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Abstract. An independent set of three vertices such that each pair is joined by a path that
avoids the neighborhood of the third is called an asteroidal triple. A graph is asteroidal triple-free
(AT-free) if it contains no asteroidal triples. The motivation for this investigation was provided, in
part, by the fact that the AT-free graphs provide a common generalization of interval, permutation,
trapezoid, and cocomparability graphs. The main contribution of this work is to investigate and re-
veal fundamental structural properties of AT-free graphs. Specifically, we show that every connected
AT-free graph contains a dominating pair, that is, a pair of vertices such that every path joining
them is a dominating set in the graph. We then provide characterizations of AT-free graphs in terms
of dominating pairs and minimal triangulations. Subsequently, we state and prove a decomposition
theorem for AT-free graphs. An assortment of other properties of AT-free graphs is also provided.
These properties generalize known structural properties of interval, permutation, trapezoid, and
cocomparability graphs.
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1. Introduction. The original motivation for this work was provided by the lin-
ear structure that is apparent in various families of graphs, including interval graphs,
permutation graphs, trapezoid graphs, and cocomparability graphs. Somewhat sur-
prisingly, the linearity of interval, permutation, trapezoid, and cocomparability graphs
is described in terms of different and seemingly ad hoc properties of each of these
classes of graphs. For example, in the case of interval graphs, the linearity property is
traditionally expressed in terms of a linear order on the set of maximal cliques [3, 4].
For permutation graphs, the linear behavior is explained in terms of the underlying
partial order of dimension two [1]. For cocomparability graphs, the linear behavior
is expressed in terms of the well-known linear structure of comparability graphs [17],
and so on. Our intention is to provide a unifying look at these classes in the hope of
identifying the “agent” responsible for their linear behavior.

Before proceeding, it is perhaps appropriate to recall a few definitions. A graph
is an interval graph if its vertices can be put in a one-to-one correspondence with a
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set of intervals on the real line in such a way that two vertices are adjacent if and only
if the corresponding intervals overlap. A graph is a comparability graph if the edges
may be given a transitive orientation. A cocomparability graph is the complement
of a comparability graph. A graph that is at the same time a comparability and a
cocomparability graph is said to be a permutation graph [13].

Fig. 1.1. A graph G.

Fig. 1.2. Trapezoid, interval, and permutation models of the graph in Figure 1.1.

A trapezoid representation R consists of two parallel lines (denoted L1 and L2)
and some trapezoids with two endpoints lying on L1 and the other two lying on L2.
A graph G is a trapezoid graph if it is the intersection graph of such a representation.
Specifically, the vertices of G are in one-to-one correspondence with the trapezoids
in R and two vertices in G are adjacent if and only if their corresponding trapezoids
intersect. If the trapezoids degenerate with the endpoints on L1 (respectively, L2)
coinciding (i.e., the trapezoids become lines), then the intersection graph is a permu-
tation graph. Similarly, if the intervals on L1 are the mirror image of the intervals
on L2, then the intersection graph is an interval graph. The reader is referred to
Figure 1.2 for an illustration of these notions for the graph presented in Figure 1.1.
It is shown in [6] that permutation graphs and interval graphs are strictly contained
in trapezoid graphs. Furthermore, trapezoid graphs are strictly contained in cocom-
parability graphs [5]. Cocomparability graphs, and thus trapezoid, permutation, and
interval graphs, are perfect in the sense of Berge [15]; i.e., for every induced subgraph
the chromatic number equals the clique number.

The trapezoid representation that provides the common thread with interval and
permutation graphs also indicates that, in some sense, the graphs can only “grow”
linearly. For example, referring to the graph in Figure 1.1 which is at the same time
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an interval, trapezoid, permutation, and cocomparability graph, we can add a new
vertex adjacent to one of the vertices 1, 2, 3, 4, or 5 without destroying membership
in any of these families; however, when looking at various intersection models of G
featured in Figure 1.2, it seems as though we cannot add a new vertex adjacent to 6
without destroying membership in each family.

More than three decades ago Lekkerkerker and Boland [18] set out to identify
the property that prevented a chordal graph, namely, a graph in which every cycle of
length at least four has a chord, from “growing” in three directions at once. For this
purpose, they defined an asteroidal triple to be an independent set of three vertices
such that each pair of vertices is joined by a path that avoids the neighborhood of the
third. For an illustration, the reader is referred to Figure 1.3, which features various
instances of asteroidal triples.

Fig. 1.3. Various examples of asteroidal triples.

Lekkerkerker and Boland [18] demonstrated the importance of asteroidal triples
in the following theorem.

Theorem 1.1 (see [18]). A graph is an interval graph if and only if it is chordal
and asteroidal triple-free.

Thus, it appears that the condition of being asteroidal triple-free (AT-free) pro-
hibits a chordal graph from growing in three directions at once. The top three graphs
in Figure 1.3 are examples of chordal graphs that are not interval graphs.

Later, Golumbic, Monma, and Trotter Jr. [16] showed that cocomparability graphs
(and, thus, permutation and trapezoid graphs) are also AT-free. Subsequently, it was
shown that the perfect AT-free graphs strictly contain the cocomparability graphs [5].
Since C5 is AT-free, the AT-free graphs need not be perfect. However, an easy argu-
ment shows that the celebrated Strong Perfect Graph conjecture is true for AT-free
graphs [19].

Three decades ago Gallai [14], in his monumental work on comparability graphs,
obtained the first characterization of AT-minimal graphs (i.e., graphs that contain
an asteroidal triple and are minimal with this property) in terms of 15 families of
subgraphs. Actually, Gallai’s list is not complete. Since he was only interested in
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graphs with no induced C5, all the AT-minimal graphs containing a C5 are missing
from [14]. For a full list of AT-minimal graphs the interested reader is referred to [7].
After Gallai’s paper, little work was done on AT-free graphs.

The main contribution of this work is to provide a number of structural results
concerning AT-free graphs. Our main results1 are as follows.

1. We show that every connected AT-free graph has a dominating pair, that is,
a pair of vertices such that every path joining them is a dominating set.

2. We provide properties of dominating pairs in AT-free graphs related to the
concepts of connected domination and diameter.

3. We provide a characterization of AT-free graphs in terms of dominating pairs.
4. We provide a characterization of AT-free graphs in terms of minimal trian-

gulations.
5. We provide a decomposition theorem for AT-free graphs.

The remainder of this work is organized as follows. Section 2 provides background
material along with definitions of technical terms used throughout the paper. In
section 3 we study the existence of dominating pairs in connected AT-free graphs.
In section 4 we discuss properties of dominating pairs in the context of connected
domination and show that some dominating pair achieves the diameter of the graph.
In section 5 we offer two characterizations of AT-free graphs. Specifically, we provide
characterizations of AT-free graphs in terms of dominating pairs and in terms of
minimal triangulations. In section 6 we show that an AT-free graph may be extended
to another AT-free graph by attaching, to each vertex in an appropriate dominating
pair, a new vertex of degree one. This result leads to a decomposition theorem for
AT-free graphs, whereby an AT-free graph is reduced to a single vertex by a sequence
of contractions. In section 7 we show that in AT-free graphs of diameter greater than
three, the sets of vertices that can be in dominating pairs are restricted to two disjoint
sets, thus strengthening the intuition about the linear structure of this class of graphs.
Finally, section 8 offers concluding remarks and poses some open problems.

2. Preliminaries. All graphs in this paper are finite with no loops or multiple
edges. We use standard graph-theoretic terminology compatible with [2], to which we
refer the reader for basic definitions.

As usual, we shall write G = (V,E) to denote a graph G with vertex set V and
edge set E. The complement of a graph G is the graph G having the same vertex set
as G; distinct vertices u and v are adjacent in G if and only if they are nonadjacent in
G. For a vertex x in G, NG(x) denotes the set of all the vertices adjacent to x in G.
The degree of vertex x in the graph G, denoted by dG(x), is the cardinality of NG(x).
A vertex x will be said to be pendant if its degree is one. We let N ′

G(x) stand for the
set of all the vertices adjacent to x in the complement G of G. The notation will be
shortened to N(x), d(x), and N ′(x), respectively, whenever the context permits. If H
is a subset of the vertex set V of G, then GH will denote the subgraph of G induced
by H. Occasionally, if no confusion is possible, we shall use H as a shorthand for GH .

A path is a sequence v0, v1, . . . , vp of distinct vertices of G with vi−1vi ∈ E for all
i (1 ≤ i ≤ p). A chord in a path v0, v1, . . . , vp is an edge vivj with i and j differing by
more than one. A cycle of length p+ 1 is a sequence v0, v1, . . . , vp of distinct vertices
of G such that vi−1vi ∈ E for all i (1 ≤ i ≤ p) and vpv0 ∈ E. We let Pn and Cn denote
the chordless path and cycle with n vertices, respectively. Unless stated otherwise,
all paths in this work will be assumed to be chordless.

1For undefined terms the reader is referred to section 2.
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A set S of vertices of graph G is said to be dominating if every vertex outside
S is adjacent to some vertex in S. Among dominating sets S that induce connected
subgraphs of G, one is often interested in those that have minimum cardinality. In
the remainder of this paper such a dominating set will be referred to as an mccds. An
mccds that induces a path will be referred to as a path-mccds.

A path joining vertices x and y is termed an x, y-path. A vertex u misses a path
π if u is adjacent to no vertex on π; otherwise, u intercepts π. In a connected graph, a
pair (u, v) of vertices is termed a dominating pair if all u, v-paths are dominating. For
vertices u and v of graph G, we let D(u, v) denote the set of vertices that intercept
all u, v-paths. In this terminology, (u, v) is a dominating pair whenever D(u, v) = V .
For vertices u, v, and x of graph G, we say that u and v are unrelated with respect to
x if u 6∈ D(v, x) and v 6∈ D(u, x).

Given a connected graph G = (V,E), the distance dG(u, v) (or d(u, v), for short)
between vertices u and v is the length of a shortest path in G joining u and v. The
diameter of G is defined as

diam(G) = maxu,v∈V dG(u, v).

Two vertices u and v such that d(u, v) = diam(G) are said to achieve the diameter.

3. Dominating pairs in AT-free graphs. The main purpose of this section
is to prove a fundamental domination-related property of AT-free graphs. To state
this property, recall that a pair of vertices (x, y) is a dominating pair in a graph G
if all x, y-paths in G are dominating sets. As it turns out, connected AT-free graphs
always contain dominating pairs. Although it is straightforward to see that connected
interval, permutation, trapezoid, and cocomparability graphs all contain dominating
pairs, it is somewhat surprising that, up to now, this property had not been noticed
for these classes of graphs.

Throughout this section, we assume a connected AT-free graph G = (V,E) along
with an arbitrary vertex x of G. We are now in a position to state the main result of
this section.

