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Abstract. A graph is an interval graph if it is the intersection graph of intervals on a line.
Interval graphs are known to be the intersection of chordal graphs and asteroidal triple-free graphs,
two families where the well-known Lexicographic Breadth First Search (LBFS) plays an important
algorithmic and structural role. In this paper we show that interval graphs have a very rich LBFS
structure and that, by exploiting this structure, one can design a linear time, easily implementable,
interval graph recognition algorithm.
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1. Introduction. Interval graphs (namely, the intersection graphs of intervals
on a line) arise naturally in the process of modeling real-life situations, especially
those involving time dependencies or other restrictions that are linear in nature. Fifty
years ago, Benzer [1] used interval graphs to model genetic structure and, since then,
dozens of papers have described applications of interval graphs to such diverse areas
as archaeology, biology, psychology, sociology, management, genetics, engineering,
scheduling, transportation and others. For example, Choi and Farach-Colton [4] make
use of the algorithm presented in this paper to solve the sequence assembly problem
significantly faster than previous methods. For a wealth of information about interval
graphs the interested reader is referred to [15], where many of the above applications
are summarized.

Lexicographic Breadth First Search (LBFS) is a search paradigm developed in
1976 by Rose, Tarjan and Lueker [30] for the efficient recognition of chordal graphs,
namely graphs that contain no induced cycle of size greater than three. Their funda-
mental paper showed that a graph is chordal if and only if any LBFS will result in an
ordering of the vertex set that satisfies the condition that no vertex in the ordering is
adjacent to two nonadjacent vertices that occur before it in the ordering.

Little work was done on LBFS for almost two decades after the Rose, Tarjan
and Lueker paper. Jamison and Olariu [20] were probably the first to use LBFS in
a context other than chordal graph recognition. Recently LBFS has received a great
deal of attention (see [6] for a survey), including the work by the authors on asteroidal
triple-free (AT-free) graphs. An asteroidal triple is an independent triple of vertices
such that between each pair of vertices in the triple there is a path that avoids the
neighbourhood of the third vertex. AT-free graphs were introduced by Lekkerkerker
and Boland [25] who produced the following characterization of interval graphs.

Theorem 1.1. [25] A graph is an interval graph if and only if it is chordal and
asteroidal triple-free.

In light of this theorem and the LBFS results, both algorithmic and structural, for
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chordal and AT-free graphs, one might expect that interval graphs also are amenable
to LBFS algorithms and have a rich LBFS structure. In this paper we show that this
is in fact the case and that the LBFS structure leads to an easily implementable linear
time interval graph recognition algorithm.1 This algorithm involves a preprocessing
arbitrary LBFS sweep followed by five LBFS sweeps with specific tie breaking rules.

The following characterization presented in [14] turned out to be the workhorse
of the vast majority of recognition algorithms for interval graphs.

Theorem 1.2. [14] A graph is an interval graph if and only if its maximal cliques
can be linearly ordered in such a way that for every vertex in the graph the maximal
cliques to which it belongs occur consecutively in the linear order.

A crude implementation of the characterization in Theorem 1.2 yields a recogni-
tion algorithm that runs in time proportional to the cube of the number of vertices in
the graph. Later, Booth and Lueker [2] used PQ-trees to compute a required linear
order on the set of maximal cliques, if such an order exists. In the process, they
reduced the complexity to linear in the size of the graph, which is best possible. In
spite of this, the algorithm of [2] was less than perfect. For one thing, a PQ-tree is a
complicated data structure and, not surprisingly, the resulting algorithm was rather
involved. Roughly ten years later, Korte and Möhring [21] streamlined the recog-
nition algorithm of Booth and Lueker, using a variant of PQ-trees that they called
MPQ-trees, while still using the characterization by maximal cliques as the focal point
of their algorithm. Hsu and McConnell [19] further streamlined PQ-tree manipula-
tions with the introduction of PC-trees. Recently, Kratsch, McConnell, Mehlhorn,
and Spinrad [22], modified the algorithm of [21] to produce a certifying interval graph
recognition algorithm. Hsu [17] demonstrated that PQ-trees are not essential for
recognizing interval graphs by using modular decomposition techniques and not re-
lying on Theorem 1.2. Although still linear time, this algorithm was also difficult to
implement since there was no known easily implementable linear time algorithm to
perform modular decomposition. More recently, Hsu and Ma [18] gave a simple mod-
ular decomposition algorithm for chordal graphs, based on a variation of LBFS, as
well as an algorithm for linearly ordering the maximal cliques of a prime (with respect
to modular decomposition) interval graph. The resulting linear time interval graph
recognition algorithm is easier to implement, does not use PQ-trees, and is again
based on the characterization of Theorem 1.2. Habib, McConnell, Paul and Viennot
[16] also developed a linear time algorithm that is relatively easy to implement. Their
algorithm, which is completely different from ours, uses LBFS to determine that the
given graph is chordal and to produce a clique tree. It then manipulates the clique
tree into a clique path if the graph is an interval graph, thus satisfying Theorem 1.2.

Instead of using Theorem 1.2, our algorithm is based on the following charac-
terization of interval graphs independently observed by many researchers including
[27, 28, 29].

Theorem 1.3. [27, 28, 29] A graph is an interval graph if and only if there
exists a linear order ≺ on the set of its vertices such that for every choice of vertices
u, v, w, with u ≺ v and v ≺ w,

uw ∈ E =⇒ uv ∈ E.(1.1)

1A previous version of this algorithm without the first two sweeps was incorrectly claimed to
work [10]. See §5 for details.
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We call any ordering of vertices satisfying condition (1.1) of Theorem 1.3 an I-
ordering. If an edge uw does not satisfy this condition (i.e. uv /∈ E), then the edge
uw is called an umbrella. The term umbrella-free ordering will be used synonymously
with I-ordering.

Our paper is organized as follows. Section 2 reviews graph-theoretic concepts,
establishes notation and terminology and introduces both the standard LBFS as well
as a variant, LBFS+. Since the paper presents two major contributions, namely the
LBFS structure of interval graphs and the new interval graph recognition algorithm,
the paper is divided into two parts. Sections 3 and 4 constitute the first part and
provide the LBFS structural results on graph families containing interval graphs and
on interval graphs respectively. Part 2 starts with §5 where the interval graph recog-
nition algorithm together with an example are presented. The proof of correctness
of the algorithm and its easy linear time implementation are presented in §6 and §7
respectively. Section 8 contains concluding remarks and open problems.

We have tried to adopt a consistent approach to the naming of our results. For
the most part, theorems are results that may be of independent interest, lemmas are
important steps in the development of the paper, and claims are intermediate steps
leading up to the various lemmas and theorems. Since the paper introduces many
new terms and concepts, an index is provided at the end of the paper. In the proof of
correctness of the algorithm, various variables are assigned specific meanings; in the
index such variables, as well as definitions associated with the proof, are annotated
with (pc).

2. Background. We now provide the background information needed for the
paper. First we establish various notation and definitions; we then describe both
generic LBFS and a variant of it, LBFS+.

