
 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual MemoryJa
n’

0
1

Virtual Memory

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1Ja
n’

0
1

Introduction

So far, we separated the programmer’s view of memory
from that of the operating system using a mapping
mechanism. This allows the OS to move user programs
around and simplifies sharing of memory between them.

However, we also assumed that a user program had to be
loaded completely into the memory before it could run.

Problem: Waste of memory, because a program only needs
a small amount of memory at any given time.

Solution: Virtual memory; a program can run with only some
of its virtual address space in main memory.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2Ja
n’

0
1

Principles of operation

The basic idea with virtual memory is to create an illusion
of memory that is as large as a disk (in gigabytes) and as
fast as memory (in nanoseconds).

The key principle is locality of reference, which recognizes
that a significant percentage of memory accesses in a
running program are made to a subset of its pages. Or
simply put, a running program only needs access to a
portion of its virtual address space at a given time.

With virtual memory, a logical (virtual) address translates
to:

– Main memory (small but fast), or
– Paging device (large but slow), or
– None (not allocated, not used, free.)

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 3Ja
n’

0
1

A virtual view

Virtual Address Space
(logical)

Main Memory (physical)

Paging Device Backing Storage

Free

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 4Ja
n’

0
1

Virtual memory

Virtual memory (sub-)system can be implemented as
an extension of paged or segmented memory
management or sometimes as a combination of both.

In this scheme, the operating system has the ability
to execute a program which is only partially loaded in
memory.

Note: the idea was originally explored earlier in
“overlays”. However now, with virtual memory, the
fragmentation and its management is done by the
operating system.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 5Ja
n’

0
1

Missing pages

What happens when an executing program references an
address that is not in main memory? Here, both hardware
(H/W) and software (S/W) cooperate and solve the problem:
• The page table is extended with an extra bit, present.

Initially, all the present bits are cleared (H/W and S/W).
• While doing the address translation, the MMU checks to see

if this bit is set. Access to a page whose present bit is not
set causes a special hardware trap, called page fault
(H/W).

• When a page fault occurs the operating system brings the
page into memory, sets the corresponding present bit, and
restarts the execution of the instruction (S/W).

Most likely, the page carrying the address will be on the
paging device, but possibly does not exist at all!

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 6Ja
n’

0
1

Multi-level paging—revisited

Page
Number

Page
Offset

P1 P2

To frames
or

disk

1
3

5 7

Frame
5 7

Top-level
Page Table

Second-level
Page Tables

840
840

...

1

0
0
0

0

Present bit

Note: This example barely illustrates the present
bit. The technique can be applied to any
non-contiguous memory allocation schemes.

Paging Device

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 7Ja
n’

0
1

Page fault handling—by words

When a page fault occurs, the system:
• marks the current process as blocked (waiting for a page),
• finds an empty frame or make a frame empty in main

memory,
• determines the location of the requested page on paging

device,
• performs an I/O operation to fetch the page to main

memory,
• triggers a “ page fetched’’ event (e.g., special form of I/O

completion interrupt) to wake up the process.

Since the fourth (and occasionally the second) step involves
I/O operations, it makes sense to perform this operation with
a special system process (e.g., in UNIX, pager process.)

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 8Ja
n’

0
1

Page fault handling—by picture

0
1

1

Program’s
Logical
Address
Space

Main
Memory

Paging
Device

Operating
System

Page
Table

Reference
Page
fault

Page is on
Paging Device

Find an empty
frame and bring in
the missing page

Update the
page table

Restart
execution

Address
invalid

Segmentation
fault

pi

pk

k

f j

fe

Logical page i (pi)
resides in frame j (f j)

pk resides in fe

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 9Ja
n’

0
1

Additional hardware support

Despite the similarities between paging or segmentation
and virtual memory, there is a small but an important
problem that requires additional hardware support.
Consider the following M68030 instruction:
 DBEQ D0, Next ; Decrement and Branch if Equal

 Which can be micro-coded as:
 Fetch (instruction); decrement D0;

 if D0 is zero, set PC to “Next” else increment PC.

 What if the instruction itself and the address Next are
on two different pages and the latter page was not in
memory? Page fault... From where and how to restart
the instruction? (Note: D0 is already decremented.)

