
Approximating the minimum clique cover and other
hard problems in subtree filament graphs

J. Mark Keil∗ Lorna Stewart†

March 20, 2006

Abstract

Subtree filament graphs are the intersection graphs of subtree filaments in a tree.
This class of graphs contains subtree overlap graphs, interval filament graphs, chordal
graphs, circle graphs, circular-arc graphs, cocomparability graphs, and polygon-circle
graphs. In this paper we show that, for circle graphs, the clique cover problem is
NP-complete and the h-clique cover problem for fixed h is solvable in polynomial time.
We then present a general scheme for developing approximation algorithms for subtree
filament graphs, and give approximation algorithms developed from the scheme for the
following problems which are NP-complete on circle graphs and therefore on subtree
filament graphs: clique cover, vertex colouring, maximum k-colourable subgraph, and
maximum h-coverable subgraph.

Key Words: subtree filament graph, circle graph, clique cover, NP-complete, approximation
algorithm.

1 Introduction

Subtree filament graphs were defined in [10] to be the intersection graphs of subtree filaments
in a tree, as follows. Consider a tree T = (VT , ET) and a multiset of n ≥ 1 subtrees
{Ti | 1 ≤ i ≤ n} of T . Let T be embedded in a plane P , and consider the surface S
that is perpendicular to P , such that the intersection of S with P is T . A subtree filament
corresponding to subtree Ti of T is a connected curve in S, above P , connecting all the leaves
of Ti, such that, for all 1 ≤ i ≤ n:

• if Ti ∩ Tj = ∅ then the filaments corresponding to Ti and Tj do not intersect, and

∗Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N
5C9, keil@cs.usask.ca, 306-966-4894.

†Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2E8, stew-
art@cs.ualberta.ca, 780-492-2982.

1

• if Ti ∩ Tj 6= ∅, Ti 6⊆ Tj, and Tj 6⊆ Ti then the filaments corresponding to Ti and Tj do
intersect, and

• if Ti ⊆ Tj or Tj ⊆ Ti then the filaments corresponding to Ti and Tj may or may not
intersect.

Note that, if all filaments corresponding to containment do intersect, then the subtree
filament graph is the intersection graph of {Ti | 1 ≤ i ≤ n}; if none of the filaments
corresponding to containment intersect, then the subtree filament graph is the overlap graph
of {Ti | 1 ≤ i ≤ n}.

For graph G = (V, E), we shall use n to denote |V | and m to denote |E|.
A graph G = (V, E), is called a circle graph if there is a one-to-one correspondence

between V and a set C of chords of a circle such that two vertices are adjacent if and only
if the corresponding chords intersect. C is called the chord intersection model for G. Circle
graphs are equivalent to the overlap graphs of intervals [8]. An interval model of a circle
graph is a set of n closed intervals in the real line such that interval i overlaps interval
j (interval i intersects interval j but neither contains the other) if and only if vertex i is
adjacent to vertex j. Without loss of generality, we may assume that the endpoints of the
intervals are distinct. Spinrad [21] has an O(n2) time algorithm which given a graph will
determine whether or not it is a circle graph and if it is will produce a chord intersection
model for it. Given a chord intersection model, an interval model can be obtained in O(n)
time [8]. In the following we will make use of the interval model and interchangeably refer
to the ith vertex or the ith interval as being adjacent to or overlapping with vertex j or
interval j.

A graph G = (V, E) is a comparability graph is there exists an orientation of E that
is transitive. Cocomparability graphs are the complements of comparability graphs. Circle
graphs and cocomparability graphs are subclasses of subtree filament graphs [10].

The problem of finding a maximum clique in a circle graph can be solved in polynomial
time [8], as can the maximum independent set problem [8]. In fact, these algorithms can be
extended to solve the weighted versions of the maximum clique and maximum independent
set problems for subtree filament graphs [10]. However, the colouring problem [7], the prob-
lem of finding a maximum k-colourable subgraph [4] and the dominating set problem [18]
remain NP-complete when restricted to circle graphs.

The clique cover problem for a graph is the problem of partitioning the vertex set into
the minimum number of subsets such that the subgraph induced by each subset is a clique.
The clique cover problem was one of the first problems shown to be NP-complete by Karp
[17]. However for the large class of perfect graphs the ellipsoid algorithm based method
of Grötschel, Lovász and Schrijver [13] provides a polynomial solution for the clique cover
problem. For circular-arc graphs, Hsu and Tsai [15] give a linear time algorithm for the
clique cover problem.

The computational complexity of the clique cover problem on circle graphs was mentioned
as open in 1980 by Golumbic [12], and again in 1985 by Johnson in his NP-completeness
column [16]. More recently Spinrad [22] again raises it as an open problem in his book. The

2

next section contains a proof that the clique cover problem on circle graphs is NP-complete.
We also show that the fixed parameter version, where the number of cliques in a cover is
bounded by a constant, is solvable in polynomial time.

In Section 3, we outline a general divide-and-conquer scheme for developing approxima-
tion algorithms for subtree filament graphs, and provide some example algorithms developed
using the scheme. Included among these is an approximation algorithm for the clique cover
problem.

2 NP-completeness of clique cover on circle graphs

The decision problem formulation of the clique cover problem on circle graphs is as follows:
given a circle graph G = (V, E) and a positive integer k, is there a clique cover of size k
or less for G, that is, a partition of V into k disjoint subsets V1, V2, . . . Vk such that, for
1 ≤ i ≤ k, the subgraph induced by Vi is a complete graph?

Theorem 2.1 The clique cover problem on circle graphs is NP-complete.

