
March 4, 2001 Page 1 C201 TAM/AGS

C++ for C Programmers

See Allen Supynuk's on-line notes.

* C201 Objectives and how to get there

Why Object Oriented Programming?
* The crisis in software engineering
* Does Object Oriented Programming (OOP) help?
* OOP and Client/Server computing
* OOP and the Job Market
* OOP requires notion of Abstract Data Type

C++? encompasses all essential C
* Incompatibilities between ANSI C and C++
* New Identifiers
* Function declarations required
* Global data
* Structs Simplified

* Types
* Assignment statements
* Initializations

March 4, 2001 Page 2 C201 TAM/AGS

Miscellaneous
* How to share header files between C++ and C
* C++ comments
* I/O, I/O and Off to Work We Go...

* Standard places to read and write
* Somewhat simpler i/o offered

New features
* Pass by reference
* Default arguments and more much more

Objectives
At the end of this semester you will:

* Have seen most of the features in C++ that are not in ANSI C
* Know about the (minor) incompatibilities between C++ and C
* Have been introduced to abstract data types (ADTs) and have seen how

C++ facilitates their use
* Have been introduced to object oriented programming and have seen how

C++ supports this paradigm

March 4, 2001 Page 3 C201 TAM/AGS

However, you will NOT:

* Be comfortable with C++
* Be able to write even 10 line programs without a manual! Non-trivial

programs, that is.
* Be an expert on ADTs (that would take another course or two and

experience)
* Be an expert in object oriented programming (ditto, or lots of experience)
* Be an expert in object design (ditto)

As an analogy, you will have been shown how to do things, but will not have
much actual practice at doing them in a shared (team) programming
environment.

There are only three known ways to get proficient at C++:

* Practice, Practice, Practice

How to get there

March 4, 2001 Page 4 C201 TAM/AGS

Why Object Oriented Programming?
Offers the promise of greater code re-use by allowing a new class of objects

to be "derived" from an existing class, instead of from scratch.

The crisis in software engineering
It is becoming too expensive to maintain old software for older machines using

out-of-date specifications that were appropriate for limiting languages.

A rule of thumb in software engineering is:
As the size of a project doubles you need four times as many programmers,

in order to complete the task in the same time Jobs, jobs, jobs!

The crisis occurs because the size of large programs doubles every 2-5
years.

For example, rumor has it that programs like MS Word and WordPerfect
currently require 20-30 people to produce a new version a year, and that
these programs are 250-300,000 lines of code.

This may be an underestimate, it is said that the current version of Excel is
more like 5 million lines of code!

Assuming new versions will double in size every 4 years, it is clear that we
will quickly reach a state where, either nobody will be able to afford to

March 4, 2001 Page 5 C201 TAM/AGS

write the next version, or it will take 4 times as long to produce another
version with the same staff.

How does Object Oriented Programming (OOP) help?

The above rule assumed each program was one large piece of code. Breaking a
program up into separate functions doesn't help because of interactions
between functions. The only types of thing that can work is if a program
can be constructed from smaller pieces, each of which is completely
independent.

[This was the driving philosophy behind UNIX in 1970, and look where
UNIX is now!]

This is exactly what object oriented programming is about. Programs are
constructed out of objects. Each object contains data and code and is
completely self-contained. There are ways of manipulating these objects
(operators) so that all the "real world'' manipulations can be done in such a
way that:

March 4, 2001 Page 6 C201 TAM/AGS

* objects can be used as-is

* objects can be used mostly as-is, but with some extra code for the
problem at hand (inheritance and derived objects)

* objects can be selected based on criteria known only at run-time (virtual
objects)

* objects can be generalized to work on other objects whose type is not
known until link-time.

Consider sorting an array. You should be able to write an object that sorts
arrays no matter what type of object is in each element. (templates)

March 4, 2001 Page 7 C201 TAM/AGS

OOP and Client/Server computing

Each object is an independent entity that communicates with other objects by
sending messages.

(To: Sort-array, Message: sort this array of integers.) This maps very nicely
onto Client/Server computing which has client programs (objects) on
various machines interacting with server programs (objects) on other
machines via some kind of protocol (messages).

OOP and the Job Market
Microsoft, Borland, Word Perfect, and many other large programming firms

are now insisting on object oriented programming experience, usually in
C++, for all their programming positions. This applies equally at Nortel
(BNR), Corel, IBM and others.

March 4, 2001 Page 8 C201 TAM/AGS

Why C++?

C++ is the world's most successful object oriented programming language.
Bjarne Stroustrup, the original author of C++ says:

 ``C++ did three things [...]

1 . It produced code with run-time and space characteristics that competed
head-on with the perceived leader in that field: C. Anything that matches
or beats C must be fast enough. Anything that doesn't can and will--out of
need or mere prejudice--be ignored.

