THE EVOLUTION OF THRESHOLD LOGIC NETWORKS WHICH RECOGNIZE BINARY PATTERNS

T. A. Marsland, D. L. Johnson
Department of Electrical Engineering
University of Washington

Seattle, Washington

Abstract

Any binary pattern can be represented by a
partially specified Boolean function. These
functions in turn can be recognized by a network
of trainable threshold logic units, A neuristic
program for recognizing Boolean functions is
discussed and a method of classifying functions
according to the distribution of minterms is
suggested.

Introduction

One of the basic aims of this study was to
examine ways in which artificial intelligence
techniques can be used to solve difficult
problems. When studying a simple process, one of
the hazards is that the experimenter will bias
his solution methods by implicitly assuming the
form of the solution. However, when examining an
unsolved problem the experimenter’s experience is
limited to that obtained througn interaction with
his own program. In a very real sense thnis
becomes a joint learning process, tne task of the
machine being to enhance the discovery capa-
bilities of the user.

For our model, & doubiy inteéraciive scheme
was chosen. On the one nand, tne program itseif
was inquisitive and tried to predict tne nature
of its environment and base its decisions on
that prediction, On the otner nand, the
researcher was allowed to interact with the
program during its execution; to aiter some of
the decision-making parameters. HNaturally, in
order to improve tne performance of the system,
it was also necessary to make evolutionary
changes to the whole program. However, while
making those changes, the long-term memory
{experience) of the system was not disturped.

The specific problem that we wish to
discuss is that of recognizing ninary patterns
through the use of a network of aaaptable
elements, a network wnicn is capable of growth
and decay. Any finite sequence or string of
binary digits can be regarced as a partiaily
specified Booiean function, provided a one 1o
one correspondance is drawn between eacn binary
digit 1? Ehe sequence and the minterms - see
Phister - of the Boolean function., anen
displayed on a Veitch-Karnaugn map or on ne
vertices of a h-dimensionai cube, tnese
sequences are simply binary patterns, By sucn
means a N-variable Bcolean function can repre-
sent a 2N bit pattern.

98105

Terminology

A trainable Threshold Logic Unit (TLU), of
which Figure 1 is an example, is the basic
element in our network, It is well known tnat a
single trainable TLU can be made to recognize a
restricted set of Boolean functions, and many
algorithms have been developed for that purpose.
A discussion of the error-correcting, £$axning
procedures is to be found in NilssontZ) wnile the
linear programming approach?s are conveniently

tabulated by Ho and Kashyap

"

Z; = signis))

X =
":< :) Z = sign{W-x)

Pigure 1

The basic TLU shown in Figure 1 is charac-
terized by a weight vector W = ('o,w].....w‘).

Upon excitation by a set of (X1} binary inputs,
(on. Xpje seee XNJ)' the device responds

J
with a (¥1) binary output z1 according to the
equation M
zy = s1gn(§ W, xij) = sign{W - Ej)'
where sign (0) = -1. In this formulation x. is
set equal to -1 so that w, may correspond J
d1rect1/ to the “tnresnold” of tne gevice. The
gther components of the input vector X. are

1*her +] or -1 anc¢ are cotained from
the corresponding minterm.

For illustraticn purposes a special orger-
ing of the minterms was cnosen so trat the £, 3
and 4-variatie Veitcn diagrams coulc appear
imbedded in an ouvicus manner in tne s-variacie
Veitch. The full need for tnis feature 1is

explained in Reference $, put is amply illus-
trated in Figure 2,

wnicn snows the orgering of

;x a _ _
flv) = wul « Vs + Yy
%%: 6 “
L7 8
- 2 = (LntettmtAget ot o)
Eii P2 e = ’
v
Figure 2

the minterms in a 4-variable Veitch. The octal
numoer representation for the function shown in
Figure 2, obtained from the vector Z, is 011023)g
for wnicn the corresponding decimal integer is
4631. Tne components of { are represented by zj
and are the values of the function.