Theorem 3.1. Every connected AT-free graph contains a dominating pair.
The conclusion of Theorem 3.1 is implied by the following stronger result.
Theorem 3.2. Let x be an arbitrary vertex of a connected AT-free graph G.

Either (x, x) is a dominating pair or else for a suitable choice of vertices y and z in
N ′(x), (y, x) or (y, z) is a dominating pair.

Our proof of Theorem 3.2 relies on a number of intermediate results about con-
nected AT-free graphs that we present next.

Claim 3.3. Let u, v, and w be arbitrary vertices of G. If u ∈ D(v, x), w ∈
D(u, x), and u and w are not adjacent, then w ∈ D(v, x).

Proof. Suppose that w misses some v, x-path π: v = v0, v1, . . . , vk = x. Let j
be the largest subscript for which u is adjacent to vertex vj of π: since u ∈ D(v, x),
such a subscript must exist. But now, w misses the u, x-path, u, vj , vj+1, . . . , vk = x,
contradicting that w ∈ D(u, x).

In the remainder of this section, we shall use “unrelated” as a shorthand for
“unrelated with respect to x.” The reader is referred to Figure 3.1 for an illustration.
The paths confirming that vertices u and v are unrelated are drawn in heavy lines.
We further assume that F is an arbitrary connected component of N ′(x).

Claim 3.4. F contains no unrelated vertices.
Proof. If u and v are unrelated vertices in F , then the connectedness of F implies

that {u, v, x} is an asteroidal triple.
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Fig. 3.1. Illustrating unrelated vertices.

Claim 3.5. If u and v are vertices in F and if v 6∈ D(u, x), then D(u, x) ⊂
D(v, x).

Proof. From Claim 3.4 it follows that u ∈ D(v, x). Let w be an arbitrary vertex
in D(u, x)\D(v, x). Clearly w 6∈ N(x). If w and u are not adjacent, then Claim 3.3
guarantees that w ∈ D(v, x); if w and u are adjacent, then clearly w ∈ F . If w
misses some v, x-path then, in particular, v and w are not adjacent. Thus, with π
standing for some u, x-path missed by v, π ∪ {w} contains a w, x-path missed by v.
But now, v and w are unrelated, contradicting Claim 3.4. Consequently, w ∈ D(v, x)
and D(u, x) ⊆ D(v, x); the inclusion is strict since v 6∈ D(u, x).

A vertex y in F is called special if D(u, x) ⊆ D(y, x) for all vertices u in F . The
following statement provides a characterization of special vertices.

Claim 3.6. A vertex y in F is special if and only if F ⊆ D(y, x).
Proof. First, if the vertex y is special then, for every vertex v in F , D(v, x) ⊆

D(y, x). In particular, v ∈ D(v, x), implying that F ⊆ D(y, x).
Conversely, suppose that F ⊆ D(y, x). Let u be an arbitrary vertex in F and

let w be an arbitrary vertex in D(u, x). If w belongs to F then, since F ⊆ D(y, x),
w ∈ D(y, x); if w does not belong to F , then u and w are not adjacent and Claim 3.3
guarantees that w ∈ D(y, x), confirming that D(u, x) ⊆ D(y, x). Since u is arbitrary,
the claim follows.

Claim 3.7. F contains a special vertex.
Proof. Choose a vertex y in F with D(y, x) ⊂ D(t, x) for no vertex t in F . If

y is not special then, by Claim 3.6, we find a vertex v in F with v 6∈ D(y, x). By
Claim 3.5, D(y, x) ⊂ D(v, x), contradicting our choice of y.

Claim 3.8. Let v be an arbitrary vertex in N ′(x) \F . Either v ∈ D(w, x) for all
vertices w in F or v 6∈ D(w, x) for all vertices w in F .

Proof. Suppose not. For a suitable choice of vertices w and w′ in F , we have
v ∈ D(w, x) and v 6∈ D(w′, x). Let π stand for a w′, x-path missed by v, and let π′

stand for a w,w′-path entirely within F . But now π ∪ π′ contains a w, x-path missed
by v, contrary to our assumption.

Claim 3.9. Let v be a vertex in N ′(x) \ F . If F 6⊂ D(v, x) then, for a special
vertex u∗ in F , u∗ 6∈ D(v, x).
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Proof. Write U = {u ∈ F | u 6∈ D(v, x)}. Since F 6⊂ D(v, x), U is nonempty.
Choose a vertex u∗ in U such that D(u∗, x) ⊂ D(u, x) for no vertex u in U . If u∗ is not
special then, by Claim 3.6, there exists some vertex w in F\D(u∗, x). In particular,
u∗ and w are not adjacent. By Claim 3.5, D(u∗, x) ⊂ D(w, x); by our choice of u∗, w
must belong to F \ U . This, however, implies that w ∈ D(v, x). Since w 6∈ D(u∗, x),
Claim 3.4 implies that u∗ ∈ D(w, x). Since u∗ and w are not adjacent, Claim 3.3
guarantees that u∗ ∈ D(v, x), which is the desired contradiction.

Call a vertex u of N ′(x) strong if N ′(x) ⊂ D(u, x). It is easy to verify that if u is
a strong vertex, then (u, x) is a dominating pair in G. From now on, we shall tacitly
assume that N ′(x) contains no strong vertices. A pair (y, z) of vertices in distinct
components of N ′(x) is an admissible pair if D(y, x)∪D(z, x) ⊂ D(t, x)∪D(t′, x) for
no vertices t, t′ in distinct components of N ′(x).

Notice that if N ′(x) is connected, Claim 3.7 implies that N ′(x) contains a special
vertex which, by virtue of Claim 3.6, is strong. We shall, therefore, assume that
N ′(x) is disconnected. Now, the absence of strong vertices in N ′(x) guarantees the
existence of admissible pairs. As it turns out, admissible pairs play a crucial role in
our arguments. We now study some of their properties.

Claim 3.10. Let Y and Z be two distinct components of N ′(x) and let vertices
y in Y and z in Z be an admissible pair. Then Y 6⊂ D(z, x) and Z 6⊂ D(y, x).

Proof. Assume Z ⊂ D(y, x). Then, in particular, z ∈ D(y, x). To see that
D(z, x) ⊆ D(y, x), note that for an arbitrary vertex w in D(z, x), w ∈ D(y, x) when-
ever w ∈ Z and that, by virtue of Claim 3.3, w ∈ D(y, x) whenever w 6∈ Z.

Since y is not strong, we find a vertex y′ in N ′(x)\D(y, x). But now, either (z, y′)
or (y, y′) contradicts our choice of (y, z). To see this, note that if y′ belongs to Y
then, by Claim 3.5, D(y, x) ⊂ D(y′, x), and so

D(y, x) ∪D(z, x) = D(y, x) ⊂ D(y′, x) ⊆ D(y′, x) ∪D(z, x).

If y′ does not belong to Y , then D(y, x) ∪ D(z, x) = D(y, x) ⊆ D(y′, x) ∪ D(y, x).
Since y′ does not belong to D(y, x), the inclusion is strict. The fact that Y 6⊂ D(z, x)
follows by a similar argument.

Claim 3.11. If (y, z) is an admissible pair, then N ′(x) ⊂ D(y, x) ∪D(z, x).
Proof. We assume, without loss of generality, that vertices y and z belong to

distinct connected components Y and Z of N ′(x), respectively. If the claim is false,
we find a vertex w in N ′(x)\(D(y, x)∪D(z, x)). Clearly, w 6∈ D(y, x) and w 6∈ D(z, x).

Since G is AT-free, it is easy to verify that

no distinct vertices t, t′, t′′ in N ′(x) are pairwise unrelated with respect to x.(3.1)

We claim that

w does not belong to Y ∪ Z.(3.2)

If the vertex w belongs to Y then, by Claim 3.5, D(y, x) ⊂ D(w, x), and since w 6∈
D(z, x),

D(y, x) ∪D(z, x) ⊂ D(z, x) ∪D(w, x),

contradicting that (y, z) is an admissible pair. The proof of the fact that w 6∈ Z is
similar and, thus, is omitted.

Further, we claim that for a suitable choice of vertices u and v in N ′(x)

u ∈ D(y, x)\(D(z, x) ∪D(w, x)) and v ∈ D(z, x)\(D(y, x) ∪D(w, x)).(3.3)
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To justify (3.3), observe that by (3.2) y, z, and w belong to distinct components of
N ′(x). Since (y, z) is an admissible pair,

D(y, x) ∪D(z, x) 6⊂ D(z, x) ∪D(w, x),

and, therefore, the required vertex u exists. A similar argument asserts the existence
of vertex v.

Next, we claim that

y ∈ D(z, x) ∪D(w, x) and z ∈ D(y, x) ∪D(w, x).(3.4)

To see this, note that if y 6∈ D(z, x)∪D(w, x), then our choice of w guarantees that y
and w are unrelated. Therefore, it must be that z ∈ D(y, x) ∪D(w, x), for otherwise
y, z, and w would be pairwise unrelated, contradicting (3.1). Consider the vertex v
specified in (3.3); since z ∈ D(y, x) ∪ D(w, x) and v ∈ D(z, x)\(D(y, x) ∪ D(w, x)),
Claim 3.3 implies that z and v are adjacent. But now {y, v, w} is an asteroidal triple.
This follows since y and w are unrelated, and both v, w and v, y are unrelated by (3.3)
and Claim 3.8. Along similar lines, one can prove that z ∈ D(y, x) ∪D(w, x). Thus,
(3.4) must hold.

Further, we claim that

u ∈ Y and v ∈ Z.(3.5)

By (3.4), y ∈ D(z, x) ∪D(w, x); by (3.3), u ∈ D(y, x)\(D(z, x) ∪D(w, x)). It follows
that u and y are adjacent, for otherwise we contradict Claim 3.3. The fact that v ∈ Z
is proved similarly.

To complete the proof of Claim 3.11, we first observe that (3.5), (3.3), and
Claim 3.8 combined guarantee that u 6∈ D(v, x) and v 6∈ D(u, x), and so u and v
are unrelated. Similarly, by (3.5), (3.3), and Claim 3.8, the vertices u and w are
unrelated, as are v and w. But now, the vertices u, v, and w are pairwise unrelated,
contradicting (3.1). With this, the proof of Claim 3.11 is complete.

We are now in a position to give the proof of Theorem 3.2.
Proof (Theorem 3.2). If N ′(x) is empty, then (x, x) is a dominating pair. If

N ′(x) is nonempty but contains a strong vertex y, then clearly (x, y) is a dominating
pair. Otherwise, let (y, z) be an admissible pair in N ′(x). We assume, without loss of
generality, that y and z belong to distinct connected components Y and Z of N ′(x),
respectively. By Claims 3.10, 3.9, and 3.8 we find special vertices y∗ in Y and z∗

in Z such that y∗ 6∈ D(z∗, x) and z∗ 6∈ D(y∗, x). Put differently, y∗ and z∗ are
unrelated. Furthermore, since y∗ and z∗ are special, we have D(y, x) ∪ D(z, x) ⊆
D(y∗, x) ∪D(z∗, x), implying that (y∗, z∗) is also an admissible pair.

