
Sunday, February 11, 2001 Page 1 TAM C201 notes

#define Nodeptr struct node* //prefer typedef
See King P. 335 or K&R Section 6.7 (typedef):

create data type names

typedef struct node* Nodeptr ;

typedef struct node {
int data;
Nodeptr next; // struct node* next;

} Node ;

Nodeptr mknode (int value)
{

Nodeptr np = (Nodeptr) malloc (sizeof (Node));
// np = (Nodeptr) malloc (sizeof (struct node));
if (np != NULL) {

np->data = value;
np->next = NULL;

}
return np;

}

Sunday, February 11, 2001 Page 2 TAM C201 notes

Sometimes we want one field in a data structure to hold two values of
different type. Say for instance either an integer or a float. We can do this
through the use of a union--forming something much like a variant record in
Pascal.

typedef struct node {
union {

int digits;
float number;

} data;
Nodeptr next; // struct node* next;

} Node ;

Having created a sample node with a declaration like
Node datanode;

which is the same as
struct node datanode;

and one can either store digits with
datanode.data.digits = 19;

or one can store a float into the same space, with
datanode.data.number = 91.3;

Sunday, February 11, 2001 Page 3 TAM C201 notes

We can also create a node with:
Nodeptr dataptr;
dataptr = (Nodeptr) malloc (sizeof Node);

and can set them via the pointer variable
dataptr->data.digits = 19;

o r
dataptr->data.number = 91.3;

Note that what we are doing is saving a little space in the computer (not really
an overriding consideration these days). The savings here would be small.
Instead of needing space for both an integer (digits) and a float (number),
taking 4 + 8 bytes. We can overlay them and use only Max (4, 8) = 8 bytes
(space for the longer).

Use of Unions can be quite elaborate, but what is clear is that once you have
stored an item into a union structure it is impossible to retrieve unless you
know what type of variable was stored (in this case an integer or a float). It
follows therefore that you must also store in the node some kind of a TAG that
interprets uniquely the item in the "variant" field.

Sunday, February 11, 2001 Page 4 TAM C201 notes

Typically we might do this though the use of some defined constants:

#define INTEGER -1
#define FLOAT 1
struct node { // note datanode creation here not typedef

int TAG;
union {

int digits;
float number;

} data;
Nodeptr next; // struct node* next;

} datanode ;

int kind = INTEGER; // or perhaps FLOAT

datanode.TAG = kind;
if (kind == INTEGER)

datanode.data.digits = 19;
else if (kind == FLOAT)

datanode.data.number = 91.3;
else fprintf (stderr, "Illegal tag %d", kind);

Once the item has been stored in datanode it can be retrieved by first
interrogating the TAG field. See King P. 345-350 or K&R P. 148

Sunday, February 11, 2001 Page 5 TAM C201 notes

What if you now wanted an array of such a variant record structure?
(As indeed you might for a practical application!)

typedef struct node* Nodeptr;

typedef struct node {
int TAG;
union {

int digits;
float number;

} data;
} Node ;

At this stage we have only a definition of a sample element in our array. If
we wanted to create M of them we would first need to declare a pointer to
such an element

Nodeptr np;
then get space for the array with

np = (Nodeptr) malloc (M*sizeof(Node));
o r

np = (Nodeptr) calloc (M, sizeof(Node));

Sunday, February 11, 2001 Page 6 TAM C201 notes

To access the zero'th TAG field we could write
kind = np->TAG;

while the i'th tag:
kind = (np+i)->TAG;

and one of the union fields would be:
value = (np+i)->data.number;

provided i < M and TAG == FLOAT

An example:

Let use now review a typical C115 hashing problem.
Given an array of M boxes. Into each we are going to store one animal from an
input queue:
"dog", "cat", "hen", etc.

Assume we want to store them in these boxes according to some hashing
scheme.

First we must compute a hash number based on some transformation of the
animal type.

H = Transform ("dog");
Then we must compute the hash index modulo M to determine into which box to
store the animal.

