RELATIVE EFFICIENCY OF ALPHA-BETA IMPLEMENTATIONS

T.A. Marsland

Computing Science Department
University of Alberta
EDMONTON T6G 2H1
Canada

ABSTRACT

Most of the data on the relative efficiency of
gifferent implementations of the alpha-beta al-
gorithm is neither readily available nor in a form
suitable for easy comparisons. In the present
study four enhancements to the alpha-beta
,lqorithm--iterative deepening, aspiration search,
pemory tables and principal variation search--are
compared separately and in various combinations to
determine the most effective alpha-beta implemen-
tation. The rationale for this work is to ensure
that new parallel algorithms incorporate the best
sequential techniques. Rather than relying on si-
mulation or searches of specially constructed
trees, a Simple chess program was used to provide
a uniform bhasis for comparisons.

I INTRODUCTION

Perhaps the most complete description of the
alpha-beta algorithm is the paper by Knuth and
Moore, in which a negamax implementation is des-
eribed (1]. That paper also makes a clear
distinction between those nodes in the game tree
vhere cutoffs may occur, and those which must be
tully explored, and so are logical candidates for
the application of multiple processors during
parallel searches. One field where the alpha-beta
slgorithm is universally applied is that of compu-
ter chess. Here the problems are so large that a
tree of the whole game cannot be built and so an
approximate solution is sought, one which involves
& succession of searches on fixed depth trees. At
3 terminal node (a leaf) an evaluation function is
invwoked to estimate the value of the subtrees dis-
carded. In chess, non-qguiescent moves at the
terminal nodes are explored more fully, with spe-
clal subset searches involving, for example, only
oves which check or capture (or their forced
responses) .

The alpha-beta algorithm owes its efficiency
t0 the employment of two bounds which form a
<dow. Typically, a call to the alpha-beta func-
ton is of the form:

V := AB(p, alpha, beta, depth);

hare P is a pointer to a structure which repre-
sents a position, alpha and beta are the lower and
PPer bounds on the window, and depth is the spe-
¢ified length of search. The number returned by
" function is called the minimax value of the
c ®8, and measures the potential success of the
=t player to move. A skeleton for the alpharbeta
Unction appears in a recent survey paper [2],

S

where more details about certain alpha-beta re-
finements appear. Previous studies of alpha-beta
efficiency have not considered these refinements,
or have not been done on a basis which allows for
simple comparisons. To provide more consistency,
this new quantitative study presents results from
a simple working chess program®, and may be com-
pared with those from searches of specially
constructed trees [3].

I1 ALPHA-BETA REFINEMENTS

An iterative deepening mode, in which a se-
quence of successively deeper and deeper searches
is carried out until some time limit is exceeded,
is a simple way of extending the alpha-beta al-
gorithm. A search of depth D ply (moves) is used
to dynamically reorder (sort) the choices and thus
prepare the way for a faster search to D+l ply
than would be possible directly. My aim is to de-
termine exactly how much a shallow search may
improve a deeper one, and to compare the results
with those for a direct full window search. The
methods considered are:

1. Simple iteration, in which the move 1list
at the root node of the tree is sorted after each
iteration. By this means the candidate best move
is tried first during the next iteration.

2. Aspiration search, in which the score re-
turned by the best move found so far is used as
the centre of a narrow window within which the
score for the next iteration is expected to fall.
If the value returned is outside the window, the
search has failed high or low and must be repeated
with a window which spans the new range of pos-
sible values [2].

3. Minimal window search employs a full
window only on the candidate principal variation.
All the alternate variations are searched with a
zero window, under the assumption that they will
fail-low in any case. Should one of the moves not
fail this way then it becomes the start of a new
principal variation and the search is repeated for
this move with a window which covers the correct
range of possible values. The PVS (principal
variation search) implementation of this algorithm
is based on Calphabeta [4), which in turn is simi-

1: Tinkerbelle [K. Thompson], a chess program
which participated at the US Computer Chess
Championship, San Diego, November, 1974.