We claim that

(y∗, z∗) is a dominating pair in G.

By Claim 3.11, any vertex v that misses some y∗, z∗-path must be in N(x). (Observe
that v and x are distinct, since every y∗, z∗-path contains at least one vertex in N(x).)
Since y∗ and z∗ are unrelated, y∗ misses some z∗, x-path π and z∗ misses some y∗, x-
path π′. But now we have reached a contradiction—{y∗, z∗, v} is an asteroidal triple.
To see this, note that, by assumption, v misses some y∗, z∗-path; in addition, y∗ misses
the z∗, v-path π ∪ {v} and z∗ misses the y∗, v-path π′ ∪ {v}.

It is perhaps interesting to note that Claim 3.4 suggests the following characteri-
zation of AT-free graphs. The proof is immediate and is left to the reader.

Theorem 3.12. A graph G is AT-free if and only if for every vertex x of G, no
component F of N ′(x) contains unrelated vertices.



ASTEROIDAL TRIPLE-FREE GRAPHS 407

4. Distance properties of dominating pairs. The purpose of this section
is to examine various distance-related properties featured by dominating pairs in
connected AT-free graphs. Specifically, we study the maximum distance between
vertices of a dominating pair, as well as the relationship between dominating pairs and
minimum cardinality-connected dominating sets. In particular, we show that in every
connected AT-free graph some dominating pair achieves the diameter (Theorem 4.3)
and some dominating pair forms the endpoints of a path-mccds (Theorem 4.6). To
begin, we state a property of connected AT-free graphs that will be used throughout
this section.

Claim 4.1. A connected AT-free graph G is a clique if and only if it contains no
nonadjacent dominating pair.

Proof. The “only if” part is trivial. To prove the “if” part, note that if G is not
a clique then, for some vertex x of G, N ′(x) is nonempty. By Theorem 3.2, there
exist vertices y, z ∈ N ′(x) such that either (x, y) is a dominating pair (with x and
y nonadjacent) or, failing this, (y, z) is a dominating pair. In the latter case, the
vertices y and z belong to distinct connected components of N ′(x) and, consequently,
must be nonadjacent.

In the remainder of this section we assume a connected AT-free graph G which
is not a clique. Claim 4.1 guarantees that we can find a nonadjacent dominating pair
(x, y0) in G. Let F be the connected component of N ′(x) containing y0, and let Y
be the set of vertices y in F for which (x, y) is a dominating pair in G. A vertex a in
F \ Y is called an attractor if Y ⊂ D(a, x).

Claim 4.2. F contains no attractors.

Proof. If the statement is false then the set A of attractors in F \Y is nonempty.
Let a∗ be a vertex in A for which D(a∗, x) ⊂ D(a, x) for no vertex a in A. We claim
that (a∗, x) is a dominating pair in G. If the statement is false, we find a vertex t
that misses some a∗, x-path π. However,

(i) t 6∈ A by our choice of a∗ and Claim 3.5 combined,
(ii) t 6∈ Y because Y ⊂ D(a∗, x),
(iii) t 6∈ N ′(x)\F , for otherwise t would miss a y0, x-path (such a path is contained

in the concatenation of π with a y0, a
∗-path in F ),

(iv) t 6∈ F \ (A ∪ Y ). Since Y ⊂ D(a∗, x), t must be adjacent to every vertex in
Y , implying that t belongs to A, which is a contradiction.

The next result concerns the maximum distance between vertices in a dominating
pair.

Theorem 4.3. In every connected AT-free graph some dominating pair achieves
the diameter.

Our proof of Theorem 4.3 relies on the following intermediate result.

Lemma 4.4. Let G be a connected AT-free graph and let vertices x and a of
G be such that d(x, a) = diam(G). If (x, y) is a dominating pair with vertex y in
N ′(x), then there exists a vertex z such that (x, z) is a dominating pair and d(x, z) =
diam(G).

Proof. Clearly, we may assume that d(x, a) ≥ 2. Let Y be the set of vertices y in
N ′(x) such that (x, y) is a dominating pair.

We assume that a does not belong to Y , for otherwise there is nothing to prove.
Observe that Y is contained in the component of N ′(x) containing a; otherwise,
d(x, y) = 2 and d(x, a) = 2, since every path joining x and y must dominate a.

By virtue of Claim 4.2, a cannot be an attractor; we find a vertex y in Y such
that y 6∈ D(a, x). In particular, a and y are nonadjacent. Consider an arbitrary
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shortest x, y-path π(x, y): x = u0, u1, . . . , uk = y. Since (x, y) is a dominating
pair, a must be adjacent to some vertex uj . Since a and y are nonadjacent, j < k.
But now, diam(G) = d(x, a) ≤ d(x, uj)+ 1 ≤ d(x, y) ≤ diam(G), implying that (x, y)
is a dominating pair with d(x, y) = diam(G). This completes the proof of
Lemma 4.4.

We now give a proof of Theorem 4.3.
Proof (Theorem 4.3). Let vertices x and a be such that d(x, a) = diam(G). Let

C be the connected component of N ′(x) containing a. We may assume that x is in
no dominating pair involving a vertex in N ′(x); otherwise we are done by Lemma 4.4.
By the proof of Theorem 3.2, there exists a dominating pair (y, z) with vertices y and
z belonging to distinct components of N ′(x). We observe that precisely one of y and z
belongs to C; otherwise, d(y, z) = 2 and we are done. (To see this, note that if neither
of y and z is in C, then a must be adjacent to a neighbor of x; therefore, diam(G)
= d(a, x) = 2 and 2 ≤ d(y, z) ≤ diam(G), implying that (y, z) is a dominating pair of
distance diam(G).) Furthermore, we may assume that d(y, z) < diam(G); otherwise,
(y, z) is the desired dominating pair.

Assume without loss of generality that y belongs to C and that z belongs to
some component C ′ ( 6= C) of N ′(x). If there exists a shortest z, y-path π(z, y):
z = u0, u1, . . . , uk = y such that a is adjacent to uj , for some j < k, then diam(G)
= d(x, a) ≤ d(x, uj)+1 ≤ d(z, uj)+1 ≤ d(z, y) ≤ diam(G), and (y, z) is the required
dominating pair. Otherwise, y is the only vertex on π adjacent to a and diam(G)
= d(x, a) ≤ d(a, z) ≤ d(y, z) + 1 ≤ diam(G). Therefore, d(a, z) = diam(G) and the
conclusion follows by Lemma 4.4.

Thus, in a connected AT-free graph, some dominating pair achieves the diameter.
We now consider shortest dominating paths and their relation to connected dominat-
ing sets. In the remainder of this section we shall find it convenient to make use of a
special notation that we now introduce. When referring to a path π, we shall denote
by π− y the path obtained from π by removing y, one of its endpoints. Similarly, we
let π + x denote the path obtained from π by the addition of x as a new endpoint.

Theorem 4.5. Every connected AT-free graph has a path-mccds.
Proof. Let G be a connected AT-free graph, let D be an arbitrary mccds, and let

(x, y) be an arbitrary dominating pair in G. We may assume that |D| ≥ 3; otherwise
there is nothing to prove. We note that

if {x, y} ⊂ D then D induces a path.(4.1)

This follows from the fact that every x, y-path π in D is a connected dominating set,
implying that D = π.

Next, we claim that

if x ∈ D or y ∈ D then some mccds induces a path.(4.2)

To justify (4.2) assume, without loss of generality, that x ∈ D. By (4.1), we may
assume that y 6∈ D. Let Y consist of all the vertices in D adjacent to y. Since D is
connected, we find a path π joining x and a vertex y′ in Y such that all vertices in
π− y′ are in D\Y . Either D = π or π+ y is a dominating path of cardinality at most
|D|. Thus, (4.2) must hold.

By (4.1) and (4.2) combined we may assume that neither x nor y belongs toD. Let
X and Y be the sets of vertices in D adjacent to x and y, respectively. Observe that X
and Y must be disjoint, for otherwise with w standing for an arbitrary vertex in X∩Y ,
{x,w, y} induces a dominating path and there is nothing to prove. Connectedness of
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D guarantees the existence of vertices x′ in X, y′ in Y , and of an x′, y′-path π in D,
all of whose internal vertices are in D\(X ∪ Y ). We claim that

|D\π| = 1.(4.3)

To see that this is the case, observe that if D = π then we are done; if |D\π| > 1,
then π+x+y is a dominating path of cardinality at most |D|. Thus, (4.3) must hold.

By (4.3) we write {z}=D\π. Since the path π+ x is of cardinality |D|, we find a
vertex u that misses π + x. Similarly, since the path π + y is of cardinality |D|, we
find a vertex v that misses π + y. The following are easily seen:
• u 6= v and uy, vx are edges (otherwise, we contradict that (x, y) is a dominating

pair),
• u and v are not adjacent (else {u, x, y′} is an AT in G),
• u 6= z, v 6= z, and both uz, vz are edges (otherwise, we contradict that D is a

connected dominating set),
• x′z, y′z are both edges (if x′z is not an edge, then {u, x′, v} is an AT). We

claim that
{u, z, v} is an mccds.

To see this, let w be a vertex that misses the path induced by {u, z, v}. Since D is
dominating, w must be adjacent to some vertex on π. But now, it is easy to confirm
that {u, v, w} is an AT.

Next, we show that Theorem 4.5 can be strengthened.
Theorem 4.6. In every connected AT-free graph the endpoints of some path-

mccds are a dominating pair.
Our proof of Theorem 4.6 relies on the following technical result.
Lemma 4.7. Let G be a connected AT-free graph and let π(x, a) be a path-mccds

in G with endpoints a and x. If x belongs to a dominating pair involving a vertex in
N ′(x), then there exists a vertex y in N ′(x) such that (x, y) is a dominating pair and
each shortest x, y-path is an mccds.

Proof. Write π(x, a): x = u0, u1, . . . , uk = a. We may assume that k ≥ 2.
Let C be the component of N ′(x) containing a. Observe that every vertex that
forms a dominating pair with x must belong to C. To clarify this, suppose such a
vertex t belongs to a component C ′ distinct from C. Then, since the path π(x, a) is
dominating, t is adjacent to u1, implying that d(x, t) = 2 ≤ k, and there is nothing
to prove.

Let Y be the set of all special vertices in C. It is easy to see that x forms a
dominating pair with every vertex in Y . Thus, we may assume that a 6∈ Y . Note that
if some vertex in Y is adjacent to uj with j < k then we are done; otherwise, a is an
attractor, contradicting Claim 4.2. This completes the proof of Lemma 4.7.

