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Abstract. We examine the bandwidth problem in circular-arc graphs, chordal graphs with a
bounded number of leaves in the clique tree, and k-polygon graphs (fixed k). We show that all of
these graph classes admit efficient approximation algorithms which are based on exact or approximate
bandwidth layouts of related interval graphs. Specifically, we obtain a bandwidth approximation
algorithm for circular-arc graphs that executes in O(n log2 n) time and has performance ratio 2, which
is the best possible performance ratio of any polynomial time bandwidth approximation algorithm
for circular-arc graphs. For chordal graphs with at most k leaves in the clique tree, we obtain a
performance ratio of 2k in O(k(n+m)) time, and our algorithm for k-polygon graphs has performance
ratio 2k2 and runs in time O(n3).
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1. Introduction. A layout of a graph G = (V,E) is an assignment of distinct
integers from {1, . . . , n} to the elements of V . Equivalently, a layout Lmay be thought
of as an ordering L(1), L(2), . . . , L(n) of V , where |V | = n. We shall use <L to denote
the ordering of the elements in a layout L. The width of a layout L, b(G,L), is the
maximum over all edges {u, v} of G of |L(u)− L(v)|. That is, it is the length of the
longest edge in the layout. The bandwidth of G, bw(G), is the minimum width over
all layouts. A bandwidth layout for graph G is a layout satisfying b(G,L) = bw(G).

The problem of finding the bandwidth of a graph has applications in sparse matrix
computations. An overview of the bandwidth problem is given in [5]. The minimum
bandwidth decision problem (Given a graph G = (V,E) and integer k, is bw(G) ≤
k?) is known to be NP-complete [27], even for trees having maximum degree 3 [15],
caterpillars with hairs of length at most 3 [26], and cobipartite graphs [22]. The
problem is polynomially solvable for caterpillars with hairs of length 1 and 2 [2],
cographs [18], graphs with few P4’s [24], and interval graphs [19, 25, 29].

To date there was not much known about the approximation hardness of the
bandwidth minimization problem for graphs in general. Recently, Feige presented
an approximation algorithm with performance ratio O(log9/2 n) [12]. Very recently,
Unger has shown in [30] that, assuming P�=NP, there is no polynomial time approx-
imation algorithm with constant performance ratio for the bandwidth minimization
problem for graphs, even when the inputs are restricted to a special class of trees
known as caterpillars of hairlength 3.
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Since the bandwidth minimization problem remains NP-complete for such simple
classes of graphs, and since no polynomial time algorithm for approximating the
bandwidth of general graphs, or even trees, to within a constant factor exists unless
P=NP, it is worthwhile to investigate approximation algorithms for this problem on
restricted classes of graphs. Some results in this direction have been presented in [22].
In this paper, we examine the bandwidth problem in circular-arc graphs, chordal

graphs with a bounded number of leaves in the clique tree, and k-polygon graphs
(fixed k). All of these graph classes admit efficient approximation algorithms which
are based on exact or approximate bandwidth layouts of related interval graphs.
Specifically, we obtain a bandwidth approximation algorithm for circular-arc

graphs that has performance ratio 2 and executes in O(n log2 n) time or performance
ratio 4 while taking O(n) time. For chordal graphs with at most k leaves in the clique
tree, we obtain a performance ratio of 2k in O(k(n+m)) time, and our algorithm for
k-polygon graphs has performance ratio 2k2 and runs in time O(n3).
Finally, it is worth mentioning that our approximation algorithm with perfor-

mance ratio 2 for circular-arc graphs has optimal performance ratio, since there is
no polynomial time bandwidth approximation algorithm for circular-arc graphs with
performance ratio 2− ε for any ε > 0 unless P=NP [30].

2. Preliminaries. For G = (V,E), we will denote |V | as n and |E| as m. We
sometimes refer to the vertex set of G as V (G) and the edge set as E(G). We let
N(v) denote the set of vertices adjacent to v. The degree of a vertex v, degree(v), is
the number of vertices adjacent to v. ∆(G) denotes the maximum degree of a vertex
in graph G. The subgraph of G = (V,E) induced by V ′ ⊆ V will be referred to as
G[V ′].
The following well-known lower bound on the bandwidth of a graph is in [6].
Lemma 1 (the degree bound [7]). For any graph G, bw(G) ≥ ∆(G)/2.
The distance in graph G = (V,E) between two vertices u, v ∈ V , dG(u, v), is the

length of a shortest path between u and v in G. For any graph G = (V,E), the dth
power of G, Gd, is the graph with vertex set V and edge set {{u, v}|dG(u, v) ≤ d}.

