
Wednesday, February 7, 2001 Page 1 copyright University of Alberta

Structures

• C structures are similar to records in Pascal, they allow us to collect
together several pieces of related data into one block. The individual
pieces of data are called structure elements or structure members

• The declaration of a structure does not allocate memory, it just provides a
template for the structure. It specifies the quantities that are being
grouped together

• For example, we could have the following for the declaration of a name
structure

struct Person {
char* first;
char* last;

};

• This structure has two elements, the pointers first and last , which are
used to access an array of characters. Other variables can have the same
name as structure elements, and the same element name can be used in
different structure declarations. You will not find this to be a problem,
because the compiler recognizes all potential ambiguities.

Wednesday, February 7, 2001 Page 2 copyright University of Alberta

• There are several ways to create a variable that has a structure type

struct StructureName VariableName;

• So with our example Person structure (struct Person) we could create two
instances, fred and andrew:

struct Person fred, andrew;

This declaration creates two variables (called fred and andrew) and allocates
space for them. Each variable (structure) has two elements, each element
points to an array of characters that may be used to hold the first and last
names, respectively.

We use the . (dot) operator to form individual instances of a structure
element. For example:

fred.first = "Fred";
fred.last = "Flintstone";

equally one might write

andrew = {"Andrew", "Choi"};

Wednesday, February 7, 2001 Page 3 copyright University of Alberta

• The . (dot) operator is used to extract the individual elements from a
structure variable. In the case of our Person structure we have:

char* FirstName;
char* LastName;

FirstName = andrew.first
LastName = andrew.last

• A slightly different syntax is used for pointers to structures, for example

struct Person* ptr;

• The variable ptr is now a pointer to a structure of type Person. From our
previous knowledge about pointers we can use the following to get the
value of the first element of the structure that is accessed via ptr

either
(*ptr).first

o r
ptr->first

• Thus (*ptr). is equivalent to ptr->

Wednesday, February 7, 2001 Page 4 copyright University of Alberta

The -> operator takes a pointer to a struct, follows the pointer to the
structure value and then extracts the field--this is a shorthand, but it
makes sense

• We can have arrays of structures, just as we can have arrays of any other
data type. This is often quite convenient, and is done in the following way:

struct StructureName VariableName [size];

• In the case of our Person structure, we could have an initialized array of
names formed in the following way:

struct Person People[] = {
{ "Andrew", "Choi" },
{ "Fred", "Flintstone" },

 :
 :

{ NULL, NULL }
};

• We can use an explicit NULL value to indicate the end of the array, if we
wish.

Wednesday, February 7, 2001 Page 5 copyright University of Alberta

• We can include pointers to a structure within the declaration of the
structure. We might use this technique to build linked lists and binary
trees

• We can use the following structure declaration for a node in a binary tree
typedef struct Tnode* NodePtr;

struct Tnode {
NodePtr left;
char data;
NodePtr right;

} ;

NodePtr Tree;

• Note that left and right must be pointers to structures, they cannot be
structure variables, otherwise we will have a structure that includes two
copies of itself

Wednesday, February 7, 2001 Page 6 copyright University of Alberta

data

*left

*left

*right

*right *right

data

data

data

data

ata NULLNULL NULL NULL NULL NULL

NULL

ree

Commonly the data item itself is a pointer to another structure or string.
Consider:

Wednesday, February 7, 2001 Page 7 copyright University of Alberta

typedef struct Tnode* NodePtr;

struct Tnode {
struct Person* Nameptr;
NodePtr left;
NodePtr right;

} ;

NodePtr Tree;

// Creates only the entry node Tree, not the sample structure below.

Tree
Person_1

Person_2 Person_3