Proof (Theorem 4.6). For convenience, we inherit the notation of Lemma 4.7.
We may assume that π(x, a) is a path-mccds and that x is in no dominating pair
involving a vertex in N ′(x); otherwise we are done by Lemma 4.7. By the proof of
Theorem 3.2, there exists a dominating pair (y, z) with y and z in distinct components
of N ′(x). We observe that precisely one of the vertices y and z belongs to C; otherwise,
d(y, z) = 2 ≤ k and we are done.

Assume without loss of generality that y ∈ C and that z belongs to a component
C ′ distinct from C. Note that since π(x, a) is dominating, z is adjacent to u1. Thus,
y is adjacent to a and to no other vertex on π(x, a), for otherwise d(y, z)≤ k.

We claim that at least one of the paths π(x, a) − x + y or π(x, a) − x + z is
dominating. Observe that both of these paths are of length k and each of them is
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anchored at a vertex belonging to a dominating pair. Therefore, once we establish
this claim the conclusion of Theorem 4.6 follows from Lemma 4.7. If neither of these
paths is dominating then
• there exists a vertex v missing π(x, a) − x + y; trivially, both vx and vz are

edges,
• there exists a vertex w missing π(x, a) − x + z; trivially, both wx and wy are

edges.
But now we have reached a contradiction—{a,w, z} is an AT, and the proof of

the theorem is complete.

5. Two characterizations of AT-free graphs. The goal of this section is to
offer two characterizations of AT-free graphs. To motivate our first characterization,
notice that Theorems 3.1 and 3.2 do not lead to a necessary and sufficient condition
for a graph to be AT-free. For example, vertices achieving the diameter in the C6

constitute a dominating pair. Furthermore, if we add a universal vertex to an arbitrary
graph, we obtain a graph that has a dominating pair consisting of the universal vertex
and any other vertex. Clearly, any attempt to provide a characterization of AT-free
graphs involving dominating pairs must not only be based on induced subgraphs,
but it must also restrict the types of dominating pairs. For example, the graph C6

contains an AT, yet every induced subgraph has a dominating pair.
The first goal is to provide a characterization of AT-free graphs based on dominat-

ing pairs. As indicated previously, such a result must restrict the types of dominating
pairs. In particular, we impose an adjacency condition on G with dominating pair
(x, y), whereby the connected component of G \ {x} containing y has a dominating
pair (x′, y) with x′ adjacent to x. As illustrated in Figure 5.1, the graph C6 fails this
criterion. Here, (x, y) is a dominating pair in the graph, yet neither (x′, y) nor (x′′, y)
is a dominating pair in the graph obtained by removing vertex x.

Fig. 5.1. C6.

We begin by stating a simple property of vertices in AT-free graphs which is of
independent interest.

Claim 5.1. Let u, v, and y be vertices in a connected AT-free graph such that
v 6∈ D(u, y). If D(u, y) 6⊂ D(v, y) then, for some vertex w in D(u, y), v and w are
unrelated with respect to y.

Proof. Let π be a u, y-path missed by v. Let w be an arbitrary vertex in the
set D(u, y) \ D(v, y). Since w does not belong to D(v, y), w misses some v, y-path.
Since w belongs to D(u, y), w intercepts π and, moreover, π∪{w} contains a chordless
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w, y-path missed by v, confirming that v and w are unrelated with respect to y.

Let π = u1, u2, . . . , uk and π1 = v1, v2, . . . , vl be two paths. We shall refer to the
path u1, u2, . . . , ui with i ≤ k as a prefix of π. A vertex w is a cross point of π and
π1 if w = ui = vj and the four vertices ui−1, vj−1, ui+1, and vj+1 are all defined and
distinct.

For later reference, we now investigate properties of asteroidal triples. Let G
be a graph containing an AT. Choose an induced subgraph H of G with the least
number of vertices such that some triple {x, y, z} is an AT in H. Let π(x, y), π(x, z),
and π(y, z) be paths in H demonstrating that {x, y, z} is an AT. In the following
we write π(x, y) : x = u1, u2, . . . , uk = y, π(x, z) : x = v1, v2, . . . , vl = z, and
π(z, y) : z = w1, w2, . . . , wt = y. Clearly, the choice of H guarantees that x, y, and z
have degree at most two.

Claim 5.2. No pair of paths among π(x, y), π(x, z), and π(y, z) has a cross
point.

Proof. Suppose that the paths π(x, y) and π(x, z) have a cross point w such
that w = ui = vj . Observe that the definition of a cross point and the minimal-
ity of H combined guarantee that 3 ≤ i and 3 ≤ j. Since the paths demonstrate
that {x, y, z} is an AT, i ≤ k − 2 and j ≤ l − 2. But now, in H ′ = H \ {vj−1},
y misses the x, z-path u1, u2, . . . , ui = vj , vj+1, . . . , z and x misses the y, z-path
y, uk−1, . . . , ui = vj , vj+1, . . . , z. Thus, {x, y, z} is an AT in H ′, contradicting the
minimality of H.

Claim 5.3. Let i be the largest subscript for which there exists a subscript j such
that ui = vj and ui+1 6= vj+1. Then i = j and ut = vt for all 1 ≤ t ≤ i.

Proof. Since y are z are distinct and u1 = v1, the subscript i in the statement
of the claim always exists. Since, by Claim 5.2, ui cannot be a cross point, we must
have ui−1 = vj−1. Let t be the least value for which ui−t 6= vj−t. We may assume
that such a t exists, for otherwise there is nothing to prove.

Clearly, u1 = v1 implies that t ≤ min{i− 2, j − 2}. Consequently, we can remove
vertex vj−t from H, while still ensuring that {x, y, z} is an AT in the remaining graph.
This contradiction completes the proof of the claim.

Lemma 5.4. There exist unique vertices x′, y′, z′ in H such that

(i) the unique path between x and x′ is a prefix of both π(x, y) and π(x, z),
(ii) the unique path between y and y′ is a prefix of both π(y, x) and π(y, z),
(iii) the unique path between z and z′ is a prefix of both π(z, x) and π(z, y).

Proof. Claim 5.3 guarantees that one can associate with x a unique vertex x′

corresponding to the largest subscript for which ui = vi. Put differently, the path
x = u1, u2, . . . , ui = x′ in H is the common prefix of both π(x, y) and π(x, z). In a
perfectly similar way one can define vertices y′ and z′.

As it turns out, vertices x′, y′, z′ have a number of interesting properties. We
present some of them next.

Claim 5.5. The vertices x′, y′, and z′ are either all distinct or else they coincide.

Proof. Suppose that exactly two of the vertices x′, y′, z′ coincide. Symmetry
allows us to assume that x′ = y′. Write x′ = ui and y′ = wt−k+i. Since x′(= y′)
cannot be a cross point of π(x, z) and π(z, y), we must have vi+1 = wt−k+i−1. Now
an argument similar to that of the proof of Claim 5.3 guarantees that the subpaths
of π(x, z) and π(z, y) between z and x′ coincide, which is a contradiction.

Claim 5.5 and the minimality of H combined imply the following result.

Corollary 5.6. Vertices x′, y′, and z′ coincide if and only if H is isomorphic
to the graph in Figure 5.2.
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Fig. 5.2. Illustrating Corollary 5.6.

Claim 5.7. Vertex x′ is distinct from x if and only if dH(x) = 1. Furthermore,
if x′, y′, and z′ are distinct and x′ 6= x then xx′ is an edge.

Proof. First, observe that if x′ = x then, by Claim 5.3, dH(x) = 2. Conversely,
if vertices x and x′ are distinct, then π(x, y) and π(x, z) have at least one edge in
common, confirming that dH(x) = 1.

To settle the second part of the claim, assume that x′ = ui with 3 ≤ i. Since
x′, y′, z′ are distinct, ui−1 misses the path π(y, z) and, thus, {ui−1, y, z} is an AT in
H \ {x}. The conclusion follows.

For reasons that will become clear later, we shall say that a connected graph H
with a dominating pair satisfies the spine property if for every nonadjacent dominating
pair (α, β) in H there exists a neighbor α′ of α such that (α′, β) is a dominating pair
of the connected component of H \ {α} containing β. We are now in a position to
state the first main result of this section.

Theorem 5.8 (The Spine theorem). A graph G is AT-free if and only if every
connected induced subgraph H of G satisfies the spine property.

Proof. To settle the “only if” part, let G be an AT-free graph and let H be any
connected induced subgraph of G. We may assume that H is not a clique (complete),
since otherwise it has the spine property. By Claim 4.1, H has a nonadjacent domi-
nating pair (α, β). Let Cβ denote the connected component of H \ {α} that contains
β. Let A denote N(α) ∩ Cβ . We choose a vertex α̃ in A such that D(α̃, β) ⊂ D(t, β)
for no vertex t in A.

We claim that

(α̃, β) is a dominating pair in Cβ .(5.1)

To see that (5.1) holds, suppose that a vertex t in Cβ misses some α̃, β-path. Observe
that t must belong to A, for otherwise this path extends to an α, β-path in H missed
by t, contradicting that (α, β) is a dominating pair. Our choice of α̃ guarantees that
D(α̃, β) 6⊂ D(t, β). By Claim 5.1 we find a vertex w in D(α̃, β) such that t and w are
unrelated with respect to β. Note that w belongs to A; otherwise the t, β-path missed
by w would extend to an α, β-path missed by w. But now, w and t are in the same
component of N ′(β) and are unrelated with respect to β, contradicting Claim 3.4.
This completes the proof of the “only if” part.
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To prove the “if” part, let H be an induced subgraph of G with the least number
of vertices in which some set {x, y, z} is an AT. Further, let π(x, y), π(x, z), and π(y, z)
be (chordless) paths in H demonstrating that {x, y, z} is an AT.

Claim 5.9. If H has an adjacent dominating pair, it also has a nonadjacent
dominating pair.

Proof. Suppose that (a, b) is an adjacent dominating pair in H and let A =
{v | av ∈ E, bv /∈ E} B = {v | bv ∈ E, av /∈ E}, and C = {v | av, bv ∈ E}. By the
minimality of H, every vertex of H\{x, y, z} is on at least one π path. If x = a, then
y and z are in B and H\{b} contains an AT on {x, y, z}. Thus we may assume that
{a, b}∩{x, y, z} = ∅. Furthermore, it is easy to see that A and B each contain at least
one of {x, y, z}; otherwise one of a or b can be removed from H without destroying
the AT. We now have two cases.

Case 1: x ∈ A, y ∈ B, z ∈ C. Since a and b must be on at least one π path,
π(x, z) = x, a, z and π(y, z) = y, b, z. Consider π(x, y) = v1(= x), v2, . . . , vk(= y).
First we note that none of v2, . . . , vk−2 can be in A since such a vertex together with
y and z would form an AT in H\{x}. Similarly, none of v3, . . . , vk−1 can be in B.
Thus all of v3, . . . , vk−2 (if they exist) must be in C. If v2 is in C, then B = {y} and
(a, y) is a nonadjacent dominating pair; if vk−1 is in C, then (x, b) is a nonadjacent
dominating pair. Thus v2 is in B, vk−1 is in A, and all of v3, . . . , vk−2 are in C. Now
if k > 4, then {v2, vk−1, z} forms an AT in H\{x, y}; otherwise (x, b) is a nonadjacent
dominating pair.