Lemma 2 (the distance bound [22], also attributed in part to [7] in [5]). Let G
and H be graphs with the same vertex set V , such that E(G) ⊆ E(H) ⊆ E(Gd) or
E(H) ⊆ E(G) ⊆ E(Hd) for an integer d ≥ 1, and let L be an optimal layout for H,
i.e., b(H,L) = bw(H). Then L approximates the bandwidth of G by a factor of d,
i.e., b(G,L) ≤ d · bw(G).
Many references, including [17], contain comprehensive overviews of the many

known structural and algorithmic properties of interval graphs.
Definition. A graph G = (V,E) is an interval graph if there is a one-to-one

correspondence between V and a set of intervals of the real line such that, for all
u, v ∈ V , {u, v} ∈ E if and only if the intervals corresponding to u and v have a
nonempty intersection.
A set of intervals whose intersection graph is G is termed an interval model for

G. Many algorithms exist which, given a graph G = (V,E), determine whether or
not G is an interval graph and, if so, construct an interval model for it in O(n +m)
time (see, for example, [4, 8]). We assume that an interval model is given by a left
endpoint and a right endpoint for each interval, namely, left(v) and right(v) for all
v ∈ V . Furthermore, we assume that we are also given a sorted list of the endpoints
and that the endpoints are distinct. We will sometimes blur the distinction between
an interval and its corresponding vertex, when no confusion can arise.
Polynomial time algorithms for computing the exact bandwidth of an interval
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graph have been given in [19, 25, 29]. For an interval graph with n vertices, Kleitman
and Vohra’s algorithm solves the decision problem (bw(G) ≤ k?) in O(nk) time and
can be used to produce a bandwidth layout in O(n2 log n) time, and Sprague has
shown how to implement Kleitman and Vohra’s algorithm to answer the decision
problem in O(n log n) time and thus produce a bandwidth layout in O(n log2 n) time.
The following two lemmas demonstrate that, for interval graph G, a layout L

with b(G,L) ≤ 2 · bw(G) can be obtained in time O(n), assuming the sorted interval
endpoints are given. The second proof is similar to the first and is therefore omitted.

Lemma 3. Given an interval graph G, the layout L consisting of vertices ordered
by right endpoints of corresponding intervals has b(G,L) ≤ 2 · bw(G).

Proof. Let L be the layout of vertices ordered by right interval endpoints. We first
observe that, for all u, v ∈ V such that {u, v} ∈ E and u <L v, all vertices between u
and v in L are adjacent to v. Now consider a longest edge in L, i.e., an edge {u, v}
such that |L(u) − L(v)| = b(G,L). Assume, without loss of generality, that u <L v.
From the previous observation, it must be that degree(v) ≥ L(v) − L(u) = b(G,L).
Now the degree bound (Lemma 1) implies bw(G) ≥ b(G,L)/2.

Lemma 4. Given an interval graph G, the layout L consisting of vertices ordered
by left endpoints of corresponding intervals has b(G,L) ≤ 2 · bw(G).
We will use the following lemma in subsequent sections of the paper.
Lemma 5. Let I be a set of intervals on the real line corresponding to interval

graph G = (V,E). Let p1 be a point on the line such that at least one interval
endpoint is to the left of p1 and only left endpoints are to the left of p1. Let p2 be a
point on the line such that at least one interval endpoint is to the right of p2 and only
right endpoints are to the right of p2. Let C1 be the set of all intervals that contain
p1, and let C2 be the set of all intervals that contain p2. If L is a layout for G in
which vertices are ordered by increasing left endpoints of corresponding intervals or
by increasing right endpoints, or if L is a layout produced by Kleitman and Vohra’s
bandwidth algorithm [19], then
(i) for all v ∈ C1: {v, L(1)} ∈ E, and
(ii) for all v ∈ C2: {v, L(n)} ∈ E.
Proof. Part (i) for the left endpoint ordering follows from the fact that L(1) ∈ C1

and C1 is a clique. In the other two layouts, L(1) is the interval with the smallest
right endpoint. This interval is either in C1 or is contained in all intervals of C1.
Thus, (i) holds for the three layouts.
Part (ii) follows immediately for the right endpoint layout, since L(n) ∈ C2. In

the left endpoint order, L(n) is either in C2 or contained in all intervals of C2, implying
(ii).
Finally, we prove (ii) for Kleitman–Vohra layouts. Please refer to the algorithm

of [19]. Consider the moment when the vertex of C2 with largest left endpoint, c, is
labelled. If only vertices of C2 remain to be labelled, then the last vertex will be an
element of C2, and we are done. Otherwise, there is an interval i with a smaller right
endpoint that remains to be labelled. This implies that c ∈ Sq

j0
was chosen in Step 8,

and i /∈ Sq
j0
. Since i /∈ Sq

j0
, we have q + j0 < n. Thus, M(c) < n, and there is some

vertex already labelled that is adjacent to c but not to i; otherwise, we contradict the
current choice of c. Thus, the interval i is properly contained in c and, therefore, i
is properly contained in all intervals corresponding to vertices of C2. This completes
the proof.