2 . It allowed such code to be integrated into conventional systems and
produced on traditional systems. A conventional degree of portability, the
ability to coexist with existing code, and the ability to coexist with
traditional tools, such as debuggers and editors, was essential.

3 . It allowed a gradual transition to these new programming techniques. It
takes time to learn new techniques. Companies simply cannot afford to
have significant numbers of programmers unproductive while they are
learning. Nor can they afford the cost of failed projects caused by
programmers poorly trained and inexperienced in the new techniques
failing by over enthusiastically misapplying ideas.''

March 4, 2001 Page 9 C201 TAM/AGS

By way of comparison it was once noted: "this system took 45,000 lines of
Ada, not counting the comments. The C++ version was 18,000 lines of fully
commented code.''
This may reflect the verbosity of Ada, compared to the obscure terseness of

C (e.g. the for statement)

Trivial Differences between C and C++

comments /* */
Can use // to end of line in C++

Simple input/output

C has three pre-defined data streams
stdin, stdout, stderr

C++ has four pre-defined data streams
cin, cout, cerr and clog

cout << "Enter a number: ";
cout << "Enter a number:\n";
cout << "Enter a number:"; << endl;

while for input the converse:

March 4, 2001 Page 10 C201 TAM/AGS

cin >> N; // automatic "format" - type
cin >> C >> I >> R >> Z; //no & necessary!

reads C, then I, then R and then Z from standard input, using a format
conversion that is appropriate for the declared type of each variable.

char C;
int I;
float R;
double Z;

Note that in C the char data type only determines the size of memory
allocated, but is otherwise like an 8-bit unsigned int.

In C++, a char remains as a char until it is used in a nontrivial expression,
which then forces it to an int.

In both C and C++ there is no difference between a pointer to a character and
a pointer to a string of characters.

March 4, 2001 Page 11 C201 TAM/AGS

There are differences in handling i/o of strings.
char* string = "nothing but words";
cout << string;

would do what you expect, but

char s[100];
cin >> s;

would, upon reading the sequence:
nothing but words

would be equivalent to s = "nothing";

Thus the first blank on input is a data field separator!

Also C++ output is buffered, so output to the screen must be forced with the
flush; function.

Tags versus type names
In C++ tags (names identifying a particular kind of structure, union or

enumeration) are automatically type names
C:
typedef struct { double real, imag } Complex;
C++
struct Complex { double real, imag };

March 4, 2001 Page 12 C201 TAM/AGS

Functions with no arguments
C++
No need to use the word void when declaring or defining a function with no

arguments.
void draw (void); /* no arguments in C/C++ */
void draw (); /* variable parameters in C*/
void draw (); // default arguments in C++

Initializing parameters

C++ allows function arguments to have default values. The following function
prints N newline chars, but if no parameter is passed, then a default of 1
is used.

void new_line (int N = 1) // default argument
{

while (N-- > 0)
putchar ('\n');

}
with invocation:
new_line (3); // prints 3 blank lines
new_line (); // 1 blank line by default

March 4, 2001 Page 13 C201 TAM/AGS

Call by reference parameters.

This is a significant difference.

In C to pass back a result through a parameter you must provide a pointer to
the location where the result is to go (the pointer itself does not change)
thus we write scanf ("%d", &N);

or looking at the swap function in C we write:

void swap (int* a, int* b)
{

int tmp;
tmp = *a;
*a = *b;
*b = tmp;

}
with invocation

swap (&A, &B);

March 4, 2001 Page 14 C201 TAM/AGS

Although this works fine, it is easy to forget and make mistakes. In C++
things are improved, somewhat, by allowing parameters to be declared as
references, instead of pointers, and so we write:

void swap (int& a, int& b)
{

int tmp;
tmp = a;
a = b;
b = tmp;

}
with invocation:

swap (A, B); // Just like in Fortran!
// is this any better?

March 4, 2001 Page 15 C201 TAM/AGS

Dynamic Storage management

In C programs can dynamically allocate and release blocks of memory by
calling malloc, calloc, realloc and free. Although C++ also has access
to these functions it provides two new operators (not functions) called new
and delete (keywords) which allocate and release space. Thus

int* int_ptr; int* int_array;

int_ptr = new int; // allocates memory for an int

int_array = new int [100]; // allocates memory for
// an array of 100 ints

new returns a NULL pointer if the requested memory cannot be allocated. The
delete operator requires a pointer as its operand.

delete int_ptr; // releases memory pointed
// to by int_ptr

delete [] int_array; // de-allocates the array

March 4, 2001 Page 16 C201 TAM/AGS

Significant extensions in C++

Classes and Class Definitions

Member Functions

Constructors and Destructors

Overloading

Facilities for Object-Oriented Programming

* Encapsulation
* Inheritance
* Polymorphism

Derivation

Virtual Functions

Templates

Exception handling (we won't cover this topic)