Proof. It is not hard to see that the problem is in NP. To show that the problem is NP-hard
we construct a polynomially computable reduction from a restriction of the SATISFIABIL-
ITY problem where there are 3 literals per clause and each variable occurs in at most 4
clauses (3-4 SAT). 3-4 SAT was shown to be NP-complete by Tovey [23].

Let F be an arbitrary instance of the 3-4 SAT problem. Let X = {x1, x2, . . . , xn} be
the set of boolean variables and C = {c1, c2, . . . , cm} be the set of clauses in F . We shall
construct, in polynomial time, a set I of intervals in the real line (with integer endpoints) and
an integer k such that the overlap graph of the intervals in I has a clique cover of cardinality
k if and only if F is satisfiable.

When we create I, we will create 12 intervals associated with each variable, xi, these
are the intervals Bl

i, l = 1, 2, . . . 12. For l = 1 . . . 6, Bl
i = [zi + 10l, zi + 10l + 5] where

zi = 100(i − 1). The purpose of the offset zi is to ensure the intervals associated with
different variables are disjoint. The six remaining intervals associated with variable xi are
B7

i = [zi+13, zi+22], B8
i = [zi+23, zi+42], B9

i = [zi+43, zi+64], B10
i = [zi+11, zi+32], B11

i =
[zi + 33, zi + 52], and B12

i = [zi + 53, zi + 62].
Since the first six intervals associated with a variable are disjoint, any clique cover of

the overlap graph of the 12 intervals associated with a variable must consist of at least six
cliques. In fact there are exactly two ways to cover this graph with six cliques. We will call
one of the two clique covers T and the other F and then associate the two clique covers with
the truth value of the associated variable. Each of the cliques in either covering is of size
two.

In the overlap representation of the circle graph a clique can be represented as the portion
of the real line common to all the elements in the clique. Using this idea we can represent a
clique cover as a set of segments on the real line. We do this in figure 1 to indicate the two
clique covers of size six. For example in clique cover T , the first clique consists of B1

i and
B10

i .

3

10 20 30 40 50 60

Intervals
B1

i B2
i B3

i B4
i B5

i B6
i

B7
i B8

i B9
i

B10
i B11

i B12
i

Clique Cover
T

tt tt tt tt tt tt

Clique Cover
F

ff ff ff ff ff ff

1

Figure 1: The twelve intervals associated with variable xi and the two clique covers of size
six for these intervals.

4

10 11 12 13 14 15 16

C ′
j

C ′′
j

. . . Dγj

. . . Dβj

. . . Dαj

1

Figure 2: C ′
j and C ′′

j are associated with clause cj, and Dαj, Dβj and Dγj connect variables
xα, xβ and xγ, respectively, with clause cj.

We also create two intervals C ′
j and C ′′

j for each clause cj ∈ C, j = 1, . . . m with coordi-
nates as follows: C ′

j = [yj, yj + 6] and C ′′
j = [yj + 1, yj + 5] where yj = 100n + 10j. See figure

2.
Since C ′

j and C ′′
j do not overlap, two cliques are needed in any clique cover to include

both.
In the overall layout of the intervals, the intervals associated with the variables occur left

of the intervals associated with the clauses. The zi and yj offsets ensure that the intervals
associated with each variable and clause are disjoint.

We now need a way to associate literals with the clauses containing them. Of the six
cliques in the T and F clique covers of the subgraph associated with a variable xi, we will
ignore the leftmost and rightmost and allow extension of the middle four cliques to provide
a way to communicate information to the clauses. Notice that the intervals representing
the middle four cliques in the T clique cover are disjoint from the intervals representing the
middle four cliques in the F clique cover.

If variable xi is contained as an unnegated literal in clause cj, we will introduce an interval
Dij, that overlaps every interval in one of the interior cliques in the T clique cover of the
overlap graph of the intervals associated with the variable xi, and also overlaps with the two
intervals associated with clause cj. Similarly, if cj contains xi, then Dij will overlap with
every interval in one of the interior cliques of the F clique cover of the overlap graph of the
intervals associated with xi and also Dij will overlap with the two intervals associated with
clause cj.

We also require that if xi is involved in a literal in four different clauses, cj1 , cj2 , cj3

and cj4 with j1 < j2 < j3 < j4, that interval Dij4 contains Dij3 which contains Dij2 which
contains Dij1 . Figure 3 illustrates an example in which literal xi ∈ c2, xi ∈ c3, xi ∈ c5 and
xi ∈ c7.

If clause cj contains literals involving variables α, β, and γ, with α < β < γ then we
ensure that Dαj contains Dβj which contains Dγj by setting the right endpoint of Dαj to
yj +4, the right endpoint of Dβj to yj +3, and the right endpoint of Dγj to yj +2. See figure

5

tt ff ff tt tt ff ff tt

Di7 . . . to c7

Di5 . . . to c5

Di3 . . . to c3

Di2 . . . to c2

1

Figure 3: The interior cliques of the T and F clique covers for the overlap graph of the
intervals associated with xi. Also shown are the intervals Dij.

2.
This completes the construction of the 12n + 2m + 3m intervals. Let G be the overlap

graph of the constructed intervals. Let k = 6n + 2m.

Claim 2.2 G has a clique cover of size k if and only if formula F is satisfiable.

Proof of Claim. Given a satisfying truth assignment A for F we show how to construct a
clique cover of size k for G.