3. Circular-arc graphs. Circular-arc graphs are the intersection graphs of arcs
on a circle. Thus, a graph G = (V,E) is a circular-arc graph if and only if it has a (not
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necessarily unique) circular-arc model or representation, consisting of a set of arcs on
a circle, such that, for all u, v ∈ V , {u, v} ∈ E if and only if the arcs corresponding to
u and v have a nonempty intersection. In such a model, we assume, without loss of
generality, that the arc endpoints are distinct, and we label the endpoints from 1 to
2n in clockwise order around the circle, starting at an arbitrary endpoint. Thus, each
vertex v ∈ V corresponds to an arc given by its counterclockwise endpoint, ccw(v),
and its clockwise endpoint, cw(v). We refer to any segment of the circle by its two
endpoints and the direction of traversal; i.e., [p1, p2]cw refers to the closed arc covered
by a clockwise traversal beginning at p1 and ending at p2. The arc [p1, p2]ccw is the
set of all points in a counterclockwise traversal from p1 to p2, and parentheses will
indicate that the arc is open at one or both ends. Note that, for any two points on the
circle, p1 and p2, the arcs [p1, p2]cw and [p1, p2]ccw cover the entire circle, and their
intersection is {p1, p2}.
Eschen and Spinrad [11] have given an O(n2) algorithm which determines whether

or not an n-vertex graph is a circular-arc graph. If so, the algorithm produces a
circular-arc model for the graph. Our algorithms assume that the input circular-arc
graph is given as a set of arcs on a circle. We are not aware of any previous results
on the bandwidth of circular-arc graphs.

Henceforth, we will refer to a set of 2n scanpoints on the circle, none of which
is an arc endpoint, such that exactly one of these points is between each consecutive
pair of arc endpoints. We shall label these points from 1 to 2n in clockwise order,
beginning at any one.

Our bandwidth approximation algorithm works as follows for a circular-arc graph
G. Roughly speaking, we cut the circular-arc representation in half to form two equal-
sized interval graphs, compute exact or approximate bandwidth layouts for the two
interval graphs, and then mix the two layouts to form an approximate bandwidth
layout for G.

Let G = (V,E) be a circular-arc graph with corresponding circular-arc represen-
tation. The first step is to find a scanpoint p on the circle such that |C1 ∪ C2 ∪A| =
|C1 ∪ C2 ∪ B|, where C1 is the set of arcs that contain scanpoint 1, C2 is the set of
arcs that contain scanpoint p, A is the set of arcs entirely contained in (1, p)cw, and
B is the set of arcs entirely contained in (1, p)ccw. Note that C1 ∪ C2 ∪ A ∪ B = V .
We will use scanpoints 1 and p to cut the circle and create two equal-sized interval
graphs.

Algorithm 1. Procedure FINDp.
Let C1 ← C2 ← all arcs that contain scanpoint 1; A← ∅; B ← V \ C1

a← |C1|; b← n { a = |C1 ∪ C2 ∪A|; b = |C1 ∪ C2 ∪B| }
p← 1
repeat until a = b or p = 2n

{ Invariant: a ≤ b}
{ Variant: 2n− p}

p← p+ 1
if the endpoint between p− 1 and p is a ccw endpoint (say of arc i) then

C2 ← C2 ∪ {i}
if i �∈ C1 then

B ← B \ {i}; a← a+ 1
if between p− 1 and p is a cw endpoint (of arc i) then

C2 ← C2 \ {i}
if i �∈ C1 then
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Fig. 1. A set of arcs on a circle and the corresponding circular-arc graph.

A← A ∪ {i}; b← b− 1
{ Now C2 is the set of arcs that contain point p}
{|C1 ∪ C2 ∪A| = |C1 ∪ C2 ∪B|}.
Claim 1. Procedure FINDp will terminate with a = b.

Proof. We leave it to the reader to verify the stated invariant and variant. If
the loop terminates with p = 2n, then all arc endpoints will have been examined.
For all arcs, except those of C1, a will have been incremented by 1 and b will have
been decremented by 1. Let ai and af be the initial and final values, respectively, of
variable a and bi and bf the initial and final values, respectively, of variable b. Upon
termination of the loop with p = 2n, af = ai + n − |C1| = |C1| + n − |C1| = n and
bf = bi− (n−|C1|) = n−n+ |C1| = |C1|. However, then bf < af (assuming C1 �= V ),
contradicting our invariant.

We may assume that A and B will be nonempty; otherwise, G can be partitioned
into two cliques, one of which must have size at least n/2, implying (by Lemma 1)
bw(G) ≥ n/2−1. Thus, any layout in which the first and last vertices are not adjacent
is a 2-approximation.

A set of arcs on a circle and the corresponding graph are shown in Figure 1,
along with possible choices of scanpoints 1 and p. In this example, C1 = {a, b, c},
C2 = {a, b, g, h}, A = {d, e, f}, and B = {i, j, k}.
We now describe how to construct two interval subgraphs of G by cutting the

circle at scanpoints 1 and p. We wish to cut the circle and the arcs of C1 and C2

at scanpoints 1 and p, producing two line segments, each with a set of intervals that
correspond to an interval graph. However, if any arc, say v, contains both scanpoints
1 and p, then it covers one entire part of the circle (i.e., [1, p]cw or [1, p]ccw) and
appears as two disconnected pieces in the other part. Thus, this second part of the
circle may not correspond to an interval subgraph, as vertex v is represented by two
disconnected intervals. We eliminate this problem by shrinking v’s arc on the circle
so that it no longer contains p and thus v is removed from C2. The altered set of
arcs might not represent all of the edges of G; specifically, some edges between v
and elements of A (or B) may be missing. Let E′ denote edges of G that are not
represented by the changed arcs. Note that the sets C1 ∪ C2 ∪ A and C1 ∪ C2 ∪ B
remain unchanged. These alterations, applied to the circular-arc model of Figure 1,
yield the set of arcs shown in Figure 2. After the alterations, C2 is changed to {g, h},



440 D. KRATSCH AND L. STEWART

1

p

a

d

b

c

i

fh

g e

k

j

Fig. 2. Altering the circular-arc model.
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Fig. 3. Cutting the circular-arc model to form two interval graphs.