Sunday, February 11, 2001 Page 7 TAM C201 notes

i = H % M;
If box i is empty, pop the animal in.

If the box is occupied, compute the address of the next available box with:
i = (i +1) % M;

until you find an empty box. Note our method guarantees that you will
eventually look in all M boxes before determining that there is no room at the
Inn.

How do you compute H? What are the properties of a good Transform? Ideally
you would like one that computes H so that its values are uniformly
distributed across the full range of positive integers that can be stored in a 4-
byte unsigned integer.

[Actually, we would really like the right-most k bits to be random, where k=4
if M is 16, etc., but this is even more difficult].

One scheme is given in K&R page 144. This looks kind of expensive (an
addition and multiplication for each character in the name), but is it really?

unsigned Transform (char* s) {
unsigned hashval;
for (hashval = 0; *s != '\0'; s++)

hashval = *s + 31*hashval;
return hashval;

}
Sunday, February 11, 2001 Page 8 TAM C201 notes

Or we could try some el-cheapo scheme like adding together the 8-bit
integers that correspond to each ASCII character in the animal-type name.
Poor, but let us start with this.

Thus Transform ("dog") is 100+111+103 = 314
while Transform ("cat") is 99+97+116 = 312 and
Transform ("hen") is 315.
If M = 10 (ten boxes), then the dog would go in box 4, the cat in box 2 and the
hen in box 5, and everyone would be happy.

Retrieving is the reverse process. If we want the "hen", look in box
Transform ("hen") % M;

That is, box 5 and take the hen.

If you want a "rat", compute H = 114+97+116 = 312
and then look in box 312 % 10 = 2.

There you will find a "cat", not a "rat" so look in box (2+1) % 10 = 3, which is
empty.

Therefore we have no rats here.

A possible structure to support this menagerie is:

Sunday, February 11, 2001 Page 9 TAM C201 notes

#define M 10

typedef struct box* Boxptr;

typedef struct box {
char* s;

} Home;

If we wanted an array of these we would declare:
char* animal;
int i;
Boxptr p;

and set
p = (Boxptr) malloc (M*sizeof(Home));
for (i=0; i < M; i++)

(p+i)->s = NULL;
To find a home for a "dog" we would compute:

i = Transform("dog") % M;
or more generally:

char animal[10];
scanf ("%s", &animal[0]);
i = Transform(animal) % M;

and to put the animal in its new home with

Sunday, February 11, 2001 Page 10 TAM C201 notes

if ((p+i)->s == NULL)
(p+i)->s = &animal[0]; // or simply (p+i)->s = animal

else //conflict, box is occuppied.

If we have a conflict we are stuck. Either we need a more elaborate
structure, one that allows us to form a linked list of boxes where the overflow
animals reside, or we begin some kind of sequential search in the
neighbourhood of the initial entry box to find an empty one.

While ((p+i)->s != NULL)
i = (i + 1) % M;

(p+i)->s = animal;

This introduction provides some basic starting point for hashing. It may look
daunting, and it certainly will take a lot of pencil and paper planning (and lots
of debugging time fixing up bad pointers).

The design time will be well rewarded.

Initially just use the computer to check out basic ideas that you want to try.

* Sketch out clearly model solutions for access functions.

Sunday, February 11, 2001 Page 11 TAM C201 notes

* Clearly identify all the helper functions you are going to need (like a hash
function, and procedures that can be called from any of your main
functions to perform routine operations on your data structure).

* Keep in mind, as with any assignment, you are designing a solution to a
specified interface.

* On the one hand this requires great discipline, on the other it will surely
keep you out of trouble by ensuring that your design has some coherent
structure!

* As always your work is best spread over as long a period as possible,
with considerable thought going into forming a clean and simple design.

Placing animals in boxes is easy (just as easy as updating pointers to names of
animals. But what happens when it comes time to remove animals?

Discuss the issues, come up with some strategies.