If xi is true in A, we include the T clique cover for intervals associated with xi. Note that
an interval Dij can also be included in these six cliques if xi appears unnegated in clause cj.
Similarly, if xi is false in A, we include the F clique cover for the intervals associated with
xi. Note that an interval Dij can also be included in these six cliques if xi appears negated
in clause cj. Including either the T or F clique cover for the intervals associated with each
variable will contribute a total of 6n cliques to the partial clique cover of G. It remains
to cover the two intervals associated with each clause and any intervals Dij which are not
covered on the variable side.

For each clause cj we add two more cliques to the clique cover. The first includes interval
C ′

j plus one of the Dij not previously covered. The second includes C ′′
j plus another of the

Dij not previously covered (if necessary). Note that, since A is a satisfying truth assignment,
at least one of the intervals Dij for clause cj is covered on the variable side. The total size
of the clique cover is 6n + 2m = k as required.

To complete the proof of the claim we show how to produce a satisfying truth assignment
A for F from a clique cover for G of size k. For each clause cj, since interval C ′′

j contains
interval C ′

j, the clique cover for G must have one clique K ′
j which contains C ′

j and another
clique K ′′

j which contains C ′′
j . The only other intervals that K ′

j and K ′′
j can contain are

the three intervals Dαj, Dβj, and Dγj. But no two of these three intervals overlap, thus
K ′

j and K ′′
j are of size two at most and do not contain any of the intervals associated with

the variables. The clique cover thus contains k − 2m = 6n cliques to contain the intervals
associated with the variables. Since the intervals associated with a single variable require

6

six cliques to cover them, and since this can be done in only two ways, the clique cover for
G must include either the T clique cover or the F clique cover for the intervals associated
with each variable xi. If the T clique cover is used to cover the intervals associated with xi,
we set xi to true and if the F clique cover is used to cover the intervals associated with xi,
we set xi to false in A.

If the T (F) clique cover is used for the overlap graph of the intervals associated with
variable xi, we can include in the six cliques also any intervals Dij for which xi appears
unnegated (negated) in cj. Thus the use of the T (F) clique cover for the overlap graph
of the intervals associated with xi ensures the satisfiability of any clause cj containing xi

unnegated (negated). Since the clique cover for G covers all vertices in G and since for each
clause cj at least one of the intervals Dαj, Dβj, and Dγj must be included in a clique on the
variable side, the derived truth assignment A must satisfy every clause as required.

This completes the proof of the claim and of the theorem. 2

In light of the NP-completeness result, we consider two fixed parameter versions of the
problem. First, we observe that the proof of the preceding theorem implies that the clique
cover problem for circle graphs, where each clique in the cover is restricted to be of size at
most three, is NP-complete.

Second, the following algorithm demonstrates that the clique cover problem, where we
restrict the number of cliques in the cover to be at most h, can be solved in polynomial
time for any fixed constant h. This is in contrast to the complementary k-vertex colouring
problem for circle graphs, the decision version of which was shown to be NP-complete for
k ≥ 4 [24] and in P for k = 3 [25].

The algorithm makes use of an interval overlap model for n-vertex circle graph G =
(V, E). Interval endpoints are assumed to be distinct and intervals are indexed in left-to-
right order of right endpoints. For 1 ≤ i ≤ n, interval Ii has left endpoint Li and right
endpoint Ri, and corresponds to vertex vi ∈ V .

For 1 ≤ i ≤ n, let Gi be the subgraph of G induced by {v1, v2, . . . vi} and let Ci be the
set of clique covers of size at most h for Gi.

Intervals corresponding to vertices of a clique share the portion of the real line from the
largest left endpoint of an interval in the clique to the smallest right endpoint of an interval
in the clique. Therefore, because of the order in which vertices are visited, vertex vi can be
added to a clique C in some clique cover of Ci−1 to obtain a clique cover of Ci if and only if
Li is in the portion of the real line shared by all of the intervals of C. Thus, at the beginning
of stage i of the algorithm, it suffices to know Ii−1, the set of sets of shared portions of the
real line corresponding to Ci−1.

• Initially, I1 contains one interval (L1, R1) corresponding to the single clique {v1} and,
for all 2 ≤ i ≤ n, Ii is empty.

• For i = 2 to n:

– For each set of intervals X in Ii−1:

7

∗ For each interval (L, R) in X:

· If L < Li < R then replace (L, R) in X with (Li, R) and add the resulting
set of intervals to Ii.

∗ If |X| < h then add the new interval (Li, Ri) to X and add the resulting set
of intervals to Ii.

• G is h-coverable if and only if In 6= ∅.

By an inductive argument, it can be seen that Ii contains exactly the sets of intervals
corresponding to Ci. Clearly, I1 correctly represents C1; suppose Ii−1 contains exactly the
sets of intervals corresponding to Ci−1. Then each set in Ii corresponds to a clique cover of
Ci, since all vertices are covered by each set, and since vi is implicitly added only to cliques
with which it forms a clique. In addition, since any clique cover Y for Gi, with vertex vi

removed, is a clique cover for Gi−1 and thus is represented by a set of intervals in Ii−1, it
must be that intervals representing Y appear in Ii.

There are fewer than hn2h elements of the Ii sets. Each element is considered at most
once and the algorithm performs O(h) steps for each element considered. Therefore, the
algorithm executes in O(h2n2h) = O(n2h) time.