2.1. Notation and definitions. All the graphs in this work are finite with
no loops or multiple edges. Let G = (V,E). We use d(u, v) to denote the dis-
tance between vertices u and v in G. The eccentricity of vertex v, denoted ecc(v), is
maxu∈V d(u, v), and the diameter of graph G, denoted diam(G), is maxu,v∈V d(u, v).
The neighbourhood of vertex v ∈ V , denoted N(v), is the set of vertices adjacent to
v. The closed neighbourhood of v, denoted N [v] is N(v) ∪ {v}. For W ⊆ V , we let
N(W ), the neighbourhood of W , denote {v ∈ V \W such that v is adjacent to at least
one vertex in W}. Given a set W of vertices of G, we say that vertex v is universal
with respect to W whenever v is adjacent to all the vertices of W \ v. We often abuse
the language and say that v is universal with respect to the subgraph induced by W .
(Note we allow v ∈ W or v ∈ V \W .) We let KG denote the vertices in G that are
universal to G; clearly, this set is a clique, justifying the use of “KG”. By convention,
KG = ∅ if G has no universal vertices. A vertex v is homogeneous to a set X if v is
adjacent to all vertices of X or to none of them. Set of vertices M ⊆ V is a module
of G if, for all v ∈ V \M , v is homogeneous to M . A nontrivial module is one of size
greater than one and less than |V |. A vertex v is said to be simplicial if its neighbours
are pairwise adjacent. A subset of vertices S is a separator if G\S is disconnected;
S is a minimal separator if no proper subset of S is also a separator. We refer to a
path2 joining vertices x and y as an x, y-path. A vertex u intercepts a path π if u
is on π or adjacent to at least one vertex on π; otherwise, u is said to miss π. We
also say that π misses u. For vertices u, v in G, we let D(u, v) denote the set of
vertices that intercept all u, v-paths. Vertex pair (u, v) is said to be a dominating pair

2Unless stated otherwise, we assume that the paths are induced.
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whenever D(u, v) = V . We say that vertices u and v are unrelated with respect to y if
u /∈ D(v, y) and v /∈ D(u, y). A vertex y of G is said to be admissible if there are no
vertices in G unrelated with respect to y.

If G is an AT-free graph then vertex y of G is termed pokable if the graph ob-
tained from G by adding a pendant vertex adjacent to y is AT-free. It was shown
in [9] that in an AT-free graph every admissible vertex is also pokable. A pokable
dominating pair is a dominating pair such that both vertices are pokable. A vertex x
is a pokable dominating pair vertex if x is pokable and there exists y such that (x, y)
is a dominating pair.

To simplify the notation, throughout the remainder of the paper we deliberately
blur the distinction between a set S of vertices and the subgraph G[S] (or GS) it
induces.

2.2. LBFS and LBFS+. Let G = (V,E) be a graph and let u be a vertex
of G. We now reproduce the details of a variant of LBFS [30] that allows arbitrary
tie-breaking; later in the paper we impose specific tie-breaking mechanisms. We warn
the reader that our LBFS ordering of the vertices of the graph may seem “backwards”
compared to the ordering produced by other LBFS descriptions.

Procedure LBFS(G, u);
{Input: a graph G = (V,E) and a distinguished vertex u of G;
Output: an ordering σu of the vertices of G}
begin

label(u) ← |V |;
for each vertex v in V − {u} do

label(v) ← Λ;
for i← |V | downto 1 do begin

pick any unnumbered vertex v with lexicographically the largest label; (?)
σu(|V |+ 1− i)← v; {place v in σu; v is now considered to be numbered}
for each unnumbered vertex w in N(v) do

append i to label(w)
end

end; {LBFS}

In an LBFS σ with two arbitrary vertices u and v, if vertex u is visited before
v, i.e. u <σ v we say that u occurs before v in σ or that u is visited before v or
that u is to the left of v. Note that if G is disconnected, then all vertices of the
connected component containing u must be visited by the LBFS procedure before
the next component is visited (see Claim 3.6). As mentioned above, this generic
LBFS algorithm allows arbitrary choice of a vertex in step (?). We call a set of tied
vertices encountered in step (?) a slice. We will also use the term slice to refer to the
subgraph induced on the set of vertices that constitute a slice. Note that V itself is a
slice, namely, the universal slice, since all vertices of G are considered tied before the
first vertex is chosen. Unless explicitly stated otherwise, we will only be interested in
nontrivial slices, that is, those containing at least two vertices. Note that all vertices
of a slice with respect to LBFS σ appear consecutively in σ and all vertices to the left
of slice S in σ are homogeneous to S. We will use square brackets to indicate the slice
structure of an LBFS, that is, the collection of slices of the LBFS. Given two vertices
u and v of an LBFS σ such that u <σ v, Γσu,v denotes the vertex-minimal slice with
respect to σ that contains both u and v. Given slice S of LBFS σ, we say that slice
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S′ ⊂ S is an outermost slice of S with respect to σ if there is no slice T of S with
respect to σ such that S′ ⊂ T ⊂ S. As an example of these concepts consider the
graph in Figure 1 where the boxes indicate the nontrivial slices with respect to the
LBFS σ (note that the vertices are numbered as visited by σ). The slice structure
of LBFS σ is [1 [2 3] 4 [5 6 [7 8 9] 10] 11]. The nontrivial outermost slices of V
with respect to σ are {2, 3} and {5, 6, 7, 8, 9, 10}. Γσ9,10 consists of {5, 6, 7, 8, 9, 10}.
Occasionally we will refer to ΓσS where S is a set of vertices; this is equivalent to Γσs,t
where s ∈ S is the first vertex in σ of S and t ∈ S is the last vertex in σ of S. The
restriction of σ to S will be denoted σS .

V

1

2

3
4

5

6

789

10

11

Fig. 1. A graph with its LBFS slices

We say that a vertex x is good or is an end-vertex if there is some LBFS that ends
at x. Similarly, we say that a vertex is bad if no LBFS can end at x. Incidentally,
for most families of graphs it is an interesting open question to characterize good
vertices for that family; see [8] for a recent survey of results on end-vertices. In §4 we
characterize good vertices for interval graphs. We say that an LBFS is good if every
slice starts with a vertex that is good for the slice. We now describe a variant of LBFS
that, for some graph classes, is guaranteed to produce a good LBFS. In particular,
it uses a given ordering (in our case, an ordering produced by a previous LBFS) to
break ties in step (?). This variant has been independently investigated by Ma [26]
and Simon [31].

Procedure LBFS+ (G, τ):
For this LBFS procedure, one previous LBFS ordering τ is needed. In the LBFS
procedure at step (?), let S be the set of vertices with the lexicographically largest
label. Now v is chosen to be the vertex in S that appears last in τ .

As an example, LBFS+ when given the graph in Figure 1 and that LBFS, would
produce the following order and slice structure: [11 6 [9 [8 [4 2] ] 7 5] 10 3 1].

It is interesting to note that LBFS+ was used by Simon [31] in his interval graph
recognition algorithm. In particular, he performed an arbitrary LBFS followed by
three applications of LBFS+. He claimed that for an arbitrary interval graph G and
for an arbitrary initial LBFS of G, the ordering resulting from the fourth sweep would
exhibit a linear ordering of the cliques of G. Ma [26] however, showed that Simon’s
algorithm is flawed and that for any constant c, there is an interval graph, and an
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initial LBFS ordering such that after c applications of LBFS+, the linear ordering of
cliques is still not apparent!