C1, A, and B remain unchanged, and E′ = {{a, f}, {b, i}}.
Now we can cut the circle and the arcs of C1 and C2 at scanpoints 1 and p,

producing two line segments, [1, p]cw and [1, p]ccw. The arcs of the circular-arc model
become intervals on the two lines. Let IA (respectively, IB) be the resulting set of
intervals on the line segment [1, p]cw (respectively, [1, p]ccw). We may assume that the
intervals of C1∪C2 are altered slightly in IA and in IB without changing intersections,
so that interval endpoints are distinct.
Let GA = (VA, EA) and GB = (VB , EB) be the intersection graphs of IA and IB ,

respectively. Now GA and GB are both interval graphs and (not necessarily induced)
subgraphs of G. Furthermore, |VA| = |VB |, and EA∪EB∪E′ = E. Figure 3 illustrates
this process for the example of Figures 1 and 2.
Our method for obtaining an approximate bandwidth layout for a circular-arc

graph is to first compute exact or approximate bandwidth layouts, LA and LB , for
GA and GB , respectively, and then mix the two layouts.
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Different methods of computing LA and LB yield different approximation bounds
and time complexities for our algorithm.
Regardless of how we obtain LA and LB , the mixing is done as follows.
Let k = |C1 ∪ C2 ∪A| = |C1 ∪ C2 ∪B|. Given

LA = LA(1), LA(2), . . . , LA(k)

and

LB = LB(1), LB(2), . . . , LB(k)

we begin by producing

LM = LA(1), LB(1), LA(2), LB(2), . . . , LA(k), LB(k).

For convenience, we will refer to elements of LA as having the color red and
elements of LB as having the color blue. Notice that LM will contain two copies
of each vertex of C1 ∪ C2—one red and one blue. For each v ∈ C1 ∪ C2, we shall
distinguish between the two copies of v in LM as follows: the red copy will be referred
to as vred and the blue copy as vblue. Each vertex of A ∪B occurs only once in LM .
From LM , we produce L by deleting the leftmost copy of each vertex of C1 and

the rightmost copy of each vertex of C2. Recall that we constructed C1 and C2 so
that no vertex appears in both. Thus, L is a layout for G. We now prove a bound on
the width of L in terms of the widths of LA and LB .

Lemma 6. Let G = (V,E) be a circular-arc graph, and let IA, IB, GA, and GB

be constructed, as previously described, from a circular-arc model for G. Let LA and
LB be layouts for GA and GB, respectively, satisfying
• for all v ∈ C1: {v, LA(1)}, {v, LB(1)} ∈ E, and
• for all v ∈ C2: {v, LA(k)}, {v, LB(k)} ∈ E.

Let LM and L be obtained from LA and LB as previously described. Then

b(G,L) ≤ 2 ·max[b(GA, LA), b(GB , LB)].

Proof. We will consider an arbitrary edge of G, {u, v} ∈ E. We first observe that
if u and v have the same color, say red, then |L(u) − L(v)| ≤ |LM (u) − LM (v)| =
2 · |LA(u)−LA(v)|. Such edges, therefore, cannot contradict the claim. We shall refer
to such edges as red edges or blue edges, depending upon the color of the endpoints.
Similarly, any edge for which we can find a longer red or blue edge in LM cannot
contradict the claim.
Consider the edge {u, v} ∈ E, where u <L v. We must show that |L(u)−L(v)| ≤

2 ·max[b(GA, LA), b(GB , LB)].
Case 1. The intervals corresponding to u and v intersect in IA or IB or both.
Hence {u, v} ∈ E \ E′. Suppose, without loss of generality, that the intervals

intersect in IA. If u and v are both red, then our earlier observation applies, and we
are done.
Next, suppose that u is red and v is blue. When L was formed from LM , vred

must have been deleted. If vred is to the right of vblue in LM , then there is a longer
red edge {u, v} in LM , and this completes the proof. Suppose vred is to the left of
vblue in LM . This implies that v ∈ C1, since the leftmost copy was deleted from LM

to form L. However, then vblue is adjacent to the first blue vertex in LM , implying
that |L(v)− L(u)| ≤ |LM (vblue)− LM (2)| ≤ 2 · |LB(v)− LB(1)|.
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Now consider the case where u is blue and v is red. The red copy of u has been
deleted. If ured is to the left of ublue in LM , then there is a longer red edge in LM .
Otherwise, we have u ∈ C2. However, then ublue is adjacent to the last vertex of LM ,
giving a longer blue edge.

Finally, we consider the case where u and v are both blue. If the corresponding
intervals intersect in IB , then we are done by the previous argument. Otherwise, one
of u and v is in C1 and the other is in C2. If u ∈ C1 and v ∈ C2, then the red edge
{ured, vred} is longer in LM than {u, v} in L. If u ∈ C2 and v ∈ C1, then ublue is
adjacent to the last vertex of LM , giving a blue edge in LM longer than {u, v} in L.

Case 2. The intervals corresponding to u and v intersect neither in IA nor in IB .

