
Monday, February 5, 2001 Page 1

The Standard I/O Library
#include <stdio.h>

All I/O involves a stream of data, there are three standard
streams that are defined in stdio.h
 stdin - the standard input, for reading
 stdout - the standard output, for writing
 stderr - for error messages

You can declare a pointer to your own stream in the
following way:
 FILE* fp;

Use the fopen() procedure to attach a file for reading, writing
or appending data.
 FILE* fopen(char* FileName, char* AccessMode);

The most popular access modes are:
 "r" - a read-only file
 "w" - write, starting at the front
 "a" - write, appending to the end

• Thus we can open local file "tally.data" for reading with
the command

fp = fopen ("tally.data", "r");
• A value of NULL is returned if the file can't be opened

Use fclose() to flush buffered data to the file
fclose(fp);

Monday, February 5, 2001 Page 2

Formatted Input and Output
Example
 int i, n;
 float f;
 double d;
 char str[30];

 n = scanf("%d %f %lf %s", &i, &f, &d, &str[0]);

• If this call is successful the value of n will be 4
• This format expects to see one integer, two floating

point numbers and a string. The first floating point
number is stored in a float and the second one is stored
in a double--we used %lf as the format for that.

• If we didn't use the %lf format for d, the value stored
in d would be incorrect
All the parameters have an & so we are passing a
pointer instead of the value. We could replace &str[0]
by str, since str is already a pointer--and this is often
done.

In addition to scanf() and printf() we have the prototypes:
 int fscanf (FILE* fp, const char* format, *arg1, *arg2, ...);
 int fprintf (FILE* fp, const char* format, expr1, expr2, ..);

 FILE* fp = fopen ("tally.data", "r");

 n = fscanf (fp, "%d %f %lf %s", &i, &f, &d, str);
Beware use of %s to input an array. Stops at first blank.

Use fgets() or NOT gets() for string of characters input.

Monday, February 5, 2001 Page 3

File Opening Example
FILE* fp; FILE* fptr;
scanf ("%d", &item);
fscanf (stdin, "%d", &item);

 fp = fopen ("tally.data", "r");
 fscanf (fp, "%d", &item);

printf ("%d", item);
fprintf (stdout, "%d", item); /* as above */

 fptr = fopen ("tally.out", "a");
 fprintf (fptr, "%d", item); /* append to tally.out *

Character at a Time I/O
• There are three functions for doing single character I/O:
 int getc (FILE* fp);
 void putc (char c, FILE* fp);
 void ungetc (char c, FILE* fp);

• The getc() procedure reads a single character from the
stream pointed to by the parameter. The value returned
is the character read, or the special value EOF if the end-
of-file is encountered.

• The putc() procedure writes the character c, onto the
stream specified by the parameter fp

• ungetc() puts the last character read by getc() back on
the input stream. Necessary to undo the last char. read.

Monday, February 5, 2001 Page 4

• The special functions getchar() and putchar() are perhaps
best forgotten from now on.

Memory I/O
• One can also do input output to an array or other region in

memory. The relevant prototypes are:
int sscanf (char* buffer, char* format, *arg1, *arg2, ..)
char* sprintf (char* buffer, char* format, arg1, arg2, ..

• sscanf() and sprintf() allow you to read and write to a
memory buffer, just as if it were a file.

• That is, to use a pointer to an array or memory, just as
if it were a pointer to a file.

Line at a time I/O
• There are two functions for moving a whole line of data

from/to a file:
 char* fgets (char* buffer, int BLength, FILE* fp);
 void fputs (char* buffer, FILE* fp);

• These functions require care in their usage.
fgets() copies all the characters until a '\n' into the
array pointed to by buffer, replacing the '\n' by '\0'. To
protect against overflow, only BLength-1 characters are
moved. Fgets() return NULL when an EOF is seen.
fputs() copies the contents of a null-terminated string to
the output file, replacing the terminating '\0' with '\n' as
one would hope.

Monday, February 5, 2001 Page 5

Example
The fgets() and fputs() functions could be used as follows:

#define MAX_LENGTH 256
char buffer[MAX_LENGTH];
FILE* fp = fopen("tally.data", "r");
FILE* fptr = fopen ("tally.out", "a");

while (fgets(buffer, MAX_LENGTH, fp) != NULL)
{
 /* read until EOF */
 /* process a line of the file */
 /* append tally.data to tally.out */
 fputs (buffer, fptr);
}
fclose (fp);
fclose (fptr);

• We could also dyamically acquire memory for buffer[] as
follows:

char* buffer;
buffer = (char*) malloc (MAX_LENGTH * sizeof(char));

• Instead of close() we would use:
free(buffer); /* to give back the space */

• The companion special functions gets() and puts() that
read/write stdin and stdout are best forgotten.

Monday, February 5, 2001 Page 6

Prototypes of Other Procedures
• void rewind (FILE* fp);
• int fseek (FILE* fp, int offset, int kind);
• int ftell(FILE* fp);

You are not likely to need them in C201, but you now
know enough to read about them when you do.