PART 1
THE LBFS STRUCTURE OF INTERVAL GRAPHS

3. LBFS structure of families containing interval graphs. We now present
results on the LBFS structure of graph families that contain interval graphs. In
particular, we present LBFS structural results for arbitrary graphs, chordal graphs
and AT-free graphs. In §4, we study the LBFS structure of interval graphs themselves.

3.1. General graphs. We start with LBFS properties of arbitrary graphs. The
first result characterizes an LBFS ordering with respect to every triple of vertices in
the ordering.

Theorem 3.1. [13][15] An ordering < of the vertices of an arbitrary graph
G = (V,E) is an LBFS ordering if and only if for all vertices a, b, c of G such that
ac ∈ E and bc 6∈ E, c < b < a implies the existence of a vertex d in G, adjacent to
b but not to a and such that d < c.

As mentioned in §2, the concept of slice with respect to LBFS σ (namely a set
of vertices that at some point in the execution of σ are unnumbered and have the
highest label among the unnumbered vertices) is fundamental in the study of LBFS
orderings.

To motivate the next concept, consider the graph in Figure 2 where the vertices
are numbered as visited by LBFS σ, and some of the modules are indicated by boxes.
The slice structure is: [1 2 3 [4 [5 [6 [7 8] 9] [10 11 12 13 14] ] 15 [16 17] [18 19] ] ].
Now consider the P4 induced on {4, 6, 9, 15}. Subsequently we will want to analyze
the ordering of σ when restricted to such a set. If we examine the smallest slice
containing these vertices, then we have Γσ4,15 = {4, · · · , 19} and thus we have ignored
the fact that the vertices in Γσ4,15 \{4, 6, 9, 15} have no impact on how the vertices are
chosen inside the P4. This leads to the notion of an M-slice (module of a slice).

In the context of an LBFS on graph G, an M-slice of slice S is S itself or any
nontrivial module of S. In the example of Figure 2, the M-slices of V are V , {4, · · · , 19}
and the nontrivial modules of {4, · · · , 19}. Subslice {6, 7, 8, 9} is not an M-slice of V ,
but is an M-slice of the slice {5, · · · , 14}. As can be seen in Figure 2, while an M-slice
of S is a module of the graph induced on the vertices in slice S, it is not necessarily
a module of G; note that {7, 8} is a module of slice {6, 7, 8, 9}, but it is not a module
of G since 16 is adjacent to 7 but not to 8. Nevertheless, as with slices, all vertices to
the left of an M-slice are homogeneous to the M-slice.

We now present some results on the presence of modules in LBFS sweeps of
arbitrary graph G. For X, a set of vertices in V and any LBFS σ, we let scσ(X), (the
scope of X in σ) denote the smallest contiguous set, with respect to the ordering of
V imposed by σ, that contains X.

Claim 3.2. Let M be a module of graph G. Then M is an M-slice with respect
to every LBFS of G.

Proof. Let σ be an LBFS of G and consider the point in σ just before the first
vertex of M is chosen. Let S be the slice defined at this point; clearly M ⊆ S and
each vertex in S \M is either adjacent to all vertices in M or to no vertices in M .
The result follows from the definition of M-slice.

In fact, we can say something about which nodes can be in the scope of a module.
Lemma 3.3. Let σ be an arbitrary LBFS of graph G = (V,E) that contains

module M . Suppose uw ∈ E where u,w ∈ M . If v /∈ M satisfies u <σ v <σ w, then
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Fig. 2. A graph with some of its modules indicated by boxes

v is universal to M .
Proof. Suppose there is such a v that is not universal to M and without loss of

generality, assume that v is the leftmost such vertex that is spanned by some edge
of M . Applying Theorem 3.1 to the triple {u, v, w} there is a vertex x <σ u such
that xv ∈ E, xw /∈ E. Without loss of generality, assume x is the leftmost such
vertex. Since v is adjacent to x but not to vertices in M , x /∈ M and thus since
xw /∈ E, xu /∈ E. Now applying Theorem 3.1 to the triple {x, u, v}, there is a vertex
y <σ x such that yu ∈ E, yv /∈ E. We conclude that y /∈ M since otherwise yx /∈ E
and we would have contradicted the choice of v being the leftmost vertex not in M
that is spanned by an edge of M . Since yu ∈ E, y is universal to M and thus
yw ∈ E. Applying Theorem 3.1 to the triple {y, v, w} there is a vertex z <σ y such
that zv ∈ E, zw /∈ E. But z <σ y <σ x contradicting x being the leftmost vertex that
is adjacent to v and not adjacent to w.

For u <σ v, we refer to any M-slice of Γσu,v that contains u and v as an M-Γσu,v. In
general, an M-ΓσS is any M-slice of ΓσS that contains S. We let Γ̃σu,v denote the smallest
M-Γσu,v. Note that the vertices of an M-slice of σ are not necessarily contiguous in σ.
To illustrate these notions, consider the graph in Figure 2. Γσ4,15 = {4, · · · , 19}, and
Γ̃σ4,15, its smallest M-slice containing {4, 15} is {4, 6, 9, 15}. In addition, Γ̃σ5,14 and Γ̃σ6,9
are {5, 14} and {6, 9} respectively. Notice that {6, 9} is an M-slice of slice {5, · · · , 14}
but is not a module of G; also notice that 6 and 9 are not contiguous in σ.

When we refer to “any M-slice with respect to LBFS σ”, without reference to a
particular slice, we mean an M-slice of S where S is an arbitrary slice of σ.
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The next lemma is fundamental in showing that M-slices inherit much of the
structure of slices.

Lemma 3.4. Let S be an M-slice of a graph G with respect to an LBFS σ.
(i) Then σS, the restriction of σ to S, is an LBFS of GS.
(ii) Furthermore if σ is a good LBFS of G, then the first vertex of S in σ is a good
vertex of S.

Proof. If S is a slice, results (i) and (ii) follow immediately. Otherwise, let S′ be
the smallest slice strictly containing S. First, assume claim (i) does not hold for S.
By Theorem 3.1, since σS is not an LBFS, there exist vertices c <σ b <σ a such that
ac ∈ E, bc /∈ E but no vertex d ∈ S such that d <σ c, db ∈ E and da /∈ E. Since σS′
is an LBFS, such a vertex does exist in S′. But all vertices in S′ \ S adjacent to any
vertex in S are universal to S, contradicting that fact that da /∈ E.

To prove claim (ii), note that since every vertex of S′\S is adjacent to all or none
of the vertices of S, all vertices of S, possibly together with some vertices of S′\S, are
tied when the first vertex of S is chosen in σ. Since σ is a good LBFS, the first vertex
of S is thus a good vertex in the set of tied vertices and therefore a good vertex in S,
by (i). Claim (ii) follows.

The next five results present straightforward results concerning M-slices.
Claim 3.5. Let S be an arbitrary M-slice of a graph G with respect to some LBFS

σ and let t be the first vertex visited in S by σ. Every vertex of G that occurs before
t in σ is either adjacent to all vertices of S or to none of them.