Hence {u, v} ∈ E′. Then it must be that exactly one of the vertices corresponds
to an arc which, in the original circular-arc representation, covers all of one side of
the circle and extends into the other side covering both scanpoints 1 and p. Assume,
without loss of generality, that the arc covers [1, p]cw and appears as two disconnected
arcs in [1, p]ccw. In constructing IB , the part of the arc that covered p and extended
into [1, p]ccw was removed. This must be the area where the arcs corresponding to
u and v intersected in the original circular-arc representation. This implies that the
other arc is in B, and it therefore occurs as a blue vertex only in LM and in L.

Suppose that u is the arc that was altered. Then u ∈ C1 and v ∈ B. Thus, it is
the rightmost copy of u that remains in L. The red copy of u in LM is adjacent to all
other red vertices, including LM (2k − 1). Thus, if u in L is red, then there is a red
edge in LM that is longer than the {u, v} edge in L. If u in L is blue, then ured has
a longer edge in LM to LM (2k − 1).
Now consider the case where v was altered. Then v ∈ C1 and u ∈ B. The

rightmost copy of v from LM remains in L, and the red copy of v is adjacent to
all other red vertices in LM , including LM (1). If v in L is red, then the red edge
{v, LM (1)} is longer than the edge {u, v} in L. If v is blue in L, then v is adjacent
to LM (2) by Lemma 5 and the construction of LM ; thus, there is a longer blue
edge.

Theorem 7. The bandwidth of a circular-arc graph can be approximated to within
a factor of four in O(n) time and to within a factor of two in O(n log2 n) time.

Proof. We have three approximation algorithms for approximating the bandwidth
of a circular-arc graph, namely, the algorithm previously described in which

(i) LA and LB are layouts of vertices ordered by left endpoints of intervals,

(ii) LA and LB are layouts of vertices ordered by right endpoints of intervals, or

(iii) LA and LB are layouts computed by Kleitman and Vohra’s algorithm.

Algorithms (i) and (ii) have time complexity O(n), provided the sorted arc end-
points are given, and they output a layout L that satisfies b(G,L) ≤ 2·max[b(GA, LA),
b(GB , LB)] ≤ 4 · bw(G).
Algorithm (iii) requiresO(n log2 n) time but produces a layout L satisfying b(G,L) ≤

2 ·max[b(GA, LA), b(GB , LB)] ≤ 2 · bw(G).
These performance ratios follow from Lemmas 5 and 6 and the fact that any

subgraph of graph G has bandwidth not larger than bw(G).

4. Chordal graphs with clique trees having a bounded number of leaves.
A graph G is a chordal graph if every cycle of length greater than three has a chord.
Chordal graphs are exactly the intersection graphs of subtrees in a tree [16]. More
precisely, for each chordal graph G = (V,E), there exists a tree T such that

• the vertices of T correspond to the maximal cliques of G, and
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• the vertices of T corresponding to cliques of G containing any fixed vertex v ∈ V
induce a subtree Tv of T .

Note the consequence that two vertices of G are adjacent if and only if their
corresponding subtrees have nonempty intersection. For a given chordal graph G =
(V,E), such a tree, called a clique tree for G, will have at most n nodes and can be
constructed in O(n+m) time [3].

We use the idea of mixing layouts of interval graphs, as in the previous section.
While a circular-arc graph roughly consists of two interval graphs arranged in a circle,
a chordal graph may be thought of as several interval graphs arranged in a tree-like
structure. We restrict our attention to chordal graphs having a bounded number of
leaves in their clique trees. A chordal graph with k leaves in its clique tree may be
viewed as a collection of k interval graphs. For a chordal graph G = (V,E) with
at most k leaves in the corresponding clique tree, we compute a layout L such that
b(G,L) ≤ 2k · bw(G).
The method is as follows, assuming a clique tree T has been computed for a given

chordal graph G = (V,E).

1. Root T at an arbitrary vertex, r.
2. Let k be the number of leaves of T (excluding r). For each root-to-leaf path

Pi in T , the collection of subtrees Tv (for v ∈ V ), restricted to Pi, form a
set of intervals. Let Ii be this set of intervals in which the left endpoint of
each interval is taken to be the one closer to r. Let Gi = (Vi, Ei) be the
corresponding interval graph.

3. for i← 1 to k do
Li ← layout for Gi consisting of Vi ordered by increasing left endpoints

of intervals (with ties broken arbitrarily but the same way in all
the Li’s)

4. Mix the Li’s to form LM , as follows:
LM ← L1(1)L2(1)L3(1) . . . Lk(1)L1(2)L2(2) . . . Lk(2) . . . .

5. For each vertex v ∈ V that appears in more than one of the Gi’s, delete all
but the rightmost copy of v from LM . The result is a layout L for G.

The following lemmas apply in the context of the previously described method.

Lemma 8. Each Gi is an interval graph.

Proof. This follows from the construction of the Gi’s and properties of the clique
tree.

Lemma 9. E1 ∪ E2 ∪ · · · ∪Ek = E.

Proof. If {u, v} ∈ E, then u and v occur together in some clique corresponding to
a vertex of T . Thus the edge {u, v} will occur in every Gi whose corresponding path
Pi contains that vertex of T .