3 Approximation algorithms for subtree filament graphs

Since there is no known polynomial time recognition algorithm for subtree filament graphs,
we assume that, as input to our approximation algorithms, we are given the adjacency list
representation of subtree filament graph G = (VG, EG), along with a tree T = (VT , ET) and
subtrees {Ti | 1 ≤ i ≤ |VG|} of T such that there exist subtree filaments corresponding to
{Ti | 1 ≤ i ≤ |VG|} of which the intersection graph is G. Like the algorithms of [11], our
algorithms do not require explicit representation of the filaments. We assume that every
vertex of T appears in some Ti, 1 ≤ i ≤ |VG|, and that

∑|VG|
i=1 |Ti| is bounded above by a

polynomial in |VG|, P (|VG|).
Alternatively, the input to our algorithms could be a subtree filament graph G and

a chordal graph GI with the property that, for any clique tree of GI, the corresponding
subtree intersection representation for GI consisting of T = (VT , ET) and set of subtrees
{Ti | 1 ≤ i ≤ |VG|} of T , there exist subtree filaments corresponding to {Ti | 1 ≤ i ≤ |VG|}
of which the intersection graph is G. The existence of such a chordal graph for any subtree
filament graph follows from Theorem 4 of [10]. In this case, T and {Ti | 1 ≤ i ≤ |VG|} can
be constructed from GI in O(|VGI |+ |EGI |) time and P (|VG|) ∈ O(|VG|2) (see [12]).

As observed by Gavril [10], for all x ∈ VT , the subgraph of G induced by {vi ∈ VG | x ∈ Ti}
is a cocomparability graph. This follows from the observation that each nonedge of such a
subgraph corresponds to two subtrees, one of which is contained in the other, and this
relation is transitive.

The general divide-and-conquer scheme for an approximation algorithm on subtree fila-
ment graph G proceeds as follows. If G is small the problem is solved exactly using a brute

8

force algorithm. Otherwise, we partition G into a cocomparability graph and a number of
induced subgraphs, each of which is a subtree filament graph having at most |VG|/2 vertices.
The algorithm combines an exact solution for the problem on the cocomparability graph
with recursively computed approximate solutions for the smaller induced subtree filament
subgraphs.

We now describe how to accomplish, in polynomial time, a suitable partition for G. We
seek a point x ∈ VT such that, for all subtrees H of T\{x}:

|{vi ∈ VG | Ti is entirely contained in H}| ≤ |VG|/2.

We visit the vertices of T , beginning at the leaves, visiting a vertex only when all, or
all but one, of its neighbours have been visited. For each vertex v of T , we compute S(v),
the number of subtrees of {Ti | 1 ≤ i ≤ |VG|} that are entirely contained in the subtree of
T consisting of v and all subtrees of T\{v} whose vertices have been previously visited, as
follows. If v is a leaf in T then S(v) is the number of elements of {Ti | 1 ≤ i ≤ |VG|} that
consist of the single vertex v; if v is the last vertex of T to be visited then S(v) = |VG|.
In all other cases, S(v) is the sum of the S values of its previously visited neighbours plus
|{Ti | v ∈ Ti and all other vertices of Ti have been visited}|.

Let x be the first vertex encountered with S(x) > |VG|/2. Each subtree of T\{x} entirely
contains at most |VG|/2 elements of {Ti | 1 ≤ i ≤ |VG|} since S(x) > |VG|/2 and since x is
the first such vertex to be visited.

Since all S values can be computed in time linear in |VT | +
∑|VG|

i=1 |Ti|, this process finds

vertex x ∈ VT with the desired property in O(|VT |+
∑|VG|

i=1 |Ti|) = O(P (|VG|) time, which is
linear in the size of the input, and polynomial in the size of the subtree filament graph.

Now, the approximation algorithm computes the exact solution for the cocompara-
bility graph, GC, the subgraph of G induced by {vi ∈ VG | x ∈ Ti}, and combines
it with the approximate solutions for each of the subgraphs Gj of G induced by {vi ∈
VG | Ti is entirely contained in Hj} for each subtree Hj of T\{x}, for all 1 ≤ j ≤ l, where
T\{x} is a forest consisting of l trees. The fact that each Gj has size at most |VG|/2 will be
important in the analysis of the approximation algorithms.

Let Opt (respectively OptC, Optj) be the size of an optimal solution to the problem in
G (respectively, GC, Gj).

This scheme will produce polynomial time approximation algorithms for problems with
certain properties. First we require that there exists a polynomial time exact algorithm for
the problem on cocomparability graphs. It is also necessary that there is a polynomial time
computable method for combining the subsolutions into a good overall solution. As part
of this, for minimization problems we require that Opt ≥ OptC and Opt ≥ Optj for all j,
1 ≤ j ≤ l. For maximization problems we require that Opt ≤ OptC +

∑l
j=1 Optj.

In the special case that the input to our algorithms is restricted to circle graphs, we make
use of an interval overlap representation in which the interval endpoints are located at the
integers from 1 to 2n. If we consider the set, S, of intervals containing a particular point p,
then the induced subgraph GS of G formed with the vertices corresponding to the intervals

9

in the set S is a permutation graph. To see this note that the only pairs of vertices in GS
that are not adjacent correspond to a pair of intervals where one contains the other. Thus
GS, the complement of GS, is an interval containment graph. It has long been known that
a graph is an interval containment graph if and only if it is a permutation graph [5], thus
GS is a permutation graph. That GS is a permutation graph then follows from the fact that
the complement of a permutation graph is also a permutation graph [12].