Proof. If S is a slice, then this follows immediately from the fact that all the
vertices in S had the same label when t was about to be numbered by σ. If S is a
module of a slice, the proof follows from the above and the definition of M-slice.

Claim 3.6. Let S be an arbitrary disconnected M-slice of a graph G with respect
to some LBFS σ and let C and D be different connected components of S. If some
vertex of C occurs in σ before some vertex of D, then all vertices of C occur before
all vertices of D.

Proof. Let c be the first vertex numbered by σ in C∪D and assume that c belongs
to C. We assume that |C| ≥ 2, for otherwise there is nothing to prove. Let d be the
first vertex of D visited by σ and let c′ be any vertex of C that occurs after d. Since
C is connected, there is a path P from c to c′ that misses d and thus there exists
edge c1c2 ∈ P such that c1d, c2d /∈ E and c1 <σ d <σ c2. By Theorem 3.1, there
exists vertex d′ where d′ <σ c1, d′d ∈ E and d′c2 /∈ E. Now d′ /∈ D by the choice of
d, d′ /∈ S \D since it is adjacent to d and d′ is not universal to S since d′c2 /∈ E. By
Claim 3.5, we have a contradiction.

Claim 3.7. For graph G and LBFS σ:
(i) let S be a slice of G with respect to σ and let x be a vertex that occurs after S in
σ. Then some vertex y of G that occurs before S is adjacent to all the vertices in S
and nonadjacent to x.
(ii) let S be an M-slice of G with respect to σ and let x be a vertex that occurs after
S in σ where x is adjacent to some but not all vertices of S. Then some vertex y of
G that occurs before S is adjacent to all the vertices in S and nonadjacent to x.

Proof. To prove (i), let t be the first vertex visited in S by σ. Since x does not
belong to S, it must have had a smaller label than that of t at the moment when t
was chosen by σ. In turn, this implies that there must exist a numbered vertex y in G
adjacent to t but not to x. By Claim 3.5, y must be adjacent to all the vertices in S.

To prove (ii), suppose S is a proper module of slice T ; by the definition of module,
x /∈ T and thus the conclusion follows from (i).
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Lemma 3.8. Let S1 and S2 be arbitrary slices of a graph G with respect to some
LBFS σ. If S1 ∩ S2 6= ∅, then S1 ⊆ S2 or S2 ⊆ S1.

Proof. Suppose x ∈ S1\S2, y ∈ S1 ∩ S2, and z ∈ S2\S1, where x <σ y <σ z.
(Recall that all vertices in S1 (respectively S2) occur consecutively in σ.) By Claim
3.7(i), there exists a vertex w <σ x such that wx,wy ∈ E but wz /∈ E. But now,
since w appears before all vertices in S2, by Claim 3.5 we have contradicted the fact
that S2 is a slice.

Recall that given two vertices u, v and an LBFS σ of G such that u <σ v, Γσu,v
denotes the vertex-minimal slice with respect to σ that contains both u and v. From
Lemma 3.8, if u <σ v <σ w, then either Γσu,v ⊆ Γσv,w or vice versa. This implies that
one of Γσu,v and Γσv,w matches Γσu,w.

Claim 3.9. Let σ be an arbitrary LBFS of a graph G, let u and v be vertices of
G satisfying u <σ v, let T be an M-Γσu,v, and let t be the first vertex of the connected
component of T that contains u. If t is distinct from u, then t cannot be adjacent to
v.

Proof. First we note that in every M-Γσu,v, the connected component containing
u must start with the same vertex t. This follows from the fact that vertices of each
of these sets are tied when the first vertex of the set is numbered, the definitions of
slice and M-slice, and Claim 3.6. Suppose that t is adjacent to v. In particular, once
t is visited by σ, v inherits t’s label. Since all the vertices in Γσu,v (and thus in T )
were tied when t was numbered, this implies that all the vertices of Γσu,v preceding v
must also be adjacent to t. But now, there is a slice containing both u and v, namely
Γσu,v ∩N(t), strictly included in Γσu,v, contradicting the minimality of Γσu,v.

The next theorem is fundamental in the study of LBFS on arbitrary graphs.
Theorem 3.10. (The Prior Path Theorem) Let σ be an arbitrary LBFS of

a graph G, let u and v be vertices of G satisfying u <σ v, let T be an M-Γσu,v, and let
t be the first vertex of the connected component of T that contains u. There exists a
t, u-path in T all of whose vertices, with the possible exception of u, are missed by v.
Moreover, all vertices other than u on this path occur before u in σ. (Such a path is
called a prior path).

Proof. If t and u coincide, then there is nothing to prove. Therefore, we shall
assume that t and u are distinct vertices. By Claim 3.9, t is not adjacent to v.

The minimality of Γσu,v guarantees that u and v could not have been tied at the
time when u was chosen by σ. In turn, this implies the existence of a vertex u1,
adjacent to u but not to v, that occurs prior to u in σ. By Claim 3.5, u1 belongs to
T and thus to C, the connected component of T that contains u. In fact, we choose
u1 to be the earliest vertex of C adjacent to u but not to v.

If u1 and t coincide, the path consisting of u and u1 is the desired path. Now,
when u1 was chosen, u1 and v could not have been tied, otherwise u and v would
have been tied, contradicting the minimality of Γσu,v. Let u2 be the earliest vertex
of G, adjacent to u1 but not to v, that occurs before u1 in σ. As before, Claim 3.5
guarantees that u2 belongs to T and thus to C. Moreover, our choice of u1 guarantees
that u2 and u are not adjacent.

If u2 and t coincide, then u2, u1, u is the desired path. Otherwise, the process
above continues inductively. The finiteness of G guarantees that for some subscript
i, (i ≥ 1), ui and t coincide. Now, t = ui, ui−1, . . . , u1, u is the desired path.

3.2. Chordal graphs. We now study LBFSs in chordal graphs. The first three
results are either stated or are implicit in the seminal paper by Rose, Tarjan and
Lueker [30].
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Theorem 3.11. [30] Let σ be an LBFS of a chordal graph G and let v be an
arbitrary vertex of G. Let W denote the set of vertices that occur before v in σ. Then
v is simplicial in the subgraph of G induced by W ∪ {v}.

The following theorem is equivalent to Theorem 3.11, and will be used, again and
again, in our subsequent arguments. We shall refer to it as the P3 Rule.

Theorem 3.12. (The P3 Rule) Let σ be an LBFS of a chordal graph G and
let u, v, w be vertices of G with v adjacent to u and w and such that u <σ v and
w <σ v. Then vertices u and w must be adjacent.

Corollary 3.13. Let S be an M-slice with respect to LBFS σ, properly contained
in chordal graph G. Then all vertices that occur before S and are adjacent to S form
a clique.

Such a clique with respect to S in σ is called the clique of attachment of S with
respect to σ and is denoted clσ(S). Note that clσ(T ) ⊇ clσ(Γσu,v) for any M-Γσu,v, T .
Let σ be an LBFS of a chordal graph G.