— -

764 T. Marsland

jar to Scout [5]. The algorithm is presented in
Figure 1, through a pascal like language extended
with a return statement. Undefined in the program
are functions evaluate (to assess the value of a
leaf), and generate (to list the moves for the
current position). For simplicity, additional fun-
ctions make (to actually play the move considered)
and undo (to retract the current move) are not
included. Note that PVS preserves the property of
Falphabeta (4], in that for failing searches the
bound returned may be better than the alpha limit.
This means that the re-search of a new principal
variation normally proceeds with a narrower win-
dow. More importantly, PVS may be easily extended
to draw on the idea that the correct score for a
candidate principal variation is not needed until
a potential rival arises. This extension to alpha-
beta searching is based on a technique employed by
K. Thompson at the first level of the tree search
in Belle:. Note also that zero window searches
normally cut off quite quickly. If this is not the
case, then a profitable heuristic is to curtail
the search and repeat immediately with the appro-
priate window.

Haturally, all of these methods may be im-
proved by the inclusion of transposition and
refutation memory tables.

111 MEMORY TABLES

Por each initial move in the game tree, the
alpha-beta algorithm determines a sequence of
moves which is sufficient to cut off the search.
These sequences may be stored in a refutation
table. After a search to depth D on a tree of con-
stant width W this table will contain W*D entries.
Thus upon the next iteration there exists a set of
move sequences of length D-ply that are to be
tried first. The next ply is then added and the
search continues. The candidate principal varia-
tion is fully searched, but for the alternate
variations the moves in the refutation table may
again be sufficient to cut off the search, and
thus save the move generation that would normally
occur at each node. The storage overhead is very
small, although a small triangular table is also
needed to identify the refutations [6].

A transposition table holds not only refuta-
tions and the main subvariations, but also has the
capacity for including more information. In parti-
cular, once a subtree has been searched its
transposition table entry will contain not only
the length of the search tree and the value of the
subtree, but also whether that value represents
the true score or an upper/lower bound on the
score [2]. A typical transposition table might
contain 100,000 entries, each of 10 bytes, for a
million-byte total storage overhead. In our imple-
mentation, the (position encoding) hash key was 48
bits long, of which 12 bits were used to index
into an 8192-entry table. Various choices for ac-
cessing the transposition table are discussed in a
recent report [7]. For this study only a single
probe of the table was made for each position.

2: BELLE, the current world champion chess pro-
gram, developed by K. Thompson, Bell Laboratories.

IV RESULTS

Minimax tree searches generally involve signi~
ficantly more calculation at a leaf than at an
interior node. For example, chess programs carry
out a check and capture analysis in the form of an
extended tree search. Therefore the following re-
sults are based on the number of terminal nodes
examined. It is reasonable to assume that the
various heuristics in the evaluation function are
equally effective across all alpha-beta refine-
ments, and so we have a machine-independent
measure for future comparisons.

The algorithms were tested on a data set which
was used to assess the performance of computer
chess programs and human players {8). That data
set contains 24 chess positions (labelled A..X in
Table 1), but A was deleted from our study since
it involved a simple sequence of forcing checks.
All the remaining positions were searched with 3,
4 and 5-ply trees, using a combination of alpha-
beta refinements, and a 6-ply search was done with
the best method. The raw results have been con-
densed into Figure 2, which shows the ratio of the
number of terminal nodes searched relative to a
direct search. In order to see how much improve-
ment is possible in the alpha-beta algorithm, the
formula

w'-[n/z] + W"lD/ZJ - 1 nodes,
where [x] and li represent upper/lower integer

bounds on x, is plotted in Figure 2 as the minimw
tree size [9). Here the value for W is estimated
as the average width of the nodes in the trees
being studied. The zig-zag appearance of Figure 2
is normal for alpha-beta searches [10], and occur
because for an even-ply search a larger fraction
of the terminal nodes must be fully evaluated.