Case 2: x ∈ A, y, z ∈ B. Since each of a and b must belong to some π path,
we may assume that a ∈ π(x, y) and π(y, z) = y, b, z. Furthermore, we may assume
that the degree of x is two since otherwise (x, b) would be a nonadjacent dominating
pair. We now study π(x, y) = v1(= x), v2(= a), . . . , vk(= y) and note by the fact that
π(x, y) is chordless that the only vertex of π(x, y), other than x, that could be in A
is v3. Similarly, we let π(x, z) = u1(= x), u2, . . . , uj(= z) and note that no vertex on
π(x, z) other than x and possibly u2 may be adjacent to a since otherwise an x, z-path
through a contradicts the minimality of H. We distinguish two subcases.

Case 2.1: v3 ∈ A. First we show that k = 4 (i.e., v3 is adjacent to y). To see this,
note that if (x, b) is not a dominating pair then there exists a chordless x, b-path, P ,
and a vertex w in A missing P . Furthermore, v4 must be adjacent to b. If w = v3,
then we have an AT on {x, v3, z} in H\{y}; for the x, z-path consider the induced
path on P and the edge bz. If w 6= v3, then w is on π(x, z) and we have {v3, y, z}
being an AT in H\{x}; now the v3, z-path consists of the subpath of π(x, z) from z
to w together with the edges wa and av3. Thus k = 4.

Now look at π(x, z). Since the degree of x is two, a is not on π(x, z). If u2 is in A,
then j = 3 (i.e., u2 is adjacent to z); otherwise {u2, y, z} would be an AT in H\{x}.
Now if u2v3 is an edge, then (x, b) is a nonadjacent dominating pair; otherwise (u2, v3)
is a nonadjacent dominating pair.

Thus we may assume that u2 is not in A and therefore is adjacent to b. If j = 3,
then (y, u2) is a nonadjacent dominating pair. Suppose v3 is not adjacent to some ui,
2 < i < j. Then {ui, x, y} forms an AT in H\{z}. If u2 is not adjacent to v3, then
{x, v3, z} forms an AT in H\{y}; otherwise, (x, b) is a nonadjacent dominating pair.

Case 2.2: v3 /∈ A. Thus all of v3, . . . , vk are adjacent to b. Hence (x, b) is a
nonadjacent dominating pair since b is adjacent to all vertices of H except x and
possibly u2, which is adjacent to x.

We now assume that H has a nonadjacent dominating pair (a, b).

Claim 5.10. Vertices a and b are distinct from x, y, z, x′, y′, and z′.
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Proof. To begin, we show that a and b are distinct from x, y, and z. Suppose not.
We may assume, without loss of generality, that a = x. Since (a, b) is a dominating
pair, b must belong to π(y, z). Consider the x, b-path contained in the concatenation
of π(x, y) with the y − b portion of π(y, z). This path is missed by z unless vertices b
and z are adjacent. A mirror argument shows that b and y are also adjacent.

Since, by assumption, H satisfies the spine property and vertices a and b are non-
adjacent, we should be able to find a neighbor b′ of b such that (a, b′) is a dominating
pair in H \ {b}. However, if b′ belongs to π(x, y), then z misses the corresponding
b′, a-path; if b′ belongs to π(x, z), then y misses a b′, a-path. The fact that a is distinct
from x′ follows by an identical argument, whose details are omitted.

Claim 5.10 has the following interesting corollary.
Claim 5.11. Each pair of vertices x and x′, y and y′, and z and z′ must coincide.
Proof. First, observe that the vertices x′, y′, z′ are distinct, for otherwise, by

Corollary 5.6, H is isomorphic to the graph in Figure 5.2 which does not satisfy the
spine property.

If the statement is false, then we may assume, without loss of generality, that
x and x′ are distinct. By Claim 5.7, x has degree one in H. By Claim 5.10, a
(respectively, b) is distinct from both x and x′, implying that x misses some a, b-path,
which is a contradiction.

By virtue of Claims 5.11 and 5.7 combined, x, y, and z have degree exactly two
in H and, moreover, H is biconnected. Without loss of generality, let vertices a and
b belong to π(x, y) and to π(x, z), respectively. Observe that vertices a and y must
be adjacent, for otherwise the a, b-path through x is missed by y. Similarly, vertices
b and z are also adjacent; otherwise the a, b-path through x is missed by z. Further,
either a or b is adjacent to x, for if not, the a, b-path through y and z is missed by x.
Symmetry allows us to assume, without loss of generality, that a and x are adjacent.

We claim that

vertices b and x are adjacent.(5.2)

Since vertices a and b are not adjacent and H is biconnected, the spine property
guarantees that we can find a neighbor a′ of a such that (a′, b) is a dominating pair
of H \ {a}. Clearly, a′ cannot be x; if b and x are not adjacent, then a′ cannot be y.
Therefore, a′ must belong to π(y, z). But now, x misses the a′, b-path containing z,
which is a contradiction. Thus, (5.2) must hold.

To complete the proof of the “if” part, we claim that

(b, y) is a dominating pair.(5.3)

It is clear that once (5.3) is proved, we have reached a contradiction: by Claim 5.10,
y cannot be in a dominating pair.

To prove (5.3) consider a vertex c that misses a path π joining b and y. Since
(a, b) is a dominating pair, π does not involve a. Trivially, c must belong to π(y, z).
But now, {c, x, y} is an AT in H \ {a}. To see this, note that π + x is an x, y-path
missed by c; the y, c-path consisting of the portion of π(y, z) from y to c is missed by
x; finally, π(x, z) concatenated with the c − z portion of π(y, z) contains a c, x-path
missed by y. This completes the proof of Theorem 5.8.

Let G = (V,E) be a connected AT-free graph and let (x, y) be an arbitrary
nonadjacent dominating pair in G. Construct a sequence x0, x1, . . . , xk of vertices of
G and a sequence G0, G1, . . . , Gk of subgraphs of G defined as follows:

(i) G0 = G and x0 = x,
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Fig. 5.3. Illustrating the Spine theorem.

(ii) for all i (0 ≤ i ≤ k − 1), xiy 6∈ E and xky ∈ E,
(iii) for all i (1 ≤ i ≤ k), let Gi stand for the subgraph of Gi−1 induced by the

component of Gi−1 \ {xi−1} containing y,
(iv) for all i (1 ≤ i ≤ k), let xi be a vertex in Gi adjacent to xi−1 and such that

(xi, y) is a dominating pair in Gi.
The existence of the sequence x0, x1, . . . , xk is guaranteed by the Spine theorem.

The sequence x0, x1, . . . , xk, y will be referred to as a spine of G. For an illustration
of the Spine theorem the reader is referred to Figure 5.3. The sequence of graphs
featured in Figure 5.3 begins with a graph G with vertex set {a, b, c, d, e, x, y}
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and dominating pair (x, y). The sequence continues with the graph G \ {x} with
dominating pair (a, y), and so on. The spine of the graph G is featured in heavy lines.

Note that the existence of a sequence of vertices and a sequence of subgraphs, as
defined in (i) through (iv) above, does not necessarily imply that the graph is AT-
free. For example, let (x, y) be the dominating pair (1, 4) of the graph G of Figure
5.4. The vertex sequence 1, 7 and the subgraph sequence G,G \ {1} satisfy (i)–(iv)
above; nevertheless, G is not AT-free ({2, 4, 6} is an AT). However, the Spine theorem
is not contradicted since the induced subgraph G \ {7} has a dominating pair (1,4),
yet G \ {1, 7} has no dominating pair consisting of 4 and a neighbor of 1.

Fig. 5.4. A graph G.

The second goal of this section is to give a characterization of AT-free graphs in
terms of minimal triangulations. Let G = (V,E) be an arbitrary graph. A triangula-
tion T (G) of G is a set of edges such that the graph G′ = (V,E ∪ T (G)) is chordal.
A triangulation T (G) is minimal when no proper subset of T (G) is a triangulation of
G. Recently, Möhring [20] proved the following result.

Theorem 5.12 (see [20]). If G is an AT-free graph, then for every minimal
triangulation T (G) of G, the graph G′ = (V,E ∪ T (G)) is an interval graph.

The remainder of this section is devoted to proving the converse of Theorem 5.12.
A different proof of the converse was obtained independently by Parra [23].

Theorem 5.13. A graph G is AT-free if and only if, for every minimal triangu-
lation T (G) of G, the graph G′ = (V,E ∪ T (G)) is an interval graph.

Our arguments rely, in part, on the following result which is of independent
interest.

Lemma 5.14. Let G be an arbitrary graph and let H = (V (H), E(H)) be an
induced subgraph of G. Let T (H) be an arbitrary minimal triangulation of H. There
exists a minimal triangulation T (G) of G such that the only edges in T (G) joining
vertices in H are those in T (H).

Proof. If the statement is false, then we select a minimal triangulation T (G) of
G that adds as few new edges to H as possible. Since T (H) is a triangulation of H,
some edge uv with both u and v in H, present in T (G) but not in T (H), must be
the unique chord of a set C of C4’s, each having (at least) one vertex outside H. Let
w and w′ be the remaining vertices of such a C4 with w outside H. The removal of
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the edge uv from T (G) and the addition of the ww′ edge(s) will triangulate all C4’s
in C, but may create new cycles, each of which contains at least one vertex (such
as w) that is not in H. Each such cycle will be triangulated by adding all possible
chords incident with a particular vertex outside H. The addition of these edges may
create new cycles that will be triangulated in a similar fashion. Since the graph is
finite, we eventually have a triangulation T ′(G) that has one fewer H edge than T (G).
Any minimal triangulation in T ′(G) also has one fewer H edge than T (G), thereby
contradicting our choice of T (G).

Proof (Theorem 5.13). The “only if” part follows from Theorem 5.12.
To prove the “if” part, let G be a graph containing an AT. Choose an induced

subgraph H = (V (H), E(H)) of G with the least number of vertices such that some
triple {x, y, z} is an AT in H. Let π(x, y), π(x, z), and π(y, z) be paths in H
demonstrating that {x, y, z} is an AT, and write π(x, y) : x = u1, u2, . . . , uk = y,
π(x, z) : x = v1, v2, . . . , vl = z, and π(z, y) : z = w1, w2, . . . , wt = y. Clearly, the
choice of H guarantees that x, y, and z have degree at most two.

Our plan is to exhibit a minimal triangulation T (H) of H that results in a
noninterval graph H ′ = (V (H), E(H) ∪ T (H)). For this purpose, let x′, y′, and
z′ be the vertices specified in Lemma 5.4 and consider the triangulation T (H) of H
returned by the following procedure.