Corollary 3.14. If vertex u occurs before v in σ, then in every induced u, v-path
π : u = u1, u2, . . . , ut = v in G there exists a unique subscript j, (1 ≤ j ≤ t − 1),
such that, if j 6= 1, uj <σ uj−1 <σ · · · <σ u1 and uj <σ uj+1 <σ · · · <σ ut.

Proof. If the statement if false, we find a subscript i, (2 ≤ i ≤ t − 1), such that
both ui−1 and ui+1 occur in σ before ui. Since the path π is chordless, ui−1 and ui+1

are not adjacent. However, this violates the P3 Rule.
Corollary 3.15. If vertex u occurs before v in σ, then in every induced

u, v−path π, the neighbour of v on π occurs before v.
Proof. This follows immediately from Corollary 3.14.
A path π : v1, v2, · · · , vk is said to be monotone with respect to LBFS σ if vi <σ

vi+1 for all i, 1 ≤ i < k.
Corollary 3.16. Let π : wk, wk−1, · · · , w1 be a monotone path with respect to

σ and let x be a vertex outside π such that wk <σ x <σ wk−1. If xw1 ∈ E, then x is
universal to π.

The next theorem illustrates the critical role that slices play in the study of
different LBFSs of a chordal graph. This theorem is essential for the correctness
of our multisweep LBFS interval graph recognition algorithm and is of significant
independent interest.

Theorem 3.17. (The (Chordal) LBFS Theorem) Let G be a chordal graph
and let S be an M-slice of an arbitrary LBFS ordering τ of G. Further let σ be an
arbitrary LBFS ordering of G. The restriction of σ to S is an LBFS ordering of the
graph induced by the vertices of S.

Proof. By Lemma 3.4(i), τS is an LBFS of S. Thus we may assume that σ and τ
are distinct for, otherwise, there is nothing to prove. Let σS denote the restriction of
σ to S. Suppose that σS is not an LBFS ordering of G[S] and let v1 be the leftmost
vertex of σS that is inconsistent with an LBFS of G[S]. Let w0 be a vertex of S such
that the subordering of σS up to but not including v1 followed by w0 is consistent
with some LBFS of G[S]. (i.e. w0 was a legitimate vertex to be chosen at the time
that v1 was chosen.) Clearly v1 is before w0 in σ.

The choice of v1 and w0 imply both the existence of vertex w1 in S such that
w1 <σ v1, w1w0 ∈ E and w1v1 /∈ E and the nonexistence of vertex x in S with
x <σ w1, xv1 ∈ E and xw0 /∈ E.

By Theorem 3.1, the triple w1, v1, w0 implies the existence of vertex v2 <σ w1

(without loss of generality the leftmost such vertex) adjacent to v1 and not adjacent
to w0; by the above argument, v2 /∈ S.
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We now show that v1 <τ v2. Since v2 is adjacent to v1 but not to w0, v2 cannot
be before S in τ . If S is a slice in τ , then since v2 /∈ S, v2 must be after S in τ . If S
is a proper module of slice T in τ , then by the definition of a module, v2 /∈ T and v2
must be after T in τ and thus also after S. Since v1 ∈ S, the claim follows.

The edge v2w1 /∈ E since otherwise τ has a P3: v1, v2, w1 contradicting the P3

Rule. Since w1 <σ v1, there exists a vertex to the left (in σ) of v2 that is adjacent to
w1 and not adjacent to v1. Let w2 be the leftmost such vertex. We claim that

If v2 <τ w2, then w1 <τ w2.(3.1)

To see this, note that since v2 is after S in τ , w2 is also after S. Since w1 ∈ S, (3.1)
follows.

We claim that w2v2 /∈ E. Suppose not. If w2 <τ v2, then the P3: v1, v2, w2

contradicts the P3 Rule. If v2 <τ w2, then the P3: v2, w2, w1 contradicts the P3 Rule
(by (3.1)).

Now suppose that we have a sequence of vertices in σ: wk <σ vk <σ wk−1 <σ
vk−1 · · · <σ w1 <σ v1 <σ w0 where k ≥ 2 such that for all i, 2 ≤ i ≤ k, all of the
following hold:

• vi is the leftmost (in σ) vertex of G with vivi−1 ∈ E and viwi−2 /∈ E
• wi is the leftmost (in σ) vertex of G with wiwi−1 ∈ E and wivi−1 /∈ E
• vi−1 <τ vi
• viwi−1 /∈ E
• vi <τ wi ⇒ wi−1 <τ wi
• wivi /∈ E

(3.2)

Note that the previously defined sequence w2 <σ v2 <σ w1 <σ v1 <σ w0 satisfies these
properties. We will show how to extend any such sequence to a longer one satisfying
the same properties, thereby contradicting the finiteness of G. Since vk <σ wk−1

there is a vertex before wk in σ, adjacent to vk and not adjacent to wk−1. Let vk+1

be the leftmost (in σ) such vertex. We claim that

vk <τ vk+1.(3.3)

Suppose vk+1 <τ vk. We know vk−1 <τ vk by (3.2). Therefore vk−1vk+1 ∈ E else the
P3: vk−1, vk, vk+1 contradicts the P3 Rule in τ . Also vk+1wk−1 /∈ E by the definition
of vk+1. Therefore vk+1wk−2 /∈ E else the P3: vk+1, wk−2, wk−1 exists in σ. But now
the choice of vk is contradicted (vk+1 should have been chosen instead). We claim
that

vk+1wk /∈ E.(3.4)

Suppose vk+1wk ∈ E. If wk <τ vk+1, then τ has the P3: wk, vk+1, vk (vk <τ vk+1 by
(3.3); wkvk /∈ E by (3.2). If vk+1 <τ wk then τ has the P3: wk−1, wk, vk+1 (vk <τ wk
by (3.3) and transitivity; wk−1 <τ wk by (3.2).

Since wk <σ vk there is a vertex to the left of vk+1 (in σ) that is adjacent to wk
and not adjacent to vk. Let wk+1 be the leftmost such vertex.

If vk+1 <τ wk+1, then wk <τ wk+1.(3.5)

Assume wk+1 <τ wk. Thus vk+1 <τ wk and vk <τ wk (by (3.3)). Now wk−1 <τ wk
by (3.2) and wk−1wk+1 ∈ E, since otherwise τ has the P3: wk−1, wk, wk+1. Also
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wk+1vk /∈ E and thus wk+1vk−1 /∈ E (otherwise σ has the P3: wk+1, vk, vk−1). Since
wk+1 <σ wk this contradicts the choice of wk.

To complete the proof we show that wk+1vk+1 /∈ E. Suppose wk+1vk+1 ∈ E. If
wk+1 <τ vk+1 then τ has the P3: vk, vk+1, wk+1 (vkvk+1 ∈ E by the definition of vk+1;
vk <τ vk+1 by (3.3); wk+1vk /∈ E by the definition of wk+1). If vk+1 <τ wk+1 then
wk <τ wk+1 by (3.5) and wkvk+1 /∈ E by (3.4). But now τ has the P3: vk+1, wk+1, wk.

Note that the proof of the LBFS Theorem does not require τ to be an LBFS; it
requires only that τ satisfy the P3 Rule and that all vertices to the left of S in τ be
homogeneous to S.