From Table 1 we see that one of the positions
influences the final results strongly. For
example, in the case of board W a change occurred
in the principal variation, thus the 4-ply search
was not a good predictor of the 5-ply result. Jus
how serious this can be is clear from Table 1,
which shows that for board W all the iterative
searches are more expensive than a direct search.
This is reinforced in the 6-ply results when, fot
the case PVS with transposition table, 28% of the
effort was expended on board W [7]. Some effectit
heuristics for partial re-ordering of the move
1ist between iterations can be developed to cor-
rect this problem. Even so, iterative searches M
be at a disadvantage whenever the principal varii
tion changes. Por problems of this type we are
designing parallel versions of PVS.

vV ASSESSMENT OF SEQUENTIAL METHODS

These results confirm that iterative deepend
is an effective enhancement to the alpha-beta al
gorithm, provided it is used in conjunction with
some form of aspiration or memory table search.
For relatively shallow trees (depth S 5) there 1
not much to choose between refutation and transp
sition memory tables. By its very nature, a
transposition table is continually being filled

4th new positions, some of which may destroy en-
gies that have not yet been reused. Thus it is
possible to guarantee that all the primary
gfutations will be retained. This problem can be
come through the inclusion of a small and easy
» maintain refutation table. To support this com-
anation, we observed that for the S-ply PVS case
\n average 2 percentage point improvement oc-
mrred, wvhile in the 6-ply case a more dramatic 31
P.gcmtaqo point improvement was seen, Figure 2.
jron this second result we conclude that a trans-
ition table of 8192 entries is too small for 6-
y searches of complex positions, since it be-
copes seriously overcommitted and cannot perform
a8 well as the simpler refutation table. On the
hand, the true power of a transposition
table was not brought out by our data set, since
there were only two endgames, boards F and H

(table 1).
Vi CONCLUSIONS

0f the two principal refinements, narrow
vindow aspiration search and use of memory tables,
{¢t was found that preservation and use of the re-
gutations from a previous iteration was more
\gportant than aspiration searching. This point is
clearly illustrated in Table 1, where a full
window search with refutation table support is
superior to a narrow window aspiration search wi-

thout a memory table.

Based on our experiments, as summarized by
gesults presented in Figure 2, it i3 clear that
8 is potentially superior to narrow window as-
piration searching, since it avoids the need to
dstermine an acceptable window. Note that these
fesults reverse an earlier conclusion for the game
of checkers, where Calphabeta was described as
being "disappointing” and "probably not to be
recompended” [4]). Thus for two different games
centradictory results appear, illustrating not

T. Marsland— 785

only how game-dependent these methods may be, but
also the influence of strong move ordering [2] on
the efficiency of tree search algorithms.

{1}

(2]

(3]

(4]

(s]

(6]

(7]

(el

(9]

(10]

REFERENCES

Knuth, D. and R. Moore, "An Analysis of
Alpha-beta Pruning”. Artificial Intelligence
6 (1975) 293-326.

Marsland, T.A. and M. Campbell, "Parallel
Search of Strongly Ordered Game Trees”. ACM
Computing Surveys 14:4 (1982) 533-551.
Campbell, M.S. and T.A. Marsland, "A
Comparison of Minimax Tree Search
Algorithms”. Artificial Intelligence (1983).
Fishburn, J. "Analysis of Speedup in
Distributed Algorithms”, Ph.D. thesis,

TR #431, Computer Sciences Dept., Univ. of
Wisconsin, Madison, May 1981.

Pearl, J. "Asymptotic properties of minimax
trees and game searching procedures”.
Artificial Intelligence 14 (1980) 113-138.
Akl, S.G. and M.M. Newborn, "The Principal
Continuation and the Killer Heuristic". In
Proc. ACM National Conf., Seattle, October,
1977, pp. 466-473.

Marsland, T.A. "A Quantitative Study of
Refinements to the Alpha-beta Algorithm”,
TR82-6, Comp. Sci. Dept., Univ. of Alberta,
Edmonton, August, 1982.

Bratko, I. and D. Kopec, "A Test for
Comparison of Human and Computer Performance
in Chess”. Advances in Computer Chess 3,
M.R.B. Clarke (editor), Pergamon Press, 1982,
pp. 57-69.

