Cybernetics, 173~182
(July, 1969).

2. C.E. SHANNON, "Programming a digital computer for playing
chess", Philosophical Magaaine 41, 356-375 (March, 1950).

3. A. NBVELL and H.A. SIMON, Human Problem Solving (Prentice-
Hall, New York, 1972) pp. 678-698.

4. A.L. SAMUEL, "Some studies in machine learning using the
game of checkers, II: recent progress", IBM J. Res. Dev.
601-617 (Nov. 1967).

5. I1.J. GOOD, "A five year plan for automatic chess" Machine
Intelligence 2 (American Elsevier 1968) pp. 89-105.

6. J.J. GILLOGLY, "The technology chess program" Report (MU-
CS-71-109 (Dept. of Computer Science, Carmegie-Mellon Univ.
Nov. 1971).

7. R.D. GREENBLATT, D.F. EASTLAKE 111 and S.D. CROCKER, "The
Greenblatt chess program" AFIPS Conf. Proc. 31, 801-810
(1967).



372

8.

10.

11.

MARSLAND AND RUSHTON

M.M. BOTVINNIK, Computers, Chess and Long Range Planning
(Springer-Verlag, Berlin, 1970).

J.R. SLAGLE and J. DIXON, "Experiments with some programs
that search game trees" J. ACM (April 1969).

J.R. SLAGLE, Artificial Intelligence: The Heuristic Pro-
gramming Approach (McGraw-Hill, New York, 1971) pp. 143-162.

A.D. DE GROOT, Thought and Choice in Chess (Mouton 1965).