To put the LBFS Theorem in perspective, it is important to note that the theorem
does not hold for S being an arbitrary subset of vertices of a chordal (or even interval)
graph G. For example, consider the interval graph shown in Figure 3. The numbering
of the vertices indicates a legitimate LBFS ordering; however when vertex 1 is removed
the restriction of this ordering to the remaining subset is not a legitimate LBFS
ordering of the subset. Also, as shown in Figure 4, the theorem does not hold for
AT-free graphs. S = {2, 3, 4} is a slice of the LBFS: 1 2 3 4 5. Now consider an
arbitrary LBFS starting at 5. Vertex 3 occurs after 2 and 4, which cannot occur in
an LBFS of S.

1
2

3

4

5

Fig. 3. The LBFS Theorem does not hold for arbitrary subsets of vertices of interval graphs

1

2

3

4

5

Fig. 4. The LBFS Theorem does not hold for AT-free graphs

We now present three corollaries of the LBFS Theorem. Recall that for X, a set
of vertices in G we let scτ (X), (the scope of X in τ) denote the smallest contiguous
set, with respect to the ordering of V imposed by τ , that contains X.

Corollary 3.18. Let S, with components C1, C2 · · · , Ck, (k ≥ 2), be a discon-
nected M-slice of chordal graph G with respect to some LBFS. Then for any LBFS τ
of G, scτ (Ci) ∩ scτ (Cj) = ∅, for all i 6= j.

We now turn our attention to good LBFSs in chordal graphs. Recall that in a
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good LBFS every M-slice (see Lemma 3.4(ii)) S (including V itself) must start with
a vertex that can end an LBFS of S.

Corollary 3.19. LBFS+ produces a good LBFS for chordal graphs.
Proof. Let G be a chordal graph, and let τ+ be the LBFS produced by LBFS+(τ)

where τ is an arbitrary LBFS ofG. Let S be any M-slice in τ+. By the LBFS Theorem,
x, the last vertex of scτ (S), is a good vertex of S thereby showing that in τ+, S starts
with a good vertex.

Note that, for arbitrary graphs, LBFS+ is not guaranteed to produce a good
LBFS. For the graph in Figure 4, if τ is the LBFS: 5 4 2 3 1, then τ+ is 1 [3 2 4] 5,
but the slice [3 2 4] does not start with a good vertex.

Corollary 3.20. Let S be an M-slice of chordal graph G with respect to LBFS
τ . Let T , a superset of S, be an M-slice with respect to LBFS τ . Then any vertex
x ∈ S that is good with respect to T is also good with respect to S.

Proof. Let τ ′ be an LBFS of T that places x last. By the LBFS Theorem, τ ′S is
an LBFS of S. Since τ ′S places x last, x is good in S.

The next lemma is analogous to the LBFS Theorem insofar as it describes the
effect that good LBFSs have on M-slices from another good LBFS. Recall that a
vertex is called bad in S, where S is an M-slice, if it is not good in S. We say that
a set of vertices X ⊂ Y is pulled with respect to Y in LBFS τ if there exists a vertex
z <τ scτ (Y ) such that zx ∈ E for all x ∈ X and zy /∈ E for all y ∈ Y \X. X is
referred to as a pulled set and a vertex is said to be pulled if it belongs to some pulled
set.

Lemma 3.21. Let σ and τ be good LBFSs of a chordal graph G, and let S be an
M-slice of σ. If τS is not a good LBFS of S then s1, the first vertex of scτ (S), is a
bad vertex with respect to S and is pulled in τ .

Proof. Assume τS is not a good LBFS. Look at the point in τ where s1 was
chosen. First assume that the set of tied vertices at this point includes s2, the last
vertex of S in τ . Since τ is a good LBFS, s1 is a good vertex of S in a superslice of
S and thus, by Corollary 3.20, in S too. If the set of tied vertices at the time s1 was
chosen by τ does not include s2, then there is a vertex x <τ s1 such that xs1 ∈ E but
xs2 /∈ E. Note that x is providing a pull on S. If s1 is bad with respect to S, we are
done so we assume s1 is a good vertex in S.

By the LBFS Theorem (Theorem 3.17), τS is an LBFS of S but, by assumption,
is not a good LBFS. Thus there is a slice S′ of S with respect to τS such that y1,
the first vertex of S′ is not good in S′. At the time y1 was chosen by τ , y2 (the last
vertex of scτ (S′)) could not have been tied since otherwise, since τ is a good LBFS,
y1 would be good in a superslice of S′ and thus by Corollary 3.20 in S′ too. Thus
there exists vertex z, z <τ y1 such that zy1 ∈ E and zy2 /∈ E. Now try to place z
in σ: z is not universal to S′ and thus is not universal to S, thus z /∈ clσ(S); z /∈ S
since τS is an LBFS of S and all vertices in S′ have to be homogeneous with respect
to all vertices of S that appear before S′ (Claim 3.5). Thus, whether S is a slice or a
module of a slice, z /∈ scσ(S). Therefore z is after S in σ and by Claim 3.7 there exists
z′ ∈ clσ(S) such that zz′ /∈ E (note that z is adjacent to some but not all vertices of
S since zy2 /∈ E). In τ , z′ cannot be before y1 since otherwise there is a P3: z, y1, z′.
Since S′ is not a clique (otherwise all LBFSs are good), there exists w1, w2 ∈ S′ such
that w1w2 /∈ E. Since s1 <τ y1 <τ z′, s1y1 ∈ E (otherwise there is the P3: s1, z′, y1;
note z′s1 ∈ E since z′ ∈ clσ(S)). Thus s1 ∈ clτ (S′) and s1w1, s1w2 ∈ E; but now we
have a P3: w1, s1, w2 contradicting s1 being good in S.

We end this section with another property of good LBFSs of chordal graphs.
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Claim 3.22. Let σ be a good LBFS of chordal graph G and let S be a nonclique
M-slice of σ where clσ(S) 6= ∅. Then there is a vertex before the last vertex of clσ(S)
that is not in clσ(S) and is universal to clσ(S).

Proof. Let x be the rightmost vertex in clσ(S). If x has no neighbour to the
left that is not in clσ(S), then x starts a slice including S, but x is not simplicial in
this slice since S is not a clique, thereby contradicting σ being good. Thus x has a
neighbour y, where y <σ x, that is not in clσ(S). By the P3 Rule, y is universal to
all vertices of clσ(S) as required.

3.3. AT-free graphs. In this subsection we list three important theorems from
[11] and prove a new claim regarding separators.

Theorem 3.23. [11] Let σ be an LBFS of an AT-free graph G and let v be an
arbitrary vertex of G. Let W denote the set of vertices w that occur before v in σ.
Then v is admissible in the subgraph of G induced by W ∪ {v}.

Note the similarity between this theorem and Theorem 3.11.
Theorem 3.24. [11] Let u be an arbitrary vertex of a connected AT-free graph

G. Let a be the vertex numbered last by LBFS(u) and let b be the vertex numbered
last by LBFS(a). Then (a, b) is a pokable dominating pair in G.