The general divide-and-conquer scheme for the approximation algorithm on a circle graph
G = (V, E) proceeds as above, with the difference that we partition V into only three parts:
all vertices which correspond to intervals containing the point q = n + 0.5 are placed in a
set C, all vertices corresponding to intervals completely to the left of q are placed in a set
L, and all vertices corresponding to intervals completely to the right of q are placed in a set
R. We have |L| ≤ |VG|/2 and |R| ≤ |VG|/2, and we know that the subgraph induced by
the vertices in C, GC, is a permutation graph. The algorithm combines an exact solution
for the problem on GC with recursively computed approximate solutions to the problem in
the subgraphs induced by L and R, GL and GR, respectively. In this case, our algorithms
may be considered to be robust by virtue of the polynomial time recognition algorithm of
[21]. In addition, we may obtain faster approximation algorithms in this case because the
partitioning can be done in linear time in the size of the input graph, and since the exact
algorithms on permutation graphs may be faster than those available for the larger class of
cocomparability graphs.

We note that the general divide-and-conquer approximation approach may be applied to
other graph classes. Indeed, in the case of boxicity two graphs, the approach has been used
to achieve O(log n) approximation algorithms for the maximum independent set problem [1]
and the clique cover problem [19].

The decision versions of all of the problems that we consider are known to be NP-complete
on circle graphs and therefore on subtree filament graphs, and polynomially solvable on
cocomparability graphs.

3.1 The clique cover problem

As our first example we show how the divide-and-conquer scheme can produce a log n-
approximation algorithm for the clique cover problem on subtree filament graphs. The NP-
completeness of the decision version of this problem on circle graphs was shown in Section
2. For general graphs the problem is not approximable within |V | 17−ε for any ε > 0 [2].

Since GC is a cocomparability graph, we have OptC equal to the size of a maximum
independent set in GC. Thus, since any independent set in GC is also an independent set
in G, Opt ≥ OptC. Also since no clique can contain vertices of Gi and Gj where i 6= j, we
have that Opt ≥ ∑l

j=1 Optj.
If G is not small the clique cover for G is formed as the union of the exact clique cover

for GC and the log n-approximate clique covers of Gj for all j, 1 ≤ j ≤ l.

Theorem 3.1 The algorithm produces a log n-approximate clique cover for a subtree fila-
ment graph G in O(nP (n) + n3) time and for a circle graph in O(n log n log log n) time.

10

Proof. We show by induction on n that the algorithm produces a log n-approximate clique
cover. If n is small then the algorithm produces an optimal clique cover. Otherwise consider
an n vertex subtree filament graph and assume that for smaller subtree filament graphs the
algorithm does produce a solution of size at most log n times the size of the optimal solution.
Since the algorithm combines log n-approximate solutions for the Gjs for all j, 1 ≤ j ≤ l,
with an optimal solution for GC, the size of the clique cover produced for G is at most

OptC +
l∑

j=1

log |Vj|Optj

Since each Gj, 1 ≤ j ≤ l, has at most n/2 vertices, the size of the approximate clique
cover for G is at most

OptC + log(n/2)
l∑

j=1

Optj

We also have Opt ≥ OptC and Opt ≥ ∑l
j=1 Optj. Therefore, the algorithm returns a

solution of size at most

Opt + log(n/2)Opt = log n ·Opt

We now consider the running time of the algorithm. If n is less than some constant
then the running time, f(n), is bounded above by a constant. Otherwise f(n) ≤ P (n) +
cn2 +

∑l
j=1 f(|Vj|), where c is a constant, as the clique cover problem on cocomparability

graphs can be solved in linear, that is, O(n2) time [22]. Solving the recurrence yields f(n) ∈
O(nP (n) + n3).

When the input is restricted to circle graphs, the algorithm has the same approximation
ratio but runs in O(n log n log log n) time, since the partitioning can be done in linear time
and the clique cover problem on permutation graphs can be solved in O(n log log n) time
[22]. 2

3.2 The vertex colouring problem

A (vertex) colouring of a graph is an assignment of colours to vertices such that no pair of
adjacent vertices is assigned the same colour. The circle graph colouring problem was shown
to be NP-complete in 1980 [7]. Using the general divide-and-conquer scheme we now present
a log n-approximation algorithm for the problem of colouring a subtree filament graph with
the minimum number of colours. For general graphs the problem is not approximable within
|V | 17−ε for any ε > 0 [2]. The colours assigned by an optimal colouring for G will be a
feasible colouring for GC and for each Gj, 1 ≤ j ≤ l. We therefore have Opt ≥ OptC and
Opt ≥ Optj for all j, 1 ≤ j ≤ l.

If G is not small the approximate colouring for G contains the recursively computed
approximate colourings for Gj, 1 ≤ j ≤ l, each independently using colours beginning from
1. Altogether this partial colouring of G requires at most maxl

j=1 log |Vj|Optj colours. An

11

optimal colouring for GC is computed, but the colours for vertices in GC are renamed to
begin at maxl

j=1 log |Vj|Optj + 1.

Theorem 3.2 The algorithm produces a log n-approximate colouring for a subtree filament
graph G in O(nP (n) + n

7
2) time and for a circle graph in O(n log n log log n) time.

Proof. We show by induction on n that the algorithm produces a colouring for G using at
most log n ·Opt colours. If n is small the algorithm produces a colouring with the minimum
number of colours. Otherwise consider an n vertex subtree filament graph and assume that
for smaller subtree filament graphs the algorithm will produce a colouring using at most
log n times the minimum number of colours.

The algorithm produces a legal colouring with no more than
OptC + maxl

j=1 log |Vj|Optj colours. Since each |Vj| is less than or equal to n/2, this
is no more than OptC + log(n/2) maxl

j=1 Optj. We also have Opt ≥ OptC and Opt ≥
maxl

j=1 Optj. Therefore, the algorithm returns a solution of size less than or equal to
Opt + log(n/2)Opt = log n ·Opt.