It now follows that any sequence of (0,1}
binary digits, represented by a decimal integer,
can Ce equated to a partially specified Boolean
function which in turn corresponds to an
incermplete binary pattern on a Veitch diagram.
The pattern shown in Figure 2 might be thought of
as tne letter Y. In using a TLU network to
recognize such a binary pattern, one has to
remerSer that the output from these units is a
binary guantization of the sum of weighted inputs
and is therefore a non-linear function of those
inputs. Tnis non-linearity makes it very
difficult to solve the general synthesis problem
of realizing an arbitrary Boolean function.

Network Configurations

Trere are three distinct network configu~
rations that are commonly used in attacking this
general synthesis problem. In one category we
nave tne Mu?tithres?ogd Logic Element, as
expounced by Haring\%). In another we see t?g
double layer of Dot Product Units of Nilsson(l)
or the Learning Matrices of Steinbuch and Piskd,
Tne tnird category, which is slightly more
general, ¢onsists of the f§§d-Forward Networks of
Hopcroft(Di and of Hughesl//, In addition, net-
works wnich include feed-back loops are being
examired; at tnis stage it is difficult to say
wnetner tne increased generality and reduction in
network size is worth the adaed complexity.

In a recent paper by Mow and Fu(a) multi-
thresrol¢ tnreshold element realizations for the
221 P equivalence class leaders of the
4-variacle toolean functions were tabulated.

(An NP class leader is one which is invariant
witn respect to Negation of the function,
Permutation of variables and fiegation of
ingivicial variables.) That table shows that with
trese eiements, which generate parallel separa-
ting nycerplanes, the most awkward Boolean
function requires five threshold detectors.

However, by using the more general feed-forward
network, a considerable reduction in elements
can be achieved., For example, in our own report
{reference 9) a complete tabulation of the
4-variable NPN class leaders has been presented
through their 5-variable Self Dual (SD? repre-
sentatives, of which there are eighty-three,
The tabulation is summarized and compared with
the multithreshold threshold logic element
realizations for the NPN class leaders of the
4-variable Boolean functions in Table 1,

Number of threshold Feed-Forward Multi-threshold

detectors required. network, threshold
element,
1 14 14
2 174 64
3 33 85
4 56
5 2
Table 1: A Comparison of Threshold Element

Requirements between Feed-forward
Networks & Multi-Threshold Networks.

Although the results in Table 1 are inter-
esting in themselves, it is not the purpose of
this paper to make any real comparisons between
the two configurations on a basis of generality,
complexity or efficiency. Rather, we shall
concentrate on the pattern recognition and
pattern discovery features of the computer
program that generated the results.

Evolutionary Networks

The technique that was used to create our
minimal element feed-forward networks was one of
numerical explaration. In many respects the
approach consisted of bringing together a number
of partially correct hypotheses, supported by
certain heuristic ideas to form an adaptive
(learning) program which performed a task that
appeared impractical by other means. These
strategies were applied to a general inter-
connection of four TLUs which formed a
feed-forward network, as illustrated in Figure 3,

The output, Kok j from the kth element of
»
such a network, is given by

: k
Mok, j = STt - X5),

where H, is a (N + k) component weight vector and
éj represents 5j augmented by (k - 1) additional

components. In other words,

k
57 e M ge ez, g0 cee Aiaken,)

- 36 -

=i

Figure 3

and Wik is the weight associated with the input
line xij' for i =0, 1, ..., N+k-1. It was not

only for its generality but also for its
computational convenience that this formulation
was chosen,

In contrast to the direct a?a;ytica1 me thod
of solution proposed by Hopcrofti®/, which has
the potential disadvantage of becoming reduced to
an exhaustive search, our approach was quite
indirect and experimental, Tnree basic strateges
were followed throughout the evolution of the
computer programs for this study:

{1) The whole problem of realizing minimal
threshold element solutions for the NPN equi-
valence class of 4-variable Boolean functions
should be treated as a single pattern recognition
and learning problem,

(2} The program should gather its experi-
ences on a sequence of increasingly complex
functions. Those functions which were not
realized satisfactorily on the first attempt
were assumed to be more "difficult® or “complex®
and were examined more closely. If all else
failed they could be added to the current list
of problems and re-attempted later, In addition,
since the networks for some functions could be
used to generate others, this list of problems
should be tried several times in an attempt to
find "better® solutions.

(3) As far as possible, onﬁy algorithms
with guaranteed convergence properties should
be used.