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 0Ja
n’

0
1

Possible support

The moral of the previous example is that if we want to
have complex instructions and virtual memory, we need
to have additional support from the hardware, such as:
• Partial effects of the faulted instruction are undone and

the instruction is restarted after servicing the fault (VAX-
11/780)

• The instruction resumes from the point of the fault (IBM-
370)

• Before executing an instruction make sure that all
referenced addresses are available in the memory (for
some instructions, CPU generates all page faults!)

In practice, some or all of the above approaches are
combined.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 1Ja
n’

0
1

Basic policies

The hardware only provides the basic capabilities for
virtual memory. The operating system, on the other
hand, must make several decisions:

• Allocation—how much real memory to allocate to each
(ready) program?

• Fetching—when to bring the pages into main memory?

• Placement—where in the memory the fetched page
should be loaded?

• Replacement—what page should be removed from main
memory?

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 2Ja
n’

0
1

Allocation policy

In general, the allocation policy deals with conflicting
requirements:

• The fewer the frames allocated for a program, the
higher the page fault rate.

• The fewer the frames allocated for a program, the more
programs can reside in memory; thus, decreasing the
need of swapping.

• Allocating additional frames to a program beyond a
certain number results in little or only moderate gain in
performance.

The number of allocated pages (also known as
resident set size) can be fixed or can be variable
during the execution of a program.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 3Ja
n’

0
1

Fetch policy
• Demand paging

– Start a program with no pages loaded; wait until it
references a page; then load the page (this is the
most common approach used in paging systems).

• Request paging
– Similar to overlays, let the user identify which pages

are needed (not practical, leads to over estimation
and also user may not know what to ask for.)

• Pre-paging
– Start with one or a few pages pre-loaded. As pages

are referenced, bring in other (not yet referenced)
pages too.

Opposite to fetching, the cleaning policy deals with
determining when a modified (dirty) page should be
written back to the paging device.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 4Ja
n’

0
1

Placement policy

This policy usually follows the rules about paging and
segmentation discussed earlier.

Given the matching sizes of a page and a frame,
placement with paging is straightforward.

Segmentation requires more careful placement,
especially when not combined with paging. Placement
in pure segmentation is an important issue and must
consider “free” memory management policies.

With the recent developments in non-uniform
memory access (NUMA) distributed memory
multiprocessor systems, placement becomes a major
concern.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 5Ja
n’

0
1

Replacement policy

The most studied area of the memory management is
the replacement policy or victim selection to satisfy a
page fault:

• FIFO—the frames are treated as a circular list; the
oldest (longest resident) page is replaced.

• LRU—the frame whose contents have not been
used for the longest time is replaced.

• OPT—the page that will not be referenced again for
the longest time is replaced (prediction of the
future; purely theoretical, but useful for
comparison.)

• Random—a frame is selected at random.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 6Ja
n’

0
1

More on replacement policy

• Replacement scope:
– Global—select a victim among all processes.
– Local—select a page from the faulted process.

• Frame locking—frames that belong to resident
kernel, or are used for critical purposes, may be
locked for improved performance.

• Page buffering—victim frames are grouped into
two categories: those that hold unmodified (clean)
pages and modified (dirty) pages (VAX/VMS uses
this approach.)

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 7Ja
n’

0
1

1

0

1

1
00

1

1

0

1 1

 algorithm
All the frames, along with a used bit,
are kept in a circular queue. A
pointer indicates which page was just
replaced. When a frame is needed,
the pointer is advanced to the first
frame with a zero used bit. As the
pointer advances, it clears the used
bits. Once a victim is found, the page
is replaced and the frame is marked
as used (i.e., its used bit is set to
one.)

The hardware, on the other hand,
sets the used bit each time an
address in the page is referenced.

Used ==> accessed (read or written)

0

This is also known as
2nd chance algorithm.

next

la
st

0

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 8Ja
n’

0
1

Clock algorithm—some details

Some systems also use a “ dirty bit” (memory has been
modified) to give preference to dirty pages.

Why? It is more expensive to victimize a dirty page.

Problem: code pages are clean, but…

If the clock hand is moving

• fast ➞ not enough memory (thrashing is possible!)

• slow ➞ not many page faults (system is lightly loaded)

BSD UNIX (e.g., SunOS up to release 4.1.4) uses clock
algorithm. vmstat command gives some details about
virtual memory.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 1 9Ja
n’

0
1

Thrashing

The number of processes that are in the memory
determines the multiprogramming (MP) level. The
effectiveness of virtual memory management is closely
related to the MP level.