The colouring problem can be solved optimally for cocomparability graphs in the time
required to solve the bipartite matching problem, that is, in O(

√
nm), or O(n

5
2), time [14].

To consider the running time, f(n), of the approximation algorithm, we have f(n) ≤ c2 if

n ≤ c1, and f(n) ≤ P (n)+ c3n
5
2 +

∑l
j=1 f(|Vj|) otherwise, where c1, c2, and c3 are constants.

Resolving the recurrence implies that f(n) ∈ O(nP (n)+n
7
2). For circle graphs, the algorithm

runs in O(n log n log log n) time. 2

3.3 The maximum k-colourable subgraph problem

Given a subtree filament graph G and integer k, the problem is to find a vertex-induced
subgraph H of G which is k-colourable and contains the maximum number of vertices. This
problem is NP-complete for circle graphs since it contains the vertex colouring problem as a
special case. In addition, Cong and Liu [4] have shown that this problem, on circle graphs,
is NP-complete for any fixed k ≥ 2. They also have shown that this problem is equivalent
to the k-layer topological via minimization problem of circuit design [4] when the routing
region is a switchbox and each net is a two-terminal net. We now use the general divide-
and-conquer scheme to produce an approximation algorithm for the maximum k-colourable
subgraph problem in subtree filament graphs. For general graphs the problem is as hard to
approximate as maximum independent set [20]; it is not approximable to within |V |1−ε for
any ε > 0.

The optimal solution for G cannot include more vertices from GC, respectively Gj, than
the optimal solution for GC, respectively Gj. Thus we have that Opt ≤ OptC +

∑l
j=1 Optj

or equivalently Opt−OptC ≤ ∑l
j=1 Optj.

If G is not small the approximate k-colourable subgraph for G will consist of the larger
of either (1) the exact optimal solution for GC or (2) the union of the approximate solutions
for Gj, for all j, 1 ≤ j ≤ l.

12

Theorem 3.3 The algorithm produces a 1
log n

-approximate solution to the problem of pro-

ducing the maximum k-colourable subgraph of a subtree filament graph G in O(nP (n)+kn3)
time. For circle graphs, if k is small the algorithm runs in O(kn log2 n) time and, for large

k, O(n
3
2 log2 n) time is sufficient.

Proof. We show by induction on n that the algorithm produces a k-colourable subgraph of
G containing at least 1

log n
times the optimal number of vertices. If n is small the algorithm

produces a k-colourable subgraph with the maximum number of vertices. Otherwise consider
an n vertex subtree filament graph and assume that for smaller subtree filament graphs
the algorithm produces a k-colourable subgraph of size at least 1

log n
times the size of the

maximum k-colourable subgraph.
The algorithm produces a solution containing at least max[OptC,

∑l
j=1(Optj · 1

log |Vj |)]

vertices. Since |Vj| ≤ n/2 for all j, 1 ≤ j ≤ l, the size of the solution is at least
max[OptC, 1

log(n/2)
· ∑l

j=1 Optj]. We also have Opt − OptC ≤ ∑l
j=1 Optj. Therefore, the

algorithm returns a solution of size at least max[OptC, Opt−OptC
log(n/2)

].

If OptC ≥ (Opt−OptC)
log(n/2)

then OptC · log(n/2) + OptC ≥ Opt; therefore OptC · log n ≥ Opt

and OptC ≥ Opt
log n

. Thus in this case the solution used is greater than or equal to Opt
log n

.

The remaining case has OptC < (Opt−OptC)
log(n/2)

. This is equivalent to OptC < Opt
log n

. The
algorithm uses the union of the approximate solutions for Gj, for all 1 ≤ j ≤ l, as the

overall solution. This solution will be of size at least (Opt−OptC)
log(n/2)

≥ (Opt− Opt
log n

)

log(n/2)
=

Opt(1− 1
log n

)

log(n/2)

=
Opt[

(log n−1)
log n

]

log(n/2)
= Opt

log n
.

An O(kn2) algorithm to solve this problem optimally on cocomparability graphs appears
in [9]. Thus, the approximation algorithm runs in time f(n) ≤ P (n) + ckn2 +

∑l
j=1 f(|Vj|),

where c is a constant. Thus f(n) ∈ O(nP (n) + kn3).
A maximum k-colourable subgraph of a permutation graph can be found in O(kn log n) or,

for large k, in O(n
3
2 log n) time [6]. For small k this gives a recurrence f(n) ≤ 2f(n

2
)+cknlogn

with solution f(n) ∈ O(kn log2 n) and for large k the recurrence is f(n) ≤ 2f(n
2
) + cn

3
2 log n

with solution O(n
3
2 log2 n). 2

3.4 The maximum h-coverable subgraph problem

An induced subgraph of graph G is h-coverable if its vertices can be partitioned into at most
h cliques. In the maximum h-coverable subgraph problem, the goal is to find an h-coverable
subgraph containing the maximum number of vertices. The NP-completeness of this problem
on subtree filament graphs follows from the NP-completeness of clique cover on circle graphs.
For general graphs the problem is as hard to approximate as maximum independent set [20];
it is not approximable within |V |1−ε for any ε > 0.

An O(|V |3 log |V |) algorithm to solve this problem exactly on cocomparability graphs
appears in [9].

13

As in Gavril [9], for graph G = (V, E) and for 0 ≤ h ≤ |V |, we let dh(G), be the size
of a maximum h-coverable subgraph of G. We assume that an h-coverable subgraph of size
at least 1

log n
times optimal can be computed for graphs having n < |V | vertices, for any h,

0 ≤ h ≤ n, and let dapx
h (G) be the size of an approximate maximum h-coverable subgraph of

graph G that is returned by the algorithm. In addition, we define two sequences of integers,
{hi|1 ≤ i ≤ l} and {h′

i|1 ≤ i ≤ l}. In both cases, the l elements of the sequence sum to h.