The formulation of the computer model was
designed to be very reminiscent of a . common
human decision-making process, when confronted
with a time-varying environment., Qur model
tries to predict the nature of its environment,
based on experience gathered under similar
conditions.

A Heuristic Training Algorithm

Let us now examine the problem of training
an L-element network of TLUs to recognize a
Boolean function. Although the network size is
not initially known, an error-correcting
training procedure can still be constructed
which will adapt the network until it realizes
the function. For instance, whenever an error
occurs (that is, the actual output Z is not

equal to the desired output zj). the weights of

one of the elements can be modified., If the
output is still in error, ancther element can
be similarly treated until the correct response
is achieved. Such a scheme leaves open three
questions:

{a) What initial values shall be assigned
to the weight vectors y], 52, ees gL?

(b} In case of error, which element shall
be selected for modification?

(c) What should be done if the training
scheme enters a loop?

Since we are using a {¥1) binary system, it
is necessary that the component values of any
weight vector be either all even or all odd. One

-~ convenient unbiased starting point, which allows

proper propagation through the network, assigns
zeros to the components of W,. For the other
weight vectors all the compernts are also zero,
except for the last component which has value 2.
Later on, when the program is able to use the
experience it gains in solving similar problems,
an alternative choice of initial conditions is
allowed,

Whenever an error occurs during the training
period the weights of an element of the network
must be selected and modified, C(learly the last
element in the network can always be cnosen, but
equally obviously that scheme would only work on
those functions which require a single element.
On the other hand choosing an element for
modification from near tne front of the network
influences all those elements whicn follow it
and may cause- too great a change in the system,
As a reasonable compromise it was decided to
examine the prequantized outputs of eacnh element,
Beginning with the front element W,, select for
modification the first one wnose prequantizea
output has smallest absolute value and whose
sign is opposite to that desired.

- 37 -

Firally, since the size of the network is
measurel Sy tne last “non-zero* or “non-initial*®
ele~ent ana rct by tne maximum permissible size
of tne network, it is possible for the algorithm
to enter a loop. Usually this means that the
networs rust be aliowed to grow and include an
extra eienent., (ertain exceptional cases are
discussed in Reference 9. -

Hetwork Evolution

So far we have only discussed how one might
train a TLU network to recognize an isolated
binary pattern. However, since we are interested
in tne possibilities for machine learning based
on experience, it is necessary to make the total
task consist of a number of similar sub-problems.
Unfortunately, the simple heuristic algoritnm
suggestea in tne previous section is not in
itself sufficient for our task, which was to find
minimal thresnold element realizations for the
221 4P cnaracteristic Boolean functions of
four variables,

Qur basic approach consists of supplying
tnese problems to our computer model several
times, Essential to that model is its long term
memory, wnicn gathers statistics about the
problems for use when it next sees them. However,
tre lony term memory is not disturbed, even if
evolutiocnary cnanges are made to the model to
improve its performance, unless those changes are
so drastic as to force re-initialization.

Tynical of tne non-destructive changes to the
program were the incorporation of a redundant
element elimination scheme and a “loop breaking”
mechanism, The need for these changes became
apparent when the solution path for the functions
which had been classified as "difficult” (that
is, reguirea more than the maximum number of
elenents allowed) were examined.

The NPN characteristic functions were
ordered so that those with fewest true minterms
appeared first and no function had more than
eignt true minterms, This ordering was intro-
ducea s¢ that the program could make use of the
solutions to these “smaller” problems as
starting points for the "bigger" problems which
follow, as an alternative to the “zerg" starting
point mentioned earlier,

In addition to the long term memory, which
containeg information about the sglutions found
for all the problems attempted so far, such as
the mirimum network size and the time taken to
fing tne solution, two short term memories were
erployed. Both of these memories were used to
reauce the storage and searching requirements
for the program. One was a very local memory
containing detailed information about the last
four problems tackled. The other memory was of
variatle length and was used to reduce the
searching tire required to detect whether the
training algorithm was in a loop. For instance,
one mignt not need to begin cnecking for a loop

in the current problem until MIN adaptions had
been made and then not check for a loop longer
than MAX iterations, wnere MIN and MAX are
statistical values computed from information
stored in the other local memory and are related
to values actually required for the preceding
problems. The loop data that needs to be checked
is quite extensive, consisting mainly of the
states (weight vectors} of the network. For
simplicity, the loop memory was circular and of
length modulo MAX. Furthermore, simple tests
were incorporated into the program to make the
searching scheme “fail safe".