Lemma 10. For all {u, v} ∈ E, either

• for all 1 ≤ i ≤ k : u ∈ Vi implies (v ∈ Vi and {u, v} ∈ Ei), or

• for all 1 ≤ i ≤ k : v ∈ Vi implies (u ∈ Vi and {u, v} ∈ Ei).

Proof. Let {u, v} ∈ E. Then Tu and Tv intersect. Let cuv be the vertex of T ,
closest to r, at which Tu and Tv intersect. cuv is the closest to r vertex for at least
one of Tu and Tv; otherwise, we contradict our choice of cuv, since the path from cuv
to r in T is unique and since Tu and Tv are both connected.

Suppose cuv is the vertex of Tu closest to r in T . Then, for any Vi that contains
u, the corresponding path Pi must contain cuv, and the conclusion follows.

Similarly, if cuv is the vertex of Tv closest to r, then, for every Vi containing v,
the corresponding path Pi contains cuv.
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Lemma 11. Each Gi is an induced subgraph of G.
Proof. This follows by an argument similar to the previous proof.
Lemma 12. b(G,L) ≤ 2k · bw(G).
Proof. Let {u, v} ∈ E and consider the length of {u, v} in L, i.e., |L(u) − L(v)|.

Assume, without loss of generality, that u <L v. If the copies of u and v remaining
in L are from the same interval subgraph Gi, then

|L(u)− L(v)| ≤ |LM (u)− LM (v)|
≤ k · |Li(u)− Li(v)|
≤ 2k · bw(Gi)

≤ 2k · bw(G).

Suppose the occurrences of u and v in L are from different interval subgraphs,
Gu and Gv, respectively. Since {u, v} ∈ E, we know by Lemma 10 that
• v ∈ Gu and {u, v} ∈ Gu, or
• u ∈ Gv and {u, v} ∈ Gv.
If u ∈ Gv then the occurrence of u in Gv is to the left (in LM ) of the occurrence

of u in Gu. Thus

|L(u)− L(v)| ≤ |LM (u of Gv)− LM (v of Gv)|
≤ k · |Lv(u)− Lv(v)|
≤ 2k · bw(Gv)

≤ 2k · bw(G).

Otherwise, u /∈ Gv and v ∈ Gu, implying that the vertex of Tv closest to r is
closer to r than the vertex of Tu closest to r. That is, in Iu, left(v) < left(u), and
hence v <Lu

u.
Let fuv be the last vertex of T (i.e., farthest from the root) that is in both Gu and

Gv. The set of left endpoints from r to fuv are identical in both Iu and Iv. Suppose
there are q of them. Then, in LM , both occurrences of v appear in the first k · q
positions, and the occurrence of u from Gu is to the right. This contradicts that the
occurrences of u and v under consideration satisfy u <L v.

Theorem 13. Let G = (V,E) be a chordal graph having a clique tree with at
most k leaves. Then a layout L for G satisfying b(G,L) ≤ 2k · bw(G) can be computed
in O(k(n+m)) time.

Proof. The proof follows from the previous discussion.
Recently, Fomin [13] showed how to improve the previous bound by choosing the

root r of the clique tree T such that at most 2
3k of the resulting interval graphs can

be laid out on either side of the vertices of r. The layout L obtained after mixing the
Li’s and removing duplicate vertices has b(G,L) ≤ 4

3k · bw(G).
Since the bandwidth problem remains NP-complete for trees, a subclass of chordal

graphs, it is worth mentioning that our algorithm outputs a layout L satisfying
b(G,L) ≤ k if G is a tree with at most k leaves. Notice that Ando, Kaneko, and
Gervacio showed in [1] that every tree with k leaves has bandwidth at most �k/2�.
Furthermore, their construction can easily be transformed into an efficient algorithm
to compute a layout of width at most �k/2�.

5. k-polygon graphs for fixed k. A triangulation of a graph G is a chordal
graphH with the same vertex set asG such thatG is a subgraph ofH. A triangulation
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H of a graph G is called a minimal triangulation of G if no proper subgraph of H is
a triangulation of G.

In this section we combine results of the previous section with results on minimal
triangulations of k-polygon graphs as follows. First, we generalize a result on minimal
triangulations of AT-free graphs in [22] to show that every minimal triangulation H
of a k-polygon graph G is a spanning subgraph of Gk (Theorem 19). Second, we
use a representation theorem for minimal triangulations of a circle graph provided
in [23] to obtain a representation theorem for minimal triangulations of k-polygon
graphs (Theorem 22). Then we show how to transform any k-polygon graph G into a
minimal triangulationH of G (and thusH is a chordal graph) such thatH has a clique
tree with at most k leaves. Combining all this with Lemma 2, and the approximation
algorithm of the previous section, we obtain an O(n3) approximation algorithm for
the bandwidth of k-polygon graphs which has performance ratio 2k2 (or 4

3k
2, in light

of Fomin’s improvement).

A graph G = (V,E) is a k-polygon graph if it is the intersection graph of chords
inside a convex k-polygon, where each chord has its endpoints on two different sides
of the polygon. A k-polygon representation, or diagram, for G = (V,E) is a k-sided
convex polygon together with a set of chords such that, for all u, v ∈ V , {u, v} ∈ E if
and only if the chords corresponding to u and v cross.

