
March 19, 2001 Page 1 C201/TAM

C++ Definitions:
based on "C Programming" K.N. King, Norton, 1995.

Class Definition

Defining a CLASS in C++ is much like defining a structure, for example:

class Fraction {
int numerator
int denominator

};

numerator and denominator are said to be data members. Note use of Initial
case for ClassName (just a convention, not a requirement of C++). Now we are
free to use the new class (type) called Fraction:

Fraction f1, f2;

f1 and f2 are instances of the Fraction class. An instance of any class is also
known as an object.

Unlike structures we cannot access these elements with

f1.numerator // this is illegal, private member
bottom = f2.denominator // is also illegal

March 19, 2001 Page 2 C201/TAM

To be accessible the private data members need "public" operators. By default
data members are private.

Ignoring the possible existence of public data members, let us now consider how
public access functions are declared.

Member Function Definition

If data members are private within a class how then can they be updated or
even inspected? The answer: via access functions (operators) which are
associated with the class. These are called member functions.

let us expand our example:

class Fraction {
public: // here we have two access functions

void create (int, int);
void print();

private:
int numerator;
int denominator;

};

create and print are prototypes of two functions that access the private
members. One possible set of operator declarations is:

March 19, 2001 Page 3 C201/TAM

void Fraction :: create (int num, int denom)
{ // this is an update access function

numerator = num;
denominator = denom;

}
void Fraction :: print ()
{

cout << ((float) numerator) / ((float) denominator);
}
Fraction :: Fraction (int num, int denom)
{ // this is a 2-parameter constructor

numerator = num;
denominator = denom;

}
Fraction f1; // default constructor used here
Fraction f2 (5.3); // using above 2-parameter constructor

March 19, 2001 Page 4 C201/TAM

Then the two commands:
f1.create(1, 2);
f1.print();

first set f1.numerator and f1.denominator, and then print 0.5

As with all functions in C++, it is possible and useful to provide defualt values
for the parameters to the member, for example:

class Fraction {
public:

void create (int num = 0, int denom = 1);
void print();

private:
int numerator;
int denominator;

};
then we could write
Fraction F1;
F1.create (5,3); // set numerator == 5 and denominator == 3
F1.create (5); // sets numerator == 5 and denominator == 1
F1.create (); // set numerator == 0 and denominator == 1
F1.create (,3); // how about this one?

March 19, 2001 Page 5 C201/TAM

Here we have been using the initializer member function “create” to set the
values of the Fraction F1. Of course we could have built constructors to do the
same thing at object creation time. For example:
Fraction F1 (5,3);
Fraction F2 (5);
Fraction F3 ();

Fraction :: Fraction (int num = 0, int denom = 1) {
Numerator = num;
Denominator = denom;

}

A second example using constructors and destructors

Dynamic storage allocation and deallocation is a place where constructors and
destructors are useful. Consider the case where we want to create a genuine
String datatype (class), which retains the string length data member.

A String object could contain strings of arbitrary length, instead of being held
in some fixed size array.
The String length could be remembered, thus reducing use of the strlen()
function, which searches the entire string for the terminating NULL character.
We can add special string manipulation operators, instead of being restricted to
what <string.h> supplies.

March 19, 2001 Page 6 C201/TAM

Let us assume that string objects can be declared as:

String S1("abc"), S2("pqrs"); // C++
// The C++ case is more general than this

String S1 = "abc", S2 = "pqrs"; // C

Anyway, we want S1 and S2 to have these values initially, but to be changed
later. Clearly our String class is going to need a member function (constructor
operator) that allocates space to our strings and initializes them appropriately:

class String {
String (const char*); // constructor prototype
......

private:
char* text; // pointer to a string
int len; // length of string

};

March 19, 2001 Page 7 C201/TAM

Our constructor function could be defined as:
String :: String (const char* s)
{

len = strlen(s);
text = new char[len+1]; // new never fails
strcpy(text, s);

}
after computing the length of the string that s points to, the constructor uses it
to allocate enough space for the new string, before finally moving it into place.

To give back the space we need a destructor. If we don't have one, then
consider the problems of using the String class within a procedure

void procedure ()
{

String S1("abc");
........

}
when procedure is called the object S1 is created by the constructor, but
when the procedure returns the fields text and len of S1 are removed, but
the string "abc" itself (that text points to) remains. This failure to return all
the memory acquired during procedure execution is called a memory leak.

A destructor, a function that is called automatically when an object ceases
to exist, saves the day. Constructors and destructors are counterbalancing
pairs. Thus a destructor is a member function just like a constructor and has
the same name, but with a tilde (~) pre-pended.

March 19, 2001 Page 8 C201/TAM

For example:

class String {
public:

String (const char* s);
~String () { delete [] text; } // destructor
........

private:
char* text;
int len;

};
The ~String member function, specified completely above as “inline” code,
releases the space pointed to by text.