Step 1. If x′ = y′ = z′ then set T (H)← ∅ and return.
Step 2. Let F be the graph obtained from H by removing vertices x, y, z and

by adding the edges u2v2 (in case x = x′), uk−1wt−1 (in case y = y′), and vl−1w2

(in case z = z′). Let T (F ) be an arbitrary minimal triangulation of F . Return
T (H) ← T (F ) ∪ {xu2, xv2, yuk−1, ywt−1, zvl−1, zw2} (in case x 6= x′ one adds the
edge xx′ instead of the edges xu2 and xv2, etc.).

Now Claim 5.5 along with an easy ad hoc argument shows that T (H) is a minimal
triangulation of H and that {x, y, z} is still an AT in the graph H ′ = (V (H), E(H)∪
T (H)). By Lemma 5.14, there must exist some minimal triangulation T (G) of G such
that H ′ is an induced subgraph of G = (V,E ∪ T (G)). The conclusion follows.

6. Augmenting AT-free graphs. The purpose of this section is twofold. First,
we exhibit a structural property of AT-free graphs that naturally allows one to
“stretch” an AT-free graph to a new AT-free graph. This in turn provides a condition
under which two AT-free graphs can be “glued together” to form a new AT-free graph
(Corollary 6.10). Next, we provide a decomposition theorem for AT-free graphs.

To begin, we address the issue of creating new AT-free graphs out of old ones.
Specifically, we show how to “augment” an arbitrary AT-free graph G to obtain a
new AT-free graph. This augmentation will be accomplished by finding a particular
dominating pair (x, y) and by adding new vertices x′ and y′ adjacent to x and y,
respectively. This augmentation of G again confirms our intuition about the linear
structure of AT-free graphs, since the dominating pair (x, y) has been stretched to a
new dominating pair (x′, y′).

In preparation for stating the first main result of this section, we need to define a
few terms. A vertex v of an AT-free graph G is called pokable if the graph G′ obtained
from G by adding a pendant vertex adjacent to v is AT-free; otherwise, it is called
unpokable. For example, referring to Figure 6.1, vertex u is pokable since the addition
of a pendant vertex u′ does not create an AT in the graph. At the same time, vertex v
is unpokable, for the addition of the vertex v′ creates the AT {a, b, v′}. A dominating
pair (x, y) is referred to as pokable if both x and y are pokable. For further reference,
we take note of the following simple observation whose proof is routine.
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Fig. 6.1. Illustrating pokable and unpokable vertices.

Observation 6.1. A vertex v of an AT-free graph G is unpokable if and only if
there exist vertices u and w in G such that u and w are unrelated with respect to v
and there is a u,w-path in G that does not contain v.

Whenever we have a vertex v for which there exist vertices u and w unrelated
with respect to v, we shall refer to the following induced paths, which must exist by
the definition of unrelated vertices: a v, u-path v = u0, u1, . . . , up = u missed by w
and a v, w-path v = w0, w1, . . . , wq = w missed by u. We are now in a position to
make the previous discussion precise.

Theorem 6.2. Every connected AT-free graph contains a pokable dominating
pair; furthermore, every connected AT-free graph which is not a clique contains a
nonadjacent pokable dominating pair.

Proof. The theorem is trivial for cliques. We shall assume therefore that G is not
a clique. Now, Claim 4.1 guarantees the existence of a nonadjacent dominating pair
(x, y0) in G. Let F be the connected component of N ′(x) containing y0, and let Y
stand for the set of vertices y in F for which (x, y) is a dominating pair in G. The
conclusion of Theorem 6.2 is implied by the following technical result that will be
proved later.

Lemma 6.3. Y contains a vertex y such that G has no unrelated vertices with
respect to y.

Let us examine how Theorem 6.2 follows from Lemma 6.3. Note that Lemma 6.3,
together with Observation 6.1, implies that Y contains a pokable vertex. Let β be a
pokable vertex in Y and let X denote the set of vertices x′ in the same component
of N ′(β) as x, for which (β, x′) is a dominating pair. Clearly x belongs to X, and so
X is not empty. By applying Lemma 6.3 again, with β as the “anchor,” we find a
pokable vertex α in X. The proof of Theorem 6.2 is established by noting that (α, β)
is the desired nonadjacent pokable dominating pair.

Proof (Lemma 6.3). The proof is by induction on the number of vertices in G.
Assume that the lemma is true for all connected AT-free graphs with fewer vertices
than G. We now present various facts that are used in the proof.
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Claim 6.4. Let v be a vertex in Y such that vertices u and w are unrelated with
respect to v in G. Then all vertices ui and wj (1 ≤ i ≤ p; 1 ≤ j ≤ q) belong to F .

Proof. Without loss of generality let i be the smallest subscript for which ui lies
outside F . Trivially, ui must belong to N(x). Since w cannot miss the v, x-path, v =
u0, u1, . . . , ui, x, and since w is adjacent to no vertex on the path v = u0, u1, . . . , ui,
it follows that w belongs to N(x).

Similarly, since u cannot miss the v, x-path, v = w0, w1, . . . , wq = w, x, and since
u is adjacent to no vertex on the path v = w0, w1, . . . , wq, it follows that u belongs to
N(x). But now, {u, v, w} is an AT, contradicting G being AT-free.

It is important to note that, by virtue of Claim 6.4, Lemma 6.3 is established
as soon as we exhibit a vertex y in Y such that there are no unrelated vertices with
respect to y in the subgraph of G induced by F . If F and Y coincide, then by the
induction hypothesis such a vertex must exist. Therefore, from now on, we shall
assume that

F \ Y 6= ∅.(6.1)

Let Y1, Y2, . . . , Yk (k ≥ 1) be the connected components of the subgraph of G
induced by Y .

Claim 6.5. Let t be a vertex in F \Y . If some vertex z in Yi satisfies z ∈ D(t, x),
then Yi ⊂ D(t, x).

Proof. If the claim is false, then we find vertices z, z′ in Yi such that z ∈ D(t, x)
and z′ 6∈ D(t, x). Since Yi is a connected subgraph of G, there exists a chordless path
z = s1, s2, . . . , sr = z′ joining z and z′ in G, with all internal vertices in Yi.

Let j be the smallest subscript for which sj 6∈ D(t, x). Since z′ 6∈ D(t, x), such a
subscript must exist. But now, in G, sj−1 and sj are nonadjacent and sj misses some
t, x-path, while sj−1 intercepts all such paths. It follows that sj misses a sj−1, x-path,
which is a contradiction since sj−1 belongs to Y .

Claim 6.6. Y induces a disconnected subgraph of G.
Proof. First, we claim that

|Y | ≥ 2.(6.2)

If (6.2) is false, then Y = {y0}. Let U stand for the set of all vertices in F adjacent
to y0. Note that (6.1), along with the connectedness of F , guarantees that U is
nonempty. But now, for every u in U , Y = {y0} ⊂ D(u, x). Thus, u is an attractor,
contradicting Claim 4.2. Therefore, (6.2) holds. Note that by virtue of (6.2) it makes
sense to talk about Y being disconnected in the complement.

We now continue the proof of Claim 6.6. If Y = Y1, then (6.1) and the connect-
edness of F imply the existence of a vertex z in Y adjacent to some vertex t in F \Y .
Note, in particular, that z belongs to D(t, x) and so, by Claim 6.5, Y ⊂ D(t, x). How-
ever, now t is an attractor, which is a contradiction. With this, the proof of Claim 6.6
is complete.

Claim 6.7. Let v be a vertex in Y such that vertices u and w are unrelated with
respect to v in G. Then
• for all i (1 ≤ i ≤ p), v belongs to D(ui, x) and
• for all j (1 ≤ j ≤ q), v belongs to D(wj , x).
Proof. Since v is adjacent to u1, it follows that v ∈ D(u1, x). Let i be the smallest

subscript for which v does not belong to D(ui, x). Let π be a ui, x-path missed by
v. Note that w must intercept π, for otherwise w would miss a v, x-path contained
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in {v, u1, . . . , ui} ∪ π. However, now {u, v, w} is an AT. The proof that v belongs to
D(wj , x) follows by a mirror argument.

For every i (1 ≤ i ≤ k), let Ti stand for the set of vertices t in F \ Y with the
property that Yi ⊂ D(t, x). By renaming the Yi’s, if necessary, we ensure that

|T1| ≤ |T2| ≤ · · · ≤ |Tk|.

Claim 6.8. Every vertex in T1 is adjacent to all vertices in Y1.
Proof. The statement is vacuously true if T1 is empty. Now assume that T1 is

nonempty and let t be a vertex in T1 nonadjacent to some z in Y1. Since, by Claim 4.2,
t cannot be an attractor, we find a subscript j (j ≥ 2) such that for some z′ in Yj , z

′

does not belong to D(t, x). Thus t ∈ T1 \ Tj . Now, |T1| ≤ |Tj | implies that there
must exist a vertex t′ in Tj \ T1. By Claim 6.5, z does not belong to D(t′, x). Note
that t does not belong to D(t′, x); otherwise, by Claim 3.3, z would belong to D(t′, x),
which is a contradiction.

Since z′ does not belong to D(t, x), in particular, z′ is not adjacent to t. The fact
that t does not belong to D(t′, x) implies the existence of a t′, x-path π′ missed by t.
Since z′ ∈ D(t′, x), z′ intercepts π′ and thus π′ ∪ {z′} contains a z′, x-path missed by
t, contradicting that z′ is in Y .

We now continue the proof of Lemma 6.3. Let Z be a connected component of
the subgraph of G induced by Y1. By the induction hypothesis, Z contains a vertex
v such that Z has no unrelated vertices with respect to v. To complete the proof
of Lemma 6.3, we need show only that F has no unrelated vertices with respect to
v. Suppose u and w in F are unrelated with respect to v. By Claims 6.5 and 6.7
combined, all the vertices ui and wj (1 ≤ i ≤ p; 1 ≤ j ≤ q) belong to Y or to
T1. By Claims 6.6 and 6.8 and the fact that the paths v = u0, u1, . . . , up = u and
v = w0, w1, . . . , wq = w are chordless, it follows that at most u1 and w1 belong to
T1 ∪ Y \Y1. However, if either u1 or w1 is in T1 ∪ Y \Y1 then, by Claims 6.6 and 6.8,
the edge u1w or the edge w1u must be present, contradicting the fact that u and w
are unrelated with respect to v. Thus, all the ui’s and wj ’s belong to Y1. In fact,
since Z is a connected component of Y1, all the ui’s and wj ’s must belong to Z, which
is a contradiction. This completes the proof of Lemma 6.3.

Theorem 6.2 implies the following results that are interesting in their own right.
Corollary 6.9. Every AT-free graph is either a clique or contains two nonad-

jacent pokable vertices.
Corollary 6.10 (The Composition theorem). Given two AT-free graphs G1

and G2 and pokable dominating pairs (x1, y1) and (x2, y2) in G1 and G2, respectively,
let G be the graph constructed from G1 and G2 by identifying vertices x1 and x2. Then
G is an AT-free graph.