When there are just a few processes in memory, the
possibility of processes being blocked and thus swapped
out is higher.

When there are far too many processes (i.e., memory is
over committed), the resident set of each process is
smaller. This leads to higher page fault frequency, causing
the system to exhibit a behavior known as thrashing. In
other words, the system is spending its time moving pages
in and out of memory and hardly doing anything useful.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 0Ja
n’

0
1

Thrashing continued

The only way to eliminate
thrashing is to reduce the
multiprogramming level by
suspending one or more
process(es). Victim process(es)
can be the:
• lowest priority process
• faulting process
• newest process
• process with the smallest

resident set
• process with the largest

resident set

1.0

Multiprogramming Level

P
ro

ce
ss

or
 U

til
iz

at
io

n

Optimum performance

Student analogy to thrashing: Too many courses!
Solution? Drop one or two…Well, it is too late now!

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 1Ja
n’

0
1

Working sets continued

The working set of a program is the set of pages that
are accessed by the last D memory references at a given
time t and denoted by W(t,D).

Example (D=10):

26157777516234123444434344413234443444233312334

Denning’s Working Set Principle states that:

• A program should run iff its working set is in memory.

• A page may not be victimized if it is a member of the
current working set of any runable (not blocked) program.

t0
t1

t2 t3

W(t0, D) = {1,2,5,6,7} W(t1, D) = {1,2,3,4,6} W(t2, D) = {3,4} W(t3, D) = {2,3,4}

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 2Ja
n’

0
1

Working sets continued

One problem with the working set approach is that
the information about each working set (one per
process) must constantly be gathered (i.e., what
pages have been accesses in the last D seconds?)

A solution (along with the clock algorithm):

• Maintain idle time value (amount of CPU time received
by the process since last access to the page)

• Every once in a while (e.g., every few seconds), scan all
pages of a process. For each used bit on, clear page’s
idle time; otherwise, add process’ CPU time since the
last scan to idle time. Turn off all the used bits.

• The collection of pages with the lowest idle time is the
working set.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 3Ja
n’

0
1

Page-fault frequency
Dealing with the details of working
sets usually incurs high overhead.
Instead, an algorithm known as
page-fault frequency, can be used
to monitor thrashing. The page
fault rate is defined as

P = 1 / T

where, T is the critical inter-page
fault time. When the process runs
below the lower bound, a frame is
taken away from it (i.e., its
resident set size is reduced).
Similarly, an additional frame is
assigned to a process which runs
above its upper bound.

Number of frames allocated

P
ag

e
F

au
lt

R
at

e

N

Upper bound

Lower bound

Ti = average time between page
faults for process Pi

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 4Ja
n’

0
1

Current trends
• Larger physical memory

– page replacement is less important
– better hardware support for replacement policies
– larger page sizes

· better TLB coverage
· smaller page tables, fewer pages to manage

• Larger address spaces
– sparse address spaces
– single (combined) address space (part for the OS

part for the user processes)

• File systems using virtual memory
– memory mapped files
– file caching with VM

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 5Ja
n’

0
1

A case study—paging in BSD UNIX

Page fault handling is separated from page replacement.

Page fault also occurs when there is plenty of memory
available. Instead of loading a program for execution, the
system simply builds its logical address space with all
pages marked as invalid.

Program’s image (code and data) is fetched into memory
in response to page faults.

Dynamic data and stack are allocated as the program uses
them.

Consequently, in many cases, the system does not have
to look for a victim page when there is a page fault.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 6Ja
n’

0
1

Paging in BSD UNIX continued

The BSD paging system was first implemented on the
VAX with no used bit.

Page faults are serviced by a special system function,
pagein, which executes in the context of the faulting
process, with kernel privileges.

pagein attempts to get a free frame from the free-
frame list maintained by the kernel. It the list is
empty, the process blocks waiting for free memory.

The “free memory” event is raised by a system
process, called the page daemon, (pager) when it
reclaims some frames.

 Copyright © 1998-2001 by Eskicioglu & Marsland Virtual Memory 2 7Ja
n’

0
1

Paging in BSD UNIX continued

The page daemon remains dormant until the number
of free frames drops a certain threshold value (e.g.,
5% of the total number of frames.)

When the page daemon is awakened, it executes a
variation of the clock algorithm.

When the page daemon cannot catch-up with
memory demands (thrashing!), the system starts
swapping some processes out.