Theorem 3.25. [11] Let G = (V,E) be a connected AT-free graph and suppose
that G contains no vertices unrelated with respect to vertex x of G. Consider the
vertex ordering produced by an LBFS σ starting at x. Then, for all vertices u, v in
V with u <σ v, we have u ∈ D(v, x).

Let A be a minimal separator of graph G. A connected component Ci of G \ A
is called shallow if C̃i = Ci (C̃i denotes the vertices in Ci that are universal to A)
and is called deep otherwise. As the following claim shows, any AT-free graph has at
most two deep components.

Claim 3.26. Let A be a minimal separator of AT-free graph G with {Ci, 1 ≤ i ≤
k} the deep components of G \A. Then k ≤ 2.

Proof. Suppose k ≥ 3 and for 1 ≤ i ≤ 3 consider vertex ci ∈ Ci \ C̃i where ci is
not adjacent to ai ∈ A. Now, between any pair of {ci} there is a path that avoids the
neighbourhood of the third. For example, consider a path from c1 to a vertex in C̃1

to a3 to a vertex in C̃2 to c2; clearly this path misses the neighbourhood of c3.

4. LBFS properties of interval graphs. In this section we present new LBFS
structure results on interval graphs. Let S be an M-slice of an interval graph G with
respect to some LBFS. A vertex u of S is said to be S-valid (or simply valid if no
confusion is possible) if, in S, u is admissible and is the midpoint of no P3, i.e.
simplicial.

We note that since G itself is a slice with respect to any of its LBFSs, it makes
sense to talk about valid and good vertices in G. Theorem 3.12 (the P3 Rule) and
Theorem 3.23 combined, imply that, in any LBFS of an interval graph, every good
vertex in some M-slice must also be valid in that M-slice. As it turns out, the converse
is also true (Theorem 4.5).

Observation 4.1. If v is S-valid then it is S′-valid for every M-slice S′ ⊂ S
where v ∈ S′.

The following claim has most likely been observed many times. Note that the
3-sun graph (the left hand graph in Figure 5 with vertex y removed) and C4 show
that it does not hold for either chordal graphs or AT-free graphs respectively.

Claim 4.2. A nonclique interval graph has diameter two if and only if it contains
a universal clique.
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Proof. Any nonclique graph that contains a universal clique has diameter two.
Consider an interval representation for nonclique interval graph G of diameter two
and let u and v be the vertices represented by the intervals having leftmost right
endpoint p and rightmost left endpoint q, respectively. Since G is not a clique, u 6= v
and p is to the left of q. Now, the set of vertices corresponding to intervals having left
endpoint to the left of p and right endpoint to the right of q forms a universal clique,
and at least one such vertex exists since d(u, v) = 2.

We now consider the structure of interval graphs in more detail. Specifically,
we define the type of an interval graph, based on the diameter of the graph after
the removal of all universal vertices. Note that there is a correspondence between
type 1 and type 2 interval graphs as defined below, and the Q nodes and P nodes,
respectively, of [2]. For any nonclique interval graph G we let KG denote the maximal
universal clique of G; by convention, KG = ∅ if G does not have a universal clique.
Since G is not a clique, only vertices in G\KG can be good or valid in G. We let
C1, · · · , Ck (k ≥ 1) denote the connected components of G\KG. We say that G is of
type 1 if G\KG is connected (i.e. k = 1, which implies diam(G\KG) ≥ 3 by Claim 4.2
and the maximality of KG) and is of type 2 if G\KG is disconnected (i.e. k ≥ 2). As
we shall see, type 2 interval graphs are of limited interest from the LBFS perspective.
Neither universal vertices nor disconnected components have any effect on the LBFS
restricted to a component. Henceforth when we state that diam(H) ≥ 3 for some
graph H, we imply that H is connected.

The following claim summarizes some facts about LBFSs for interval graphs with
diameter two. These facts follow from Theorem 3.17, Corollary 3.18, Corollary 3.20,
Claim 4.2, and the observation that universal vertices do not affect the ordering of
non-universal vertices produced by the LBFS algorithm.

Claim 4.3. Let G be a nonclique interval graph with a maximal universal clique
KG and let C1, C2, . . . , Ck, (k ≥ 1), be the connected components of G \KG. Let σ be
any LBFS of G in which the first vertex of G\KG visited is vertex x in C1. Let σ′ be
the restriction of σ to G\KG.
(i) All vertices in C1 ∪KG are visited by σ before any vertices in C2 ∪ · · · ∪ Ck.
(ii) For any j, (2 ≤ j ≤ k), the vertices of Cj occur consecutively in σ.
(iii) The ordering σ′ is an LBFS of G\KG; furthermore, if σ is a good LBFS of G

then σ′ is a good LBFS of G\KG.
(iv) If vertex v is good (respectively valid) in G\KG then v is good (respectively valid)

in G.
(v) For u, v /∈ KG, u <σ v: Γσu,v\KG = Γσ

′

u,v.
We now state and prove a fundamental result of LBFS in interval graphs that

will be key in many of our subsequent arguments.
Lemma 4.4. (The Flipping Lemma) Let G be an interval graph and let y and

z be valid vertices of G. If there is an LBFS of G that starts at y and ends at z, then
some LBFS of G starts at z and ends at y.

Proof. Suppose the statement is true for all interval graphs with fewer vertices
than G. If y and z are adjacent, then G is a clique and there is nothing to prove. If
G is disconnected, enumerate its connected components as C1, C2, . . . , Ck, (k ≥ 2),
such that z ∈ C1 and y ∈ Ck (note that by Claim 3.6, y and z cannot be in the same
component of G). Consider an LBFS of Ck starting at y and ending at a vertex y′.
Trivially, y′ is a valid vertex of Ck. Moreover, by Observation 4.1, since y is valid in
G it is valid in Ck. By the induction hypothesis, some LBFS τ of Ck starts at y′ and
ends at y. Now, there exists an LBFS of G that starts at z and, having exhausted C1,
visits in order C2, . . . , Ck−1 and then, visiting Ck in the same order as τ , ends at y.
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Therefore, from now on, we shall assume that y and z are nonadjacent and that
G is connected. Consider an LBFS σ of G that starts at z and ends at a vertex w
distinct from y. We claim that

Γσy,w ⊂ V.(4.1)

To justify (4.1), observe that if Γσy,w = V then, since G is connected, Theorem 3.10
guarantees the existence of a prior z, y-path all of whose internal vertices are missed by
w. Since (y, z) is a dominating pair in G, it must be the case that yw ∈ E. However,
now y is the midpoint of a P3, contradicting that y is valid. Thus, (4.1) must hold.

Consider an arbitrary LBFS of Γσy,w that starts at y and ends at some vertex w′.
By the induction hypothesis (which can be applied by (4.1)), there exists an LBFS
τ of Γσy,w that starts at w′ and ends at y. But now, by combining σ and τ in the
obvious way, we obtain an LBFS of G that starts at z and ends at y, completing the
proof.

Note that the Flipping Lemma does not extend to either chordal or AT-free
graphs. For the graphs in Figure 5 with the given initial LBFSs that end at vertex
x, there is an LBFS from x that ends at y. Thus both x and y are good vertices but
there is no LBFS that starts at y and ends at x. (In fact all LBFSs from y must end
at z.)