Overloading Definition

In C++, two functions in the same scope may have the same name. When
functions are overloaded this way, the C++ compiler determines which one is
needed by examining the function's arguments. For example, suppose that two
prototypes of the function foo exist in the same scope

void foo (int);
void foo (double); // now we are overloading

March 19, 2001 Page 9 C201/TAM

Now
foo (1); // generates a call to foo (int)
foo (1.0); // generates a call to foo (double)

By this means functions which do the same operation, but with parameters of
different type may use the same name. This cuts down on the number of names
we need to create.

An obvious example might be

int power (int x, int y);
double power (double x, double y);
o r
sort (int N, char* s);
sort (int N, int* i);
sort (int N, double* r); // well, perhaps not!

Because of this overloading of the identifier sort we will need three
constructors and three destructors.

Overloading is also useful for initialization purposes in classes.

March 19, 2001 Page 10 C201/TAM

Consider

class String {
public:

String (const char* s); // constructor
String () { text = ""; len = 0; } // overloading
~String () { delete [] text; }
.......

private:
char* text;
int len;

};
with the general constructor declared as:
String :: String (const char* s)
{

len = strlen(s);
text = new char[len+1];
strcpy(text, s);

}
A couple of points. Why not text = NULL; (or text = 0) since we clearly want
the null string in the overloaded function? No good reason, just a common
practice.

March 19, 2001 Page 11 C201/TAM

Here we have formed the new String constructor called the default
constructor, because it has no arguments, which will be invoked when String
objects are declared without a specified value.
String S; // default constructor is invoked

In addition to function overloading, C++ also supports operator overloading,
where the same operator serves two different purposes depending on the
context.

cin >> N; // in C/C++ >> is also right-shift bitstring

Similarly, in C++ the << represents not only an output operation, but also a left
shift operation on bit strings, as it does in C. The compiler recognizes from the
context the intended usage. Different purposes saves on the need to create
more symbols.

There are more advanced examples that are useful in ADT applications, but we
will leave these for now.

March 19, 2001 Page 12 C201/TAM

Object Oriented Programming

For a language to be object-oriented it must at least include the following three
capabilities

Encapsulation
The ability to define a new type and a set of operations on that type, without
revealing the representation of the type. C++ classes support encapsulation by
restricting access to private data members.

Inheritance
The ability to create new types that inherit properties from existing types.
C++ support inheritance through a mechanism known as class derivation.

Polymorphism
The ability of objects that belong to related classes to respond differently to
the same operation. In C++ virtual functions support polymorphism.

Thus we now need to look at class derivation and virtual functions .

March 19, 2001 Page 13 C201/TAM

Derivation

In C++ we can derive a class from a previously defined one. For example we
might need Circle, Square and Triangle objects which can be derived from
some general class called Shape. If every shape has in common a colour and
an x-y position, and if every shape can change its position and colour, then we
could start with:

class Shape {
public:

void change_colour (int new_colour);
void move (int x_change, int y_change);
......

private:
int x, y; // coordinates of the origin
int colour; // current colour
.....

};

March 19, 2001 Page 14 C201/TAM

Shape is said to be the base class, while Circle, Square and Triangle are
derived classes. Our aim is to make it possible to re-use code on a grand scale.

base class
Shape

Circle Square Triangle

derived classes

If we want to add, say, a Pentagon we need only code the part that is
different from Shape .

This whole process can be generalized to libraries of objects, as illustrated in
the following relationship diagram.

Each class has all the properties of its base class, plus others that are unique to
the object. For example, the objects in the magnitude class have a common need
for a relational operator for comparison purposes.

Let us now look at some specifics to explain how Circle inherits the members
of Shape, along with its constructors and destructors. The basics:

March 19, 2001 Page 15 C201/TAM

Magnitude

Character Date Time Number

Float Fraction Integer

Object

class Circle: public Shape {
....... // Circle will be based on Shape

};

Typically the derived class declares additional data members and member
functions. For example a Circle may need its radius to compute the
circumference or area, while this may not be relevant for a general shape.
class Circle: public Shape {
public:

.....
private:

int radius; // radius of circle
};

March 19, 2001 Page 16 C201/TAM

Thus radius is in addition to the colour and origin members that it inherits from
Shape.

When one class is derived from another, then C++ allows a base pointer to
identify an instance of a derived class: For example a variable of type Shape*
can point to a Circle, Square or Triangle object.

Circle c; // define a circle
Shape* p = &c; // p points to a Circle

Thus a parameter of type Shape* can match any actual argument that points to
a derived member. Although it appears that the following function requires a
Shape argument, it can in fact receive a Circle, Square or Triangle.

void add_to_list (Shape& s)
{

......
}
Hence add_to_list is a highly versatile function that can handle differ kinds of
shape arguments.