Slagle, J.R. and J.K. Dixon, "Experiments
with some Programs which Search Game Trees”.
Journal ACM 16:2 (1969) 189-207.

Gillogly, J.J. "The Technology Chess
Program”. Artificial Intelligence 3 (1972)
145-163.

Number of Terminal Nodes Evaluated (5-ply)
board full window no tables refutation table transposition table
direct {terative asp PVS full asp PVS asp S
[} (forcea mate)

8 6177d 68399 46732 50628 69198 46485 48196 44032 46810
c 5086 1 87539 34332 41019 34208 28227 30484 27300 30278
[+] 58622 59437 95849 54294 50398 49370 48410 47226 471914
€ 180659 196349 94730 97074 111463 88807 8812% 84518 84068
F 24645 27384 20283 1415819 26162 19472 14020 12979 12413
G 116933 136416 8485% 75801 94992 635194 60817 62586 57342
H 7612 8116 8253 6124 5481 5108 4706 4086 4107
1 132306 144308 86563 80933 813554 66937 67822 62556 67150
J 181883 192933 112237 104027 127312 80331 80974 84774 79273
X 109371 119427 %6635 62999 63380 $2342 51954 48968 48772
t 78380 82392 + 43260 33814 53708 38600 44420 35852 38661
] 143048 1952922 1398 16 92164 111316 107346 as779 89234 82629
N 31812 31701 31418 29878 30573 30273 29834 29694 29664
] 34092 27048 25084 23459 22788 22228 215%0 21652 21528
4 75841 $6372 51801 42900 350007 4807% 40102 40518 39647
Q 83844 91284 72159 62378 81742 41842 37859 33933 33924
R 188877 201361 188009 128565 142188 134292 97861 94138 87243
S 65370 82381 47504 52128 71836 43649 43762 41197 41512
T 264078 287118 224%68 171356 97788 78942 74026 130266 92728
u 257810 223869 152228 124901 138112 107773 96104 99303 94603
v 54032 64938 51318 4569% 4970% 43818 41810 39644 39178
v 142147 307806 275830 212299 22293% 192618 186438 17988S 159550
X 68567 73174 68008 71768 69627 67833 67803 67514 67518
Total 2414763 2693821 1970876 1698049 1778183 1439574 1362856 1381443 1305743
Mean 104990 117122 85690 73828 77312 63489 59294 60062 567714
100 111 82 T0 74 60 56 57 54

Table 1 S-ply terminal node count for alpha-beta varfations.

768 T. Marsland

Normalized performance relative to direct search

1

704

60 4

1201 4\\\\\\\\
1104 4
¥
.p_ﬁ‘ + *

FUNCTION PVS (p : position; alpha,beta,depth : integer) : integer;
VAR width, score, i, value, bound : integer:

BEGIN { assert depth positive }
IF (depth = 0) THEN { leaf, maximum depth? }

return(evaluatel(p));

{ determine successors p.! to p.w }

{ return number of successors

{ as the function value

{ leaf, no moves? }

width := generate(p);

1F (width = 0) THEN
returnievaluate(p));

score := -PVS(p.1, -beta, -alpha, depth-1);
IF (score < beta) THEN { no cutoff }
FOR i := 2 TO width DO BEGIN

bound := MAX(score, alpha);

value := -PVS(p.i, -bound-1, -bound, depth-1);

IF (value > score) THEN
score := -PVS(p.i, -beta, -value, depth-1);
I1F (score 2 beta) THEN { cutoff? }
return(score);
END {forloop}:
return(score);
END {PVS}:

Figure 1: Depth-Limited Principal variation Search.

=

SO 4 / “»
}
40? &
} \\\\\\\\\\\
3oﬁ KEY

[
o
S W7

—
(=]

W

Direct search, full window.
Narrow window, no tables.

PVS, transposition table.

#@xo0op+Dd

Estimated minimal tree.

Simple iteration, full window.

Full window, refutation table.

PVS, transposition and refutation tables.

I

N e e e

g T ¥

3 4

5
Search depth in ply >

Figure 2: Performance Comparison of Alphabeta Enhancements.