Let hi, 1 ≤ i ≤ l, be such that:

• 0 ≤ hi ≤ h, for all 1 ≤ i ≤ l,

•
l∑

i=1

hi = h, and

• over all {hi|1 ≤ i ≤ l} satisfying the two properties above, the following is maximized:

l∑
i=1

dapx
hi

(Gi)

For the second sequence, let h′
i, 1 ≤ i ≤ l, be such that:

• 0 ≤ h′
i ≤ h, for all 1 ≤ i ≤ l,

•
l∑

i=1

h′
i = h, and

• over all {h′
i|1 ≤ i ≤ l} satisfying the two properties above, the following is maximized:

l∑
i=1

dh′i
(Gi)

The approximation algorithm for G takes the larger of the exact value for OptC and the
largest sum of approximate values of the Gi’s, specifically:

max [OptC,
l∑

i=1

dapx
hi

(Gi)]

The quantity

l∑
i=1

dapx
hi

(Gi)

14

can be computed as follows:

We compute apxk(i, j), the size of an approximate maximum k-coverable subgraph of
Gi ∪ Gi+1 ∪ . . . ∪ Gj, for all 1 ≤ i ≤ j ≤ l, 0 ≤ k ≤ h, by dynamic programming based on
the following:

1. apx0(i, j) = 0 for all 1 ≤ i ≤ j ≤ l

2. apxk(i, i)(= dapx
k (Gi)) can be computed, by assumption, for all 1 ≤ i ≤ l and all 1 ≤

k ≤ h

3. For all 1 ≤ i < j ≤ l, k > 0: apxk(i, j) = max0≤k′≤k[apxk′(i, j − 1) + apxk−k′(j, j)]

4. Finally, the value apxh(1, l) is the desired quantity

Theorem 3.4 The algorithm produces a 1
log n

-approximate solution to the maximum h-coverable

subgraph problem of subtree filament graph G in O(hnP (n) + hn4 log n) time. For circle

graphs, the algorithm runs in O(h2n log2 n) time for small h and in O(hn
3
2 log2 n) time for

large h.

Proof. Let G = (V, E) be a subtree filament graph having n vertices and assume that for
smaller subtree filament graphs the algorithm produces an h-coverable subgraph of size at
least 1

log n
times the size of the maximum h-coverable subgraph.

The algorithm returns a value which is

= max[OptC,
l∑

i=1

dapx
hi

(Gi)]

≥ max[OptC,
l∑

i=1

dapx
h′i

(Gi)]

≥ max[OptC,
l∑

i=1

dh′i
(Gi) ·

1

log |Vi|
]

≥ max[OptC,
1

log(n/2)
·

l∑
i=1

dh′i
(Gi)]

by the choice of the hi and h′
i sequences, and since |Vi| ≤ n/2, for all 1 ≤ i ≤ l. By

considering an optimal solution restricted to GC and to ∪l
i=1Gi, we see that we also have

Opt ≤ OptC +
l∑

i=1

dh′i
(Gi)

Therefore, the algorithm returns a solution of size

≥ max[OptC,
Opt−OptC

log(n/2)
]

15

which is greater than or equal to Opt
log n

by the same reasoning as that used in the proof of
Theorem 3.3.

The running time of the algorithm can be expressed as f(n) ≤ P (n) + n3 log n +∑l
i=1(f(|Vi|) ·h)+ l2h, that is, f(n) ∈ O(hnP (n)+hn4 log n). Since a maximum h-coverable

subgraph in G is a maximum k-colourable subgraph in G, these two problems have the same
time complexity for permutation graphs. Thus, for circle graphs, the approximation algo-
rithm runs in time f(n) ≤ n + chn log n + 2hf(n/2), that is, f(n) ∈ O(h2n log2 n), for small

h, and f(n) ≤ n + cn
3
2 log n + 2hf(n/2), that is, f(n) ∈ O(hn

3
2 log2 n), for large h. 2

3.5 Improved approximation algorithm for clique cover in circle
graphs

In the case of circle graphs for the clique cover problem we are able to improve the approx-
imation factor from log n to log Opt by dividing the intervals in the middle of the optimal
solution rather than at the fixed position n + 0.5. Since we do not know the optimal solu-
tion in advance we need to try all possible dividing positions. To do this we use dynamic
programming.

Let Gij, 1 ≤ i < j ≤ 2n be the induced subgraph of G containing the vertices of G whose
corresponding intervals lie completely within the closed interval [i, j]. Let Oij be the size
of the optimal clique cover of Gij. Let Gk

ij, i ≤ k ≤ j, be the permutation subgraph of Gij

consisting of the induced subgraph of Gij containing the vertices corresponding to intervals
that contain the integer k. Let Ok

ij be the size of the optimal clique cover of Gk
ij. Since Gk

ij

is an induced subgraph of Gij, we have Ok
ij ≤ Oij for all i ≤ k ≤ j.

The dynamic programming algorithm computes CCij, the size of an approximate clique
cover for Gij, for all 1 ≤ i < j ≤ n. If j − i ≤ 2 then Gij consists of at most one vertex and
accordingly zero or one can be placed in CCij as the size of the optimal clique cover of Gij.
Otherwise, the algorithm computes

CCij = min
i<k<j

[CCi,(k−1) + CC(k+1),j + Ok
ij]

in increasing order of j − i.

