Parsing Command Lines: Problem Statement

*  parsing command line arguments is a common part of Unix programs, but
it is rather boring programming

* we would like to have an automatic way of parsing command lines, a single
procedure that we could call that would handle this for us

* as a design exercise we will produce a command line parsing module. Our
module isn't complete, but is usable as it is, and can easily be expanded

* we start by examining the basic problem of command line arguments, this
problem is complicated by the fact that several different command line
syntax's have been used for Unix programs

*  Most arguments consist of a flag that identifies the argument and a value
for the argument

*  the flag usually consists of a prefix character, such as a + or -, that
separates flags from file names, and then one or more characters that
form the flag itself

* At this point we need to make a decision, if we restrict flags to one
character, then we can string several flags together behind one prefix

March 4, 2001 Page 1 C201/TAM

prog +f 3.2 -f nane -n 5 input

argv 0

0

—1_, "prog"

——» "name"

“input"

argc |NULL

See man getopt for a package to decode command lines

March 4, 2001 Page 3 C20U/TAM

character, this only works if the corresponding arguments are Boolean,
and thus don't need a value

*  since restricting ourselves to one character limits us to 26 possible
arguments, we will allow multiple character flags. The loss isn't too
great, since there are not many Boolean arguments

*  thus a flag consists of a prefix, either + or -, and one or more alphabetic
characters

« the value of an argument follows the flag, in the case of string values
there must be a space between the flag and value. For numeric values
this space isn't necessary, since digits can't appear in flags

*  we must also be able to handle arguments that don't have flags, these are
typically file names that contain the input to the program

*  with this in mind, the following are examples of our argument syntax

March 4, 2001 Page 2 C201/TAM

Program Design

* we want one procedure that we can call to process all the arguments, we
will call this procedure process_arguments

* what are the parameters to this procedure, what does it need to know

* it obviously needs to have the argc and argv parameters that are passed to
our main procedure, but its also needs to know the arguments that it can
expect to see on the command line

* how do we communicate the argument descriptions to this procedure,
what information do we need to know about each argument?

*  for each argument there are three things that we need to know: the flag
for the argument, where the argument's value is to be stored, and the type
of the argument's value

* we can store this information in a table, or array, with one entry for each
parameter. This array is called an argument description table, and is one
of the parameters that is passed to the process_arguments procedure

*  how will process_arguments return the information that it finds?

March 4, 2001 Page 4 C20UTAM



*  for arguments with flags this is easy, the argument description contains
pointers to the variables where the values are to be stored

* in the case of file name arguments, there are no variables to return their
values in, so we will return them as the value of process_arguments

*  this procedure will return an array of string pointers, one for each file
argument, that is terminated by a zero entry. This allows us to handle an
arbitrary number of file name arguments

*  Now that we have a basic idea of the data structures, how do we organize
the code?

*  process_arguments is the interface to our module that the rest of the
program sees. It also contains the high level structure of the algorithm

*  to process the arguments, we need to work our way through the argv
array. There are three things that we can expect to see in this array:
flags, argument values, and arguments without flags (what we have called
file name arguments)

* an argument value will always have a flag before it, so we don't need to
recognize them. We can easily find them after we have recognized a flag

March 4, 2001 Page 5 C201/TAM

* if its a numeric type, the value can be in the current argv entry, or if not
there in the next argv entry

*  the location of the value can be determined by comparing the length of the

flag to the length of the argv entry. If they are the same, the value is in
the next argv entry, otherwise it is part of the current entry

March 4, 2001 Page 7 C20U/TAM

*  so we will have a while loop that steps along the argv array

* at each entry this loop will determine whether we have a flag, or a file
name

* a flag always starts with a + or -, and a file name doesn't so its easy to
recognize a flag

* once we have recognized a flag, we need to extract the flag from the argv
array, find its entry in the argument table, and then extract the argument
value from the argv array

*  our high level algorithm is:

*  extracting the argument value depends upon the type of the argument, if
the type is string, then the argument value must be in the next argv entry
March 4, 2001 Page 6 C20UTAM

Implementation

*  the implementation of this module is divided into two files: an include file
that contains the main data structure declarations, and a .c file that
contains the procedure code

*  the .h file contains the declaration of the argument description table, the
constants used for argument types, and the declaration of the
process_arguments procedure