Aside from the statistics gathered about the
nature of the solution, data was collected to
show the effectiveness of the various solution
methods. In the final version of the program,
achieved after three complete attempts to solve
all of the sample problems, two distinct
extensions of the training algorithms mentioned
earlier had established themselves as most
satisfactory for further development, The major
differences between these algorithms were in the
way they re-initialized the network when an
element was added after a loop was detected.
Further discussion of the operation of these
algorithms is to be found in Reference 9. Our
interest here is in the scheme used to select
the appropriate algorithm for the current
problem., The basic mode of operation was as
follows.

If an algorithm generated a network con-
taining no more than the predicted number of
elements, the next problem was taken, Otherwise
the problem was assumed to be “difficult" and
another algorithm tried. The gathering of
statistics to measure the relative merits of the
various algorithms was bound by the premise that
such statistics should only be collected on
difficult problems and only when one algorithm
provides a better solution (that is, one
requiring fewer elements) than another, If the
success rate of an algorithm dropped too low, it
was temporarily eliminated from service, However,
at regular intervals and on especially difficult
problems, the eliminated algorithms were
re-introduced., The mode of operation was that
one algorithm was maintained as the primary
method of solution until another provided a
better solution, whereupon the latter method
became the one that was tried first, After a
while the two best algoritnms dominated the
situation, but neither could provide acceptable
solutions for all of tne problems. However,
under the actual test conditions of the final
experiment, one algorithm was used about 58
per cent of the time, the other for the remaining
42 per cent. Minimal elements solutions were
found for all but four of the problems. It was
felt that in all of these cases minimal solutions
would have been obtained after a fourth pre-
sentation of the complete set of problems. The
computer programs for tnis study were written in

- 38 -

Burroughs Extended Algol and executed on the
B-5500 in about forty minutes.

Prediction of Network Size

Critical to the success of this study was
the method used to predict an upper bound on the
network requirements for a given Boolean
function. Before the program had any experience
in solving the problems, a 4-element network was
assumed. As problems were solved, the average
size of the four previous networks was used and
after the first complete pass, the number of
elements required on the previous solutipn
attempt became an upper bound. For the final
program, however, a much better prediction
scheme was developed. This scheme was based on
the hypothesis that “similar” functions should
require the same number of elements. [t should
be mentioned that two functions are said to be
similar if the distributions of their true
vertices on an N-dimensional cube represent
similar patterns., Ffor example, in terms of
threshold element realizations, all functions
made up of a single true vertex can be said to
belong to the same threshold logic network
class, since they are all l-realizable.
Nevertheless, they are in distinct NPN and SD
classes. As another example, the three functions
whose Veitch diagrams are shown in Figure 4 can
be said to belong to the class of three connected
minterms isolated from a single minterm, and all
require two TLUs.

A special set of characteristic numbers can
be computed for all Boolean functions which
describe the pattern of the function as displayed
on the Veitch map. Let us refer to these
numbers as, the H-vector, which is an M-tuple
having M=2" components. Each component
corresponds to a minterm and is a POSITIVE/
MEGATIVE integer which measures the number of
FALSE/TRUE minterms adjacent to the original
minterm. The numbers shown on the Veitch
diagrams of Figure 4 are the component values
of the H-vector which correspond to the specified
minterms. For characterization purposes the
H-vector is ordered from largest to smailest,
and under these conditions it becomes invariant
with respect to permutation of variables and
negation of variables. In addition, negating
the whole function reverses the H-vector,
Corresponding to the 221 NPN characteristic
functions there are 195 distinct H-vectors.
Despite this lack of uniqueness, a transfor-
mation of the H-vector produces an invaluable
categorizer of Boolean functions in terms of its
TLU network requirements. That transformation
is designed to eliminate the effect of the
number of variables in the function and is
supplied by a new vector, referred to as the
T-vector, whose components are given by