1

2

3

4 x

y

z

Initial LBFS: 1  2  3  4  z  y  x

1

23

x

y

z

Initial LBFS: 1  2  3  z  y  x

Fig. 5. The Flipping Lemma does not extend to chordal graphs or to AT-free graphs

The Flipping Lemma is related to the following results, the first of which shows
the equivalence between valid and good vertices in M-slices of interval graphs. As
mentioned in §2, to the best of our knowledge this is the first characterization of good
vertices for any nontrivial family of graphs.

Theorem 4.5. Let S be an M-slice of an interval graph with respect to some
LBFS. A vertex of S is good if and only if it is valid, i.e., simplicial and admissible.

Proof. The “only if” part follows from Theorem 3.12 (the P3 Rule) and Theorem
3.23. To prove the “if” part, let u be a valid vertex in S and let σ be an LBFS of S
starting at u. Let v be the vertex of S occurring last in σ. Since v is valid, by the
Flipping Lemma (Lemma 4.4) there exists an LBFS of S that starts at v and places
u last, confirming that u is a good vertex.

By Theorem 4.5, when referring to an M-slice S, good and valid vertices are
synonyms. In the remainder of this work we shall use good to stand for both valid and
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good vertices. The exact property that we have in mind will be clear from the context.
Note that one of the implications of Theorem 4.5 holds in general, specifically for an
arbitrary graph, if a vertex is valid in M-slice S then it is also good in S [8].

The next theorem shows that LBFS+(G, σ) “flips” an LBFS σ and produces a
good LBFS provided σ starts with a good vertex.

Theorem 4.6. Let G be an interval graph and let y and z be good vertices of G.
If σ is an arbitrary LBFS of G that starts at y and ends at z, then LBFS+(G, σ) is
a good LBFS that starts at z and ends at y.

Proof. Let σ+ be the ordering produced by LBFS+(G, σ). By Corollary 3.19, σ+

is a good LBFS. Suppose that σ+ ends at a vertex w distinct from y. Let C be the
connected component of Γσ

+

y,w containing y, and let v be the first vertex of C visited
by σ+. Observe that v and y are distinct vertices; this is because y has the lowest
LBFS number in σ among all the vertices in G and, therefore, cannot be chosen first
by σ+.

We note, further, that in σ, v must occur after w. By Theorem 3.10 applied to
σ+, there exists a v, y-path P in C, all of whose internal vertices are missed by w. By
Theorem 3.25, applied to σ, w ∈ D(v, y), forcing w to be adjacent to y. But now, y
is the midpoint of the P3 with endpoints w and y’s neighbour on P , contradicting y
being good.

Let S be an M-slice of an interval graph G with respect to some good LBFS. Two
good vertices u and v of S are said to be antipodal in S if there exists a good LBFS
of S that starts at u and ends at v.

Claim 4.7. Let C be a connected M-slice of an interval graph G with respect
to some good LBFS and let u and v be antipodal vertices in C. Then dC(u, v) =
diam(C).

Proof. Dragan et al. [13] have shown that the last vertex of any LBFS of
a connected interval graph G has eccentricity equal to the diameter of G. Thus
eccC(v) = diam(C). Since there is an LBFS starting at v that ends at u (by the
Flipping Lemma), u is at maximum distance from v and thus dC(u, v) = diam(C).

The next lemma characterizes type 1 M-slices (i.e. M-slices S where diam(S\KS)
≥ 3).

Lemma 4.8. Let S be a nonclique M-slice in a good LBFS σ of interval graph G.
S is of type 1 if and only if there exists in S an induced path of length greater than
two from the first vertex of S in σ to the last vertex of S in σ.

Proof. Since σ is good, neither the first nor the last vertex of σS belongs to KS . If
S is of type 1 then S\KS is connected and has diam(S\KS) ≥ 3. Thus, by Claim 4.7,
a shortest path in S\KS from the first to the last vertex is the required path. To prove
the “if” direction, we note that an induced path of length greater than two between
the first and last vertices of scσ(S) cannot contain a vertex of KS . Thus S\KS is
connected and has diameter greater than two by Claim 4.2 and the maximality of KS .

We now prove a claim that will be used often in the proof of correctness of the
interval graph recognition algorithm.

Claim 4.9. Let S be an M-slice of an interval graph G with respect to some
LBFS. Let σ be a good LBFS of S and let b, c, d be vertices of S such that

• b <σ c and c <σ d,
• c misses a b, d-path π in S.

Then d /∈ Γσb,c.
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Proof. Suppose that d ∈ Γσb,c. We claim that

every vertex of π belongs to Γσb,c.(4.2)

If (4.2) is false, then by Corollary 3.14 there must exist vertices of π that occur in
σ prior to Γσb,c. Let u be the first such vertex encountered while traversing π in the
direction from b to d. The choice of u guarantees that the previous vertex on π belongs
to Γσb,c. By Claim 3.5, u must be adjacent to all the vertices in Γσb,c and, in particular,
to c, a contradiction. Thus, (4.2) must hold.

Let C be the connected component of Γσb,c containing b. By (4.2), all vertices of
π must also belong to C and by Claim 3.6 c ∈ C. Let t be the first vertex visited by
σ in Γσb,c. By the definition of Γσb,c, t is also the first vertex of C. By Theorem 3.10,
there exists a prior t, b-path π′ in Γσb,c all of whose internal vertices are missed by c.
But now, π ∪ π′ contains a t, d-path in Γσb,c missed by c, contradicting Theorem 3.25.

Claim 4.10. Let C be a connected M-slice of an interval graph with respect to
some LBFS and let u and v be antipodal good vertices in C. Let τ be an LBFS of C
that starts at v and ends at u, and let σ be an LBFS of C that starts at u and ends
at v. Then, for any good vertex w of C, at least one of the conditions Γσw,v ⊂ C or
Γτw,u ⊂ C must be satisfied.

Proof. If w coincides with one of the vertices u or v, then there is nothing to
prove. Similarly, if u and v are adjacent, then C is a clique and the conclusion is
immediate.

We shall, therefore, assume that w is distinct from both u and v and that u and v
are nonadjacent. If the statement is false, we have Γσw,v = Γτw,u = C. Theorem 3.10
applied to σ guarantees the existence of a prior u,w-path π in C all of whose internal
vertices are missed by v. In fact, v misses π completely. To see this, observe that v
cannot be adjacent to w, for otherwise w would be the midpoint of a P3 consisting of
v and w’s neighbour on π; a contradiction to w being good in C.

Further, Theorem 3.10 applied to τ guarantees the existence of a prior v, w-path
π′ in C all of whose internal vertices are missed by u. It is easy to see that, in fact, u
misses the path π′ completely. But now, the two paths π and π′ confirm that u and v
are unrelated vertices with respect to w, contradicting that w is good, in particular,
it is not admissible.

Our next result specializes Claim 4.10 to M-slices of type 1.
Theorem 4.11. Let C be a type 1 M-slice of an interval graph G with respect to

some LBFS and let u and v be antipodal good vertices in C. Let τ be an LBFS of C
that starts at v and ends at u, and let σ be an LBFS of C that starts at u and ends
at v. Then, exactly one of the conditions Γσw,v ⊂