*  the .c file contains the implementation of the process_arguments
procedure, along with all the procedures that it calls to process
arguments. These helper procedures are all declared static so they can't
be called from outside of the module

http://www.cs.ualberta.ca/~tony/C201/Lectures/LecNotes/Examples/Cmds
is the example program

March 4, 2001 Page 8 C201/TAM



Module Design and Implementation

*

March 4, 2001 Page 9

*

March 4, 2001 Page 11

a simple example is used to illustrate the design and implementation of
modules.
This example is based on a stack of integers

we want a module to produce a stack of integers.
There may be multiple instances of these stacks

in this case a module encapsulates a data structure and the functions that
are used to manipulate it

the data structure is hidden in the module, it is only visible to the module's
functions. Other functions can only manipulate it by calling stack module
functions

we view the stack module as a state machine, at any point in time each
stack is in a particular state. The module's functions are used to move the
stack from one valid state to another

how do we design a module? One approach is to list the operations that we
would like to perform, this works well with our example

C201/TAM

for create and destroy we have the following:

C20U/TAM

*

March 4, 2001 Page 10

*

*

March 4, 2001 Page 12

since we can have multiple stacks, we need functions to create and
destroy stacks. In addition we will need routines to push and pop from the
stack

In addition to this basic capability, we need a few functions that return the
stack's state, functions for testing whether the stack is full or empty, and
one for peeking at the top element of the stack

this gives us the following set of functions:

stack_create stack_destroy

stack_push stack_pop
stack_empty stack_full
stack_peek

note that all of these functions have been prefixed by "stack". This
prevents the names from clashing with any other function names in our
program

these functions will need some parameters, and possibly return values.
The Stack type is used to represent a stack. All the other parameters
will be integers

at the same time we will add pre- and post-conditions to our functions

C201/TAM

for the push and pop functions we have the following:

The remaining three functions are specified in the following way

C201/TAM



March 4, 2001 Page 13

March 4, 2001 Page 15

C20U/TAM

could be a different size we will need to dynamically allocate the array
and store its size in stack_struct

the declaration of stack_structure is:

the most complicated function in the module is stack_create, this function
must dynamically allocate the storage required for a stack, and check that
the allocation is successful, the other functions are quite easy to write

Now that the implementation is complete, we need to test the stack module
there are many types of tests that can be performed, the one we will do is
a simple functional test, the basic idea is to show that all the functions
operate correctly under normal conditions

this type of test is used to show some confidence in the correctness of the
module, it is usually performed after each modification to the module, and

when its transferred to another computer

C20U/TAM

March 4, 2001 Page 14

*

March 4, 2001 Page 16

Now that we have the specification, we can turn our attention to the
implementation

First we need to define the Stack type, and declare the stack module
functions, this will be done in the stack.h include file

we don't want functions outside of the module to be able to modify Stack,
so we will define it in such a way that it can be stored in variables and
passed a parameter, but it can't be manipulated

this can be done by making Stack a struct pointer, but not declaring the
underlying struct, this can be done in the following way:

stack_struct prototype is declared in stack.h, but it is defined only in
stack.c, so user functions can't manipulate stacks directly

now we come to stack.c, the file that contains the actual implementation
of the stack module

First, we need to define the stack_struct type. For our simple
implementation we will use an array to store the stack, since each stack

C20UTAM
in our test we will create a stack, perform a number of operations on it,
and then destroy the stack. A more complete test would use multiple

stacks to ensure that there is no cross-talk between instances

after creating a stack, the new stack should be empty. This gives us a
chance to test the stack_empty and stack_full procedures

next the stack is filled with integers, when this is finished the stack
should be full, so we can again test stack_empty and stack_full

next we pop the contents of the stack, and show that the correct sequence
of integers is produced

finally, we have another chance to test stack_empty and stack_full on
what should be an empty stack

the stack is then destroyed, and we check that the correct value is
returned

C201/TAM



http://www.cs.ualberta.ca/~tony/C201/Lectures/LecNotes/Examples/Stack

to see the example program

int
size -1
top
Stack
©—>| size | op |dateptr|
int nt nt*

typedef struct stack _struct* Stack;

typedef struct stack _struct {
int size; The size of the stack */

/*
int top; /* Index of the top of the stack */
int* dataptr; /* Pointer to stack of data */

3

March 4, 2001

Page 17 C20U/TAM