The reader is referred to Figure 6.2 for an illustration of the Composition theorem.
We now show that the existence of a pokable dominating pair in a connected AT-

free graph leads to a natural decomposition scheme. In preparation for stating the
second main result of this section, we first give a necessary and sufficient condition
for a vertex in a dominating pair to be pokable. Specifically, we have the following
result.

Claim 6.11. Let G be a connected AT-free graph with a dominating pair (x, y).
Then x is pokable if and only if there are no unrelated vertices with respect to x.

Proof. The “if” part is easily seen. To prove the “only if” part, consider unrelated
vertices u and v with respect to x. In particular, we find a v, x-path missed by u and
a u, x-path missed by v. Since (x, y) is a dominating pair, u and v intercept every
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Fig. 6.2. Illustrating the Composition theorem.

path joining x and y. Let π be such a path and let u′ and v′ be vertices on π adjacent
to u and v, respectively. Trivially both u′ and v′ are distinct from x. But now, there
exists a u, v-path in G that does not contain x (this path contains vertices u′, v′ and
a subpath of π), implying that x is not pokable.

Let G = (V,E) be a connected AT-free graph with at least two vertices and let
(x, y) be a pokable dominating pair in G. Define a binary relation R on G by writing
for every pair u, v of vertices,

u R v ⇐⇒ D(u, x) = D(v, x).(6.3)

Clearly, R is an equivalence relation; let C1, C2, . . . , Ck (k ≥ 1) be the equivalence
classes of G/R. A class Ci is termed nontrivial if |Ci| ≥ 2. The existence of nontrivial
equivalence classes with respect to R is not immediately obvious. In what follows, we
assume that the pokable dominating pair (x, y) is chosen to be nonadjacent whenever
possible. The following result guarantees that nontrivial equivalence classes always
exist.

Claim 6.12. G/R contains at least one nontrivial equivalence class.
Proof. If N ′(x) is empty then the class containing y, C(y), is equal to V and

is therefore nontrivial. Otherwise, Theorem 6.2 and our choice of x and y combined
guarantee that x and y are nonadjacent. Let F be the connected component of N ′(x)
containing y and let Y stand for the subset of F consisting of all the vertices that are
in a dominating pair with x. Clearly, y ∈ Y , and so Y is nonempty. If F contains
at least two vertices then (6.2) guarantees that Y itself contains at least two vertices,
and so the equivalence class containing y is nontrivial.
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We may assume, therefore, that F = {y}. Let y′ be an arbitrary neighbor of
y in N(x). Clearly, D(y′, x) = V , for otherwise if some vertex z does not belong
to D(y′, x), then z must miss the y, x-path consisting of y, y′, and x. Consequently,
the equivalence class containing y is nontrivial and the proof of Claim 6.12 is
complete.

Remark. In fact, the proof of Claim 6.12 also tells us that the classC(y) containing
y is always nontrivial as long as the original graph has at least two vertices.

A nontrivial class C of G/R is said to be valid if C induces a connected subgraph
of G. As before, the existence of valid equivalence classes is not immediately obvious.
As we shall prove next, such classes always exist. Specifically, we propose to show
that C(y) is valid. As it will turn out, all valid classes of G/R enjoy very interesting
properties that will allow us to select an arbitrary one for the purpose of decomposing
the original graph. This freedom of choice opens the door to parallel decomposition
algorithms for AT-free graphs.

Claim 6.13. G/R contains at least one valid equivalence class.
Proof. If N ′(x) is empty, then C(y) = V and there is nothing to prove. We

may therefore assume that N ′(x) is nonempty. As before, we may also assume that
y belongs to N ′(x). Let F be the connected subgraph of N ′(x) containing y, let Y
stand for the subset of F consisting of all the vertices that are in a dominating pair
with x, and let C(y) be the equivalence class containing y.

Notice that every vertex w that belongs to N(x) and to C(y) must be adjacent
to all the vertices in F . In particular, if such a vertex exists, then C(y), which by
Claim 6.12 is nontrivial, must be connected and, thus, valid.

We will assume, therefore, that N(x) and C(y) are disjoint. In turn, this implies
that C(y) = Y . Recall that, by Claim 6.6, Y induces a disconnected subgraph of G,
confirming that C(y) is connected as a subgraph of G. The conclusion follows.

Let S be a set of vertices of G. The graph G′ is said to arise from G by an S-
contraction if G′ contains all the vertices in G \S along with a new vertex s adjacent,
in G′, to all the vertices in G \ S that were adjacent, in G, to some vertex in S. Our
next result states a fundamental property of valid equivalence classes, namely, that
contracting any of them will result in an AT-free graph. The details are spelled out
as follows.

Lemma 6.14. Let C be an arbitrary valid equivalence class of G/R. The graph
G′ obtained from G by a C-contraction is AT-free.

Proof. Let c be the vertex in G′ obtained by contracting C. To begin, we claim
that

there are no vertices u, v in G′ such that {u, v, c} is an AT.(6.4)

To justify (6.4) note that if π(u, v) is a u, v-path missed by c, then the same path
is missed, in G, by all the vertices in C. Let π(u, c) be a u, c-path in G′ missed by
v. Then there exists a vertex c1 in C such that v misses the path π(u, c) − c + c1.
Similarly, let π(v, c) be a v, c-path in G′ missed by u. There must exist a vertex c2 in
C such that u misses the path π(v, c)− c+ c2. Since C induces a connected subgraph
of G, there exists a path joining c1 and c2, all of whose internal vertices are in C. By
a previous observation, both u and v miss this path. Therefore, for a suitably chosen
vertex c′ in C, {u, v, c′} is an AT in G, which is a contradiction. Thus, (6.4) must
hold.

To complete the proof of Lemma 6.14, let {u, v, w} be an arbitrary AT in G′. By
(6.4), c is distinct from u, v, w. Let π(u, v), π(u,w), and π(v, w) be paths in G′
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confirming that {u, v, w} is an AT. If c belongs to none of these paths, then {u, v, w}
is an AT in G. We may therefore assume without loss of generality that c belongs to
π(u, v). Since w misses π(u, v), it is clear that w is adjacent to no vertex in C.

We claim that there exists a path π′(u, v) in G missed by w. This path contains
the same vertices as π(u, v) outside of C. Inside C it contains a path between two
vertices c′ and c′′ of C such that
• w misses a u, c′-path consisting of a subpath of π(u, v),
• w misses a c′′, v-path consisting of the remaining vertices in π(u, v)− c.
This completes the proof of Lemma 6.14.

Fig. 6.3. A graph G.

Fig. 6.4. The graph G′ obtained by contracting {a, b}.

The example in Figures 6.3 and 6.4 shows that the connectivity of the equivalence
class C in Lemma 6.14 is required if we are to guarantee that the resulting graph is AT-
free. To wit, the graph G featured in Figure 6.3 is AT-free with a pokable dominating
pair (x, e). The contraction of the equivalence class {a, b} yields the graph G′ in
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Figure 6.4, which has the AT {a′, b′, w}. For the reader’s benefit, the various values
of the D(∗, x) sets, along with the equivalence classes corresponding to the graph in
Figure 6.3, are summarized in Table 6.1.

Let C(y) be the equivalence class containing y. Let G′ be the graph obtained
from G by a C(y)-contraction. Recall that the proof of Claim 6.13 guarantees that
C(y) is valid, and so Lemma 6.14 asserts that the graph G′ is also AT-free. Let y′ be
the vertex of G′ obtained by contracting C(y). We now show that, in fact, more can
be said about G′. Specifically, we have the following result.

Lemma 6.15. (x, y′) is a pokable dominating pair in G′.
Proof. To begin, we establish that (x, y′) is a dominating pair in G′. For this

purpose, suppose that there exists some path π(x, y′) joining x and y′, missed by a
vertex w. Clearly, w is adjacent, in G, to no vertex in C(y). In particular, w is not
adjacent to y. Since C(y) is valid, w misses, in G, a y, x-path consisting of all the
vertices in π(x, y′), along with a suitable path in C(y). Therefore, (x, y′) must be a
dominating pair in G′.

Next, we show that both x and y′ are pokable vertices of G′. Suppose that x is
not pokable. Now Claim 6.11 guarantees the existence of unrelated vertices u and v
(with respect to x). This, in turn, implies the existence of paths π(v, x) and π(u, x)
in G′, missed by u and v, respectively. Since (x, y′) is a dominating pair in G′, y′

belongs to neither of these paths. But now, these paths must have been paths in G,
which is a contradiction.

Finally, suppose that y′ is not pokable. By virtue of Claim 6.11 this implies the
existence of vertices u and v and paths π(v, y′) and π(u, y′) in G′, missed by u and
v, respectively. In particular, neither u nor v is adjacent to y′. In turn, this implies
that neither u nor v is adjacent to a vertex in C(y). But now, in G, there exists a
u, y-path missed by v and a v, y-path missed by u, contradicting that y is pokable.
This completes the proof of Lemma 6.15.

Table 6.1

Illustrating the various equivalence classes.

Equivalence class D(∗, x)

x {x, 1, 2}
1,2 V \ {c, d, e}
a′ V \{c, d}
a, b: V \{d}
b′ V \{e}

w, c, d, e V

At this stage, the reader may wonder whether the class C(y) is the only one
whose contraction leaves x pokable. The answer is provided by the following result
that complements Lemma 6.15.

Lemma 6.16. Let C be an arbitrary valid equivalence class in an AT-free graph
G, and let G′ be the graph obtained from G by a C-contraction. If C is distinct from
C(x) and C(y), then (x, y) is a pokable dominating pair in G′.

Proof. Let c be the vertex of G′ obtained by the C-contraction. By assumption,
c is distinct from y and x. We begin by showing that (x, y) is a dominating pair in
G′. Suppose that there exists some path π(x, y) joining x and y in G′, missed by a
vertex w. Clearly, c must belong to π(x, y). Notice that w is adjacent, in G, to no
vertex in C. Since C is valid, w misses, in G, a y, x-path consisting of all the vertices
in π(x, y) − c, along with a suitable path in C. Thus, (x, y) must be a dominating
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Fig. 6.5. Illustration of an involutive sequence.

pair in G′.
Next, we show that both x and y are pokable vertices of G′. If x is not pokable,

Claim 6.11 guarantees the existence of vertices u and v unrelated with respect to x.
In turn, this implies the existence of paths π(v, x) and π(u, x) in G′, missed by u and
v, respectively. Since x is pokable in G, c must belong to (at least) one of these paths.
Symmetry allows us to assume, with no loss of generality, that c belongs to π(u, x).
The fact that v misses π(u, x) guarantees that v is adjacent, in G, to no vertex in C.
But now, we have reached a contradiction: v misses a u, x-path in G consisting of all
the vertices of π(u, x) outside C, along with a suitably chosen path in C. Thus, x
must be pokable in G′.
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A perfectly similar argument, whose details are omitted, asserts that y is also
pokable. With this, the proof of Lemma 6.16 is complete.