Circle graphs are the intersection graphs of chords inside a circle. A circle model,
or diagram, for circle graph G = (V,E) is a set of chords in a circle such that two
vertices are adjacent in G if and only if their corresponding chords cross. Clearly,
every polygon representation of a graph G can also be seen as a circle model of G.
Thus, for each k ≥ 2 , every k-polygon graph is a circle graph. (Permutation graphs
are to be considered as 2-polygon graphs.)

There is an O(n2) algorithm [28] which determines whether or not a given graph
is a circle graph and, if so, produces a circle model for it. Given a graph G = (V,E),
it can be determined in O(|V |k) time whether or not G is a k-polygon graph and, if
so, a polygon representation can be constructed [10]. However, given a circle graph G,
the problem of determining the minimum k such that G is a k-polygon graph remains
NP-complete [10].

Our algorithm assumes that a k-polygon representation for the input graph is
provided.

All of the notation in this section is either identical to that of [22] and [23] or
inspired by those two papers. (See also [20].)

Let G = (V,E) be a graph and a, b two nonadjacent vertices of G. The set
S ⊆ V is an a, b-separator if the removal of S separates a and b in distinct connected
components. If no proper subset of S is an a, b-separator, then S is a minimal a, b-
separator. A minimal separator is a set of vertices S that is a minimal a, b-separator.

Lemma 14 (see [9]). Let S be a minimal a, b-separator of the graph G = (V,E),
and let Ca and Cb be the connected components of G[V \ S] containing a and b,
respectively. Then every vertex of S has at least one neighbor in Ca and at least one
neighbor in Cb.

We denote by Sep(H) the set of all minimal separators of a graph H. We shall
need the following properties of minimal triangulations of a graph.

Theorem 15 (see [22]). A triangulation H of a graph G is a minimal triangu-
lation of G if and only if the following three conditions are satisfied:

1. If a and b are nonadjacent vertices of H, then every minimal a, b-separator
of H is also a minimal a, b-separator of G.
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2. If S is a minimal separator of H and C a connected component of H[V \ S],
then the vertex set of C induces a connected component in G[V \ S].

3. H = GSep(H), where GSep(H) is the graph obtained from G by adding edges
between every pair of vertices contained in the same set S for any S ∈ Sep(H).

To obtain an algorithm to approximate the bandwidth of k-polygon graphs, in
a first step we generalize definitions and results of [22] to show that every minimal
triangulation H of a k-polygon graph G is a subgraph of Gk.

Definition. A minimal separator S is d-good if, for every nonadjacent pair x
and y in S, dG(x, y) ≤ d. A triangulation H of G is d-good if, for every edge {a, b}
in H, dG(a, b) ≤ d; i.e., H is a subgraph of Gd.

The following theorem is a consequence of the characterization of minimal trian-
gulations given in Theorem 15.

Theorem 16. If every minimal separator of a graph G is d-good, then every
minimal triangulation H of G is d-good.

Proof. Let {a, b} be an edge of H but not an edge of G. By Theorem 15,
H = GSep(H). Hence there is a minimal separator S of H such that {a, b} ⊆ S.
By Theorem 15, S is also a minimal separator of G. Therefore S is d-good and
dG(a, b) ≤ d.

Consequently, H is d-good.

Lemma 17. Let G be a graph without a chordless cycle of length greater than
2k + 1. Then every minimal separator of G is k-good.

Proof. Assume there is some minimal separator S containing nonadjacent vertices
x and y such that dG(x, y) > k. Now, by Lemma 14, we can find an x, y-path in Cx

and one in Cy. If we choose shortest such paths, then their union is a chordless cycle
of length at least 2(k + 1), a contradiction.

Lemma 18. Let G be a k-polygon graph. Then G has no chordless cycle of length
greater than 2k.

Proof. It is proved in [14] that chordless cycles have unique representations as
chords in a circle. SupposeG has a chordless cycle of length at least 2k+1 and consider
the unique representation as chords in a circle. The number of chord endpoints must
be at least 2(2k + 1) = 4k + 2. Each side of the k-polygon can contain at most four
chord endpoints; otherwise, the two endpoints of a chord would have to be on the
same side. Thus there must be at least � 4k+2

4 � = k + 1 sides.

Theorem 19. Every minimal triangulation H of a k-polygon graph G is k-good,
and thus H is a subgraph of Gk.

Proof. By Lemma 17 and 18, every minimal separator of a k-polygon graph G is
k-good. Thus, by Theorem 16, every minimal triangulation of G is k-good.

In a second step we use a representation theorem for the minimal triangulations
of a circle graph given in [23] to obtain a similar theorem for k-polygon graphs. We
shall need some preparations.

Assume that an n-vertex circle graph is given as a set of chords in a circle. Between
each two consecutive endpoints of chords, add a point called a scanpoint. Let Z be
the set of 2n scanpoints. A scanline is a chord of the circle connecting two scanpoints.
Let c1 and c2 be two chords of the circle model. A scanline s is between c1 and c2 if
every path from an endpoint of c1 to an endpoint of c2 along the circle passes through
a scanpoint of s. For any scanline s, we denote by S(s) the set of all vertices v of G
for which the corresponding chord intersects s.