. . N
tj (N-lhjl)s1gn(hj), for j=1, 2, ...,M22",

31374110 2F371]0
i S remm e camn
2 332411+t 31 2-2i-1
W W
2319112 21 -G1-0 128484 -
y‘3,23°2 > 41-21-0} -1 -0f-11-1-0
X X X
) (b} ©
Figure 4

where N is the number of variables in the func-
tion. For the three functions snown in Figure 4
the T-vectors are

Ta = {0,1,1,2;-2,-1,-1,-0)}
Tb = (Oo] n] pZ;‘4n'4 5'45‘41‘3"3:'31‘31’3b“2 ,-2 0'0
Te = (0,1,1,2;-4,-4,~4,.3,-3,-3,-3,-3,-3,-2,-2,2)

It was the positive part of such T-vectors as
these which were used to help in the prediction
of the network requirements for our 221 problems,
1t was hypothesized that any functions that were
similar in the sense that they had equal positive
parts of their respective T-vectors would require
the same size of network. This kind of pre-
diction was made 117 times of which 85%
subsequently proved to be correct.

It should be emphasized that the set of
characteristic numbers developed through the
T-vector only provided a one way prediction of
the form that functions with the same charac-
teristic numbers tend to require tne same number
of threshold elements in their realization
network. Even though not perfect, tne T-vector

was a deliberate attempt to classify Boolean

functions through their threshold element
requirements, rather than through NPN or SD
classifications, In many respects the develop-
ment of the T-vector could be regarded as an
example of computer aided pattern discovery,

Conclusions

The successful technique in this study
consisted of evelving an interactive adaptive
program, one which was capable of making its own
decisions about the actual solution method to
use for a particular problem. The cnoice of
decision was based on the program's experience
in the successful and unsuccessful handling of
similar problems. Such programs are often of
questionable efficiency. HNevertheless they do
allow a number of inelegant algoritnms, partially
correct hypothesis and heuristic ideas to pe
brought together so that the wnole can perform a
task impossible for any subset of its component
parts.

- 39 -

In the field of TLU synthesis one of the
aims is ta classify Boolean functions in terms
of their network size. Along these lines, the
H and T-vectors generated by this research may
be helpful since they categorize functigns as
patterns. These patterns, or distributions of
true vertices on a N-dimensional cube, seem to
bear some relationship to the network require-
ments of the function.

Acknowedgment

The research for this paper was jointly
sponsored by the National Science Foundation
under Grant GK-680, the Air Force under Grant
AF AFQSR-468-65 and through a generous grant of
computer time from the University of Washington
Computer Research Center. The programs for the
Study were written in Burroughs Extended ALGOL
for execution on a B-5500.

References

M. Phister, Logical Design of Digital Computers,
Wiley (T967]

N. J.(Ni1s§on, Learning Machines, McGraw Hill

196

Y-C Ho and R. L. Kashyap, “A Class of Iterative
Procedures for Linear Inequality*, SIAM
dJournal of Control, pp. 112-115, Feb. 1966.

U. R. Haring, "Multithreshold threshold elements®,
IEEE Trans. on Electronic Computers, Vol.
EC-15, pp. 45-65, Feb. 1966,

K. Steinbuch and V. A, W. Piske, “Learning
Matrices and their Applications®, IEEE
Trans. on Electronic Computers, pp. 846-862,
December 1963,

J. E. Hopcroft and R, L. Mattson, “Synthesis of
Hinimal Tnreshold Logic Networks®, IEEE
Trans. on Electronic Computers, Vol. EC-14,
pp. 552-560, Aug. 1965,

G. F. Hughes, “Feed-forward Threshold Logic Nets
for Digital Switching and Pattern
Recognition”, IEEE Trans. on Electronic
Computers, Vol. EC-16, pp. 463-472, Aug.
1967.

C-W Mow and K-S Fu, “An Approach for the Reali-
zation of Multithreshold Threshold Elements®,
IEEE Trans. on Computers, Vol, C-17, pp. 32-
46, Jan. 1968,

T. A. Marsland, "An Adaptive Computing System for
the Synthesis of Threshold Logic Hetworks®,
Air Force Report for Contract AFGSR-468-65,
August 1967, D. L. Jonnson, Principal
Investigator. Available through Defence
Documentation Center Number AD 663446 or
the author,

- Lo -