Lemmas 6.15 and 6.16 combined set the stage for a decomposition theorem for
AT-free graphs. Consider an AT-free graph G = (V,E) and let (x, y0) be a pokable
dominating pair in G. Let G0, G1, . . . , Gk be a sequence of graphs defined as follows.

(i) G0 = G.
(ii) For all i (0 ≤ i ≤ k − 1), let Ri be the equivalence relation defined on Gi

by setting uRiv ⇐⇒ D(u, x) = D(v, x), and let C be an arbitrary valid
equivalence class of Gi/Ri. Let Gi+1 be the graph obtained from Gi by a
C-contraction (i.e., Gi+1 contains all the vertices in Gi\C as well as a new
vertex c which is adjacent to all vertices in Gi\C that were adjacent to at
least one vertex in C).

(iii) Gk consists of a single vertex.
Such a sequence G0, G1, . . . , Gk is called involutive. The reader is referred to

Figure 6.5, which features the first five graphs in an involutive sequence of the given
graph. Note that in the transition from G2 to G3 in Figure 6.5 two equivalence classes
could be contracted, namely, {a, b} and {d, efgh}. We have selected to contract the
class C = {a, b}.

The obvious question is whether every connected AT-free graph has such an in-
volutive sequence. This fundamental question is answered in the affirmative in the
following theorem.

Theorem 6.17. Every connected AT-free graph G has an involutive sequence.
Proof. We shall assume that G is not a clique, since otherwise there is nothing

to prove. By Theorem 6.2, we find a nonadjacent pokable dominating pair (x, y0) in
G. Consider the transition from Gi to Gi+1 for some i (0 ≤ i ≤ k − 1). Let C be
an arbitrary valid equivalence class in Gi/Ri, and let (x, yi) be a pokable dominating
pair in Gi. Define yi+1 to be yi in case C is distinct from C(yi) and to be the vertex
obtained by contracting C(yi) otherwise. Clearly, Gi+1 is connected whenever Gi

is. By Lemmas 6.14, 6.15, and 6.16 combined, Gi+1 is AT-free and (x, yi+1) is a
pokable dominating pair in Gi+1. This completes the proof of Theorem 6.17.

We close with the obvious question: Can such an involutive sequence be con-
structed efficiently?

7. Dominating pairs in high diameter AT-free graphs. The purpose of
this section is to show that, in a connected AT-free graph with diameter larger than
three, the set of vertices that can be in dominating pairs is restricted to two disjoint
sets. Specifically, we have the following result.

Theorem 7.1. Let G be a connected AT-free graph with diameter at least four.
There exist nonempty, disjoint sets X and Y of vertices of G such that (x, y) is a
dominating pair if and only if x ∈ X and y ∈ Y .

We note that Theorem 7.1 is the best possible in the sense that for AT-free graphs
of diameter less than four, the sets X and Y are not guaranteed to exist. To wit,
C5 and the graph of Figure 7.1 provide counterexamples of diameter two and three,
respectively.

Proof. Let (x0, y0) be a dominating pair in G achieving the diameter. (The
existence of such a pair follows from Theorem 4.3.) Let Y stand for the set of all the
vertices y in G such that (x0, y) is a dominating pair, and let X be the set of all the
vertices x in G for which (x, y0) is a dominating pair. We propose to show that X
and Y are the sets with the property specified in Theorem 7.1. Our proof relies on a
number of intermediate results that we present next.
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Fig. 7.1. An AT-free graph of diameter three.

To begin, we note that

x0 ∈ X and y0 ∈ Y.(7.1)

In addition, by Claim 6.6,

both X and Y are disconnected in G.(7.2)

Our choice of x0 and y0 guarantees that

x0 (respectively, y0) is adjacent to no vertices in Y (respectively, X).(7.3)

Otherwise, (7.1) and (7.2) would imply that d(x0, y0) ≤ 3.
Note that (7.2) and (7.3) combined guarantee that

X and Y are disjoint.(7.4)

The following argument justifies (7.4). If z ∈ X ∩ Y then, in particular, z ∈ X and
so (z, y0) is a dominating pair. By (7.2), there exists a z, y0-path contained in Y . By
(7.3), x0 misses this path, contradicting the fact that (z, y0) is a dominating pair.

Let x and y be arbitrary vertices in X and Y, respectively. We claim that

(x, y) is a dominating pair.(7.5)

To justify (7.5), suppose that some vertex u misses an x, y-path π. Observe that
(7.2) guarantees the existence of an x0, y-path contained in π ∪X. Since (x0, y) is a
dominating pair, this path is dominating. By (7.3), y0 must be adjacent to a vertex
of π \ {x}. Thus, π ∪ {y0} contains an x, y0-path. This path must be dominating and
so u must be adjacent to y0. A perfectly similar argument shows that u is adjacent
to x0, contradicting that x0 and y0 achieve the diameter.

Next, let x be an arbitrary vertex in X. We claim that

if (x, z) is a dominating pair then z ∈ Y.(7.6)

Trivially, z 6∈ X; since diam(G) ≥ 4, x and z are not adjacent. If z 6∈ Y , there exists
an x0, z-path π missed by some vertex u. Note that π ∪ X contains an x, z-path.
Since, by assumption, (x, z) is a dominating pair, this path is dominating and so y0

must intercept it. By (7.3) y0 intercepts π \ {x0}. Since (x0, y0) is a dominating pair
it follows that u is adjacent to y0. Trivially, u is not adjacent to x; otherwise the path
y0, u, x which is dominating implies that x and x0 are adjacent and so d(x0, y0) ≤ 3.
Further, u and x being nonadjacent guarantees that x and x0 are also nonadjacent;
otherwise u misses the x, z-path contained in π ∪ {x}. Now, (7.2) guarantees that
some x′ in X is adjacent to both x0 and x. Since (x, z) is a dominating pair, u must
be adjacent to x′. However, this implies that d(x0, y0) ≤ 3, which is a contradiction.

Let y be an arbitrary vertex in Y . As above, we can prove that

if (y, z) is a dominating pair then z ∈ X.(7.7)
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Note that by virtue of (7.4), (7.5), (7.6), and (7.7), to complete the proof of
Theorem 7.1 we only need to prove that if (v, w) is a dominating pair then v ∈ X and
w ∈ Y (or v ∈ Y and w ∈ X). Suppose not.

By (7.5), (7.6), and (7.7) it must be that v 6∈ X ∪Y and w 6∈ X ∪Y . Let F be the
component of N ′(x0) that contains Y . (Observe that diam(G) ≥ 4 guarantees that
Y is restricted to a unique component of N ′(x0).) We claim that

v or w belongs to F.(7.8)

To justify (7.8), consider a shortest v, w-path in G. By assumption, this path is dom-
inating and so both x0 and y0 must intercept it. Assume, without loss of generality,
that y0 intercepts the path “closer” to w than x0 at a vertex t. Trivially, x0 is adjacent
to no vertex on this path from t to w, and the conclusion follows.

Let H be the component of N ′(y0) that contains X. By virtue of (7.8) we may
assume, without loss of generality, that w ∈ F and that v ∈ H. Now, observe that y0

can miss no w, x0-path since such a path extends inside H to a w, v-path missed by
y0. Similarly, no vertex y ∈ Y nonadjacent to y0 can miss a w, x0-path; otherwise, y
would miss a y0, x0-path, which is a contradiction. Let y ∈ Y be a vertex that misses
some w, x0-path π. By the previous argument, y and y0 are adjacent. However, since
(w, v) is a dominating pair, y must intercept every w, v-path contained in π ∪ H,
implying that y is adjacent to some neighbor x′ of x0. But now we have reached a
contradiction—x0 and y0 are joined by a path of length three.

With this the proof of Theorem 7.1 is complete.

8. Concluding remarks and open problems. Many families of graphs, in-
cluding interval graphs, permutation graphs, trapezoid graphs, and cocomparability
graphs, demonstrate a type of linear ordering on their vertex sets. It is precisely
this linear order that is exploited, in one form or another, in a search for efficient
algorithms for these classes of graphs. The classes mentioned are known to have
wide-ranging practical applications. In addition, they are all subfamilies of the class
of graphs called AT-free graphs.

This work is the first attempt, known to us, to investigate structural properties
of the AT-free graphs. In this direction our contributions are as follows.

1. We showed that every connected AT-free graph has a dominating pair, that
is, a pair of vertices such that every path joining them is a dominating set.

2. We provided properties of dominating pairs in AT-free graphs related to the
concept of connected domination and diameter.

3. We provided a characterization of AT-free graphs in terms of dominating
pairs.

4. We provided a characterization of AT-free graphs in terms of minimal trian-
gulations.

5. We provided a decomposition theorem for AT-free graphs.

The authors have also addressed some algorithmic questions with respect to AT-
free graphs. Specifically, in [9], O(|V | + |E|) time algorithms are given for finding a
pokable dominating pair in a connected AT-free graph G = (V,E) and for finding all
dominating pairs in a connected AT-free graph G = (V,E) of diameter greater than
three. Included in the latter algorithm is an efficient procedure for computing all of the
“D” sets, with respect to a particular pokable dominating pair vertex. An extended
abstract of [9] can be found in [11]. Some preliminary results and an alternative
approach to the dominating pair problem can be found in [10] and [12], respectively.
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Many other questions are still open. For example, it is well known [17] that
cocomparability graphs have a linear ordering; this ordering exemplifies the linear
structure we observe in interval graphs, permutation graphs, and trapezoid graphs.
It would be interesting to see whether the AT-free graphs also possess some linear
ordering. Such an ordering could, conceivably, be exploited for algorithmic purposes.

A further natural question to ask is “What are the roles of dominating pairs and
pokable vertices in the subfamilies of AT-free graphs?” It is clear that the extreme
vertices of any intersection representation, for a connected graph in any of the sub-
families, form a dominating pair. Some additional partial answers to this question
have been given, in a slightly different setting, in [21] and [22]. Investigating fur-
ther properties of dominating pairs and pokability in each of these particular families
promises to be a fruitful area for further research.

Recently Möhring [20] has added to the understanding of the linear structure
of AT-free graphs by showing that the pathwidth of an AT-free graph equals its
treewidth.

Just as there are many families of perfect AT-free graphs, one would expect to
see a rich hierarchy of families of nonperfect AT-free graphs. So far nothing is known
here. Since perfect AT-free graphs strictly contain cocomparability graphs, it would
be interesting to study the perfect AT-free graphs.

The fastest recognition algorithm known to us runs inO(n3) time with an n-vertex
graph as input. It is a tantalizing open problem to produce a recognition algorithm
that is more efficient, perhaps even optimal.
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