Theorem 20 (see [21]). Let a and b be nonadjacent vertices of the circle graph
G = (V,E). For every minimal a, b-separator S of G, there exists a scanline s between
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the chords of a and b such that S = S(s).

Note that this implies that, for every minimal a, b-separator S of a k-polygon
graph G, there is a scanline s with S = S(s) such that the endpoints of s are on two
different sides of the polygon.

In [23] Kloks, Kratsch, and Wong give the following representation theorem for
all minimal triangulations of a circle graph in terms of planar triangulations of the
polygon P(Z), which is the convex polygon with vertex set Z.

Theorem 21 (see [23]). Let G = (V,E) be a circle graph given as a set of
chords in a circle, and let Z be the corresponding set of scanpoints. Then for every
minimal triangulation H of G there is a planar triangulation T of the polygon P(Z)
such that H = H(T ), where H(T ) is the graph with vertex set V , and vertices u and
v are adjacent in H(T ) if there exists a triangle in T that is intersected by the chords
corresponding to u and v.

Let G = (V,E) be a k-polygon graph and thus a circle graph. Consider a k-
polygon representation of G consisting of a set of chords C inside a k-sided polygon
PG. Let Z be the set of scanpoints on PG, and let P(Z) be the convex polygon with
vertex set Z.

Theorem 22. Let G = (V,E) be a k-polygon graph given as a set of chords in a
k-polygon, and let Z be the corresponding set of scanpoints. Then for every minimal
triangulation H of G there is a planar triangulation T of the polygon P(Z) such that

• every diagonal in T has endpoints on two different sides of the k-polygon, and

• H = H(T ), where H(T ) is the graph with vertex set V , and vertices u and v
are adjacent in H(T ) if there exists a triangle Q in T that is intersected by the chords
corresponding to u and v.

Proof. Theorem 22 is an immediate consequence of Theorem 21, except for the
property that no diagonal of the planar triangulation T of P(Z) has both its endpoints
on one side of PG. We sketch only how to construct such a planar triangulation T
following the lines of the proof of Theorem 21.

First, for each minimal separator S ofH we choose a scanline s such that S = S(s),
and this can be done such that no two scanlines cross each other. As mentioned below
Theorem 20, none of these scanlines has both endpoints on one side of PG. Now we
choose all these scanlines as diagonals of a triangulation of P(Z). If this is not yet a
triangulation T of P(Z) we add more diagonals to obtain a planar triangulation such
that we never add a diagonal with both endpoints on one side of PG.

Consequently, a minimum triangulation H of a k-polygon graph G can be com-
puted by finding a minimum weight triangulation of P(Z), in which we consider only
chords with endpoints on different sides of the polygon. The O(n3) dynamic pro-
gramming algorithm for this computation for circle graphs [23] can be adapted to the
domain of k-polygon graphs; the adapted algorithm retains its O(n3) complexity.

It remains to show how to construct a clique tree with at most k leaves for H.
This is done by using the planar triangulation T of P(Z) with H = H(T ) for the
minimum triangulation H, which is also provided by the algorithm computing H.
Now a clique tree of H is constructed as follows. Take the dual graph of the planar
triangulation T (without taking a vertex for the exterior face); i.e., each vertex of the
dual graph corresponds to a triangle of T . It is well known that this dual graph of
a planar triangulation is a tree. Two vertices of the tree are adjacent if and only if
the corresponding triangles of T share a diagonal, and we assign to each vertex of the
tree the set of all chords intersecting the corresponding triangle of T . This tree has
at most k leaves, since any leaf corresponds to a triangle containing a corner of PG.
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Finally, we remove all nonmaximal cliques by contracting suitable edges of the tree
and obtain a clique tree of H with at most k leaves.

Theorem 23. There is an O(n3) algorithm to compute for a given k-polygon
graph G a clique tree of a minimum triangulation such that this clique tree has at
most k leaves.

Thus, our approximation algorithm from the previous section applies to this tri-
angulation H of a k-polygon graph G.

Remark. One can show analogously that there is an O(n3) algorithm that
computes for a given minimal triangulation H of a k-polygon graph a clique tree with
at most k leaves.

Finally, we combine the main results of this section to obtain an algorithm to
approximate the bandwidth of k-polygon graphs.

Theorem 24. There is an O(n3) algorithm to compute for a k-polygon graph G
given with a k-polygon representation a layout L satisfying b(G,L) ≤ 2k2 · bw(G).

Proof. By Theorem 23, there is an O(n3) algorithm to compute for a k-polygon
graph G given with a k-polygon representation, a minimum triangulation H of G, and
a clique tree of H such that this clique tree has at most k leaves. By Theorem 13, a
layout L satisfying b(H,L) ≤ 2k ·bw(H) can be computed by a O(k(n+m)) algorithm.
By Lemma 2, any layout L of a d-good triangulation H of G with b(H,L) ≤ c · bw(H)
fulfills b(G,L) ≤ d · c · bw(G), where c, d ≥ 1 are constants. Consequently, b(G,L) ≤
2k2 · bw(G).

Remark. By [13], the performance ratio in the previous theorem can be improved
to b(G,L) ≤ 4

3k
2 · bw(G).
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