Theorem 3.5 The dynamic programming algorithm computes the size of a log Opt-approximation
to the clique cover problem where Opt is the size of an optimal clique cover. This is done in
O(n3 log log n) time.

Proof. The proof is by induction on j−i that CCij contains the size of a log Oij-approximate
clique cover of Gij. If j− i ≤ 2 then CCij contains the size of an optimal clique cover of Gij.
Otherwise consider the computation of CCij where j − i = q > 2 and assume that all CCij

for j − i < q have been correctly computed.
One way to describe the location of a clique in Gij is by the coordinate of the leftmost

right endpoint of an interval corresponding to a vertex in the clique. All of the intervals
corresponding to the clique will contain this point. See figure 4. In the computation of CCij

16

1

Figure 4: All of the intervals corresponding to the vertices of a clique contain the leftmost
right endpoint of such an interval

all possible k are considered between i and j. In particular the value of k corresponding to
the median value, k∗, of the leftmost right endpoint of the cliques in an optimal solution
for Gij is examined. This choice of k∗ implies that Oi,(k∗−1) ≤ Oij

2
and O(k∗+1),j ≤ Oij

2
. The

properties of k∗ and the fact that Ok
ij ≤ Oij, for i < k < j ensure that

CCij ≤ Oi,k∗−1 log(Oi,(k∗−1)) + Ok∗+1,j log(Ok∗+1,j) + Ok∗
ij

≤ Oij

2
log(Oij

2
) + Oij

2
log(Oij

2
) + Oij

= Oij log(Oij

2
) + Oij = Oij[log(Oij

2
) + 1]

= Oij[log(Oij)− 1 + 1] = Oij log Oij

as required.
The algorithm computes n2 of the Cij, and each of these requires O(n log log n) time to

compute. Overall the algorithm runs in O(n3 log log n) time. 2

Acknowledgment

This work was supported financially by the Natural Sciences and Engineering Research
Council of Canada. The authors thank two anonymous referees for suggestions that improved
the paper.

References

[1] P.K. Agarwal, M. van Kreveld and S. Suri, Label placement by maximum independent
set in rectangles. Computational Geometry: Theory and Applications, 11(1998), 209-
218.

17

[2] M. Bellare, O. Goldreich and M. Sudan, Free bits, PCPs and non-approximability -
towards tight results, SIAM Journal on Computing, 27(1998), 804-915.

[3] E. Čenek and L. Stewart, Maximum independent set and maximum clique algorithms
for overlap graphs, Discrete Applied Mathematics, 131 (2003), 77-91.

[4] J. Cong and C.L. Liu, On the k-layer Planar Subset and Topological Via Minimization
Problems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 10 (1991), 972-981.

[5] B. Dushnik and E.W. Miller, Partially Ordered Sets, American Journal of Mathematics,
63(1941), 600-610.

[6] S. Felsner and L. Wernisch, Maximum k-chains in planar point sets: Combinatorial
structure and Algorithms, SIAM Journal on Computing, 28(1998), 192-209.

[7] M.R. Garey, D.S. Johnson, G. L. Miller, and C.H. Papadimitriou, The complexity of
coloring circular arcs and chords, SIAM Journal on Algebraic and Discrete Methods,
1(1980), 216-227.

[8] F. Gavril, Algorithms for a maximum clique and a maximum independent set in a circle
graph, Networks, 3(1973), 261-273.

[9] F. Gavril, Algorithms for maximum k-colorings and k-coverings of transitive graphs,
Networks, 17 (1987), 465-470.

[10] F. Gavril, Maximum weight independent sets and cliques in intersection graphs of fila-
ments, Information Processing Letters, 73 (2000), 181-188.

[11] F. Gavril, Perfect interval filament graphs, DIMACS technical report 2003-37, 2003.

[12] M.C. Golumbic Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York, 1980.

[13] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1(1981), 169-197.

[14] J.E. Hopcroft and R.M. Karp, An n
5
2 algorithm for maximum matchings in bipartite

graphs, SIAM Journal on Computing, 2(1973), 225-231.

[15] W.L. Hsu and K.H. Tsai, Linear time algorithms on circular-arc graphs, Information
Processing Letters, 40(1991), 123-129.

[16] D. Johnson, NP-completeness Column: An Ongoing Guide, Journal of Algorithms,
6(1985), 434-451.

18

[17] R.M. Karp, Reducibility among combinatorial problems, in R.E. Miller and J.W.
Thatcher (eds.) Complexity of Computer Computations, Plenum Press, 1972, New York,
85-103.

[18] J.M. Keil, The complexity of the domination problems in circle graphs, Discrete Applied
Mathematics, 42(1993), 51-63.

[19] F. Nielsen, Fast stabbing of boxes in high dimensions, Theoretical Computer Science,
246(2000), 53-72.

[20] A. Panconesi and D. Ranjan, Quantifiers and approximation, Theoretical Computer
Science, 107(1993), 104-163.

[21] J. Spinrad, Recognition of circle graphs, Journal of Algorithms, 16(1994), 264-282.

[22] J. Spinrad, Efficient Graph Representations, Fields Institute Monographs 19, American
Mathematical Society, 2003.

[23] C. A. Tovey, A simplified satisfiability problem, Discrete Applied Mathematics, 8(1984),
85-89.

[24] W. Unger, On the k-colouring of circle-graphs, STACS 88, 61-72, Lecture Notes in
Computer Science, 294, Springer, Berlin, 1988.

[25] W. Unger, The complexity of colouring circle graphs, STACS 92, 389-400, Lecture Notes
in Computer Science, 577, Springer, Berlin, 1992.

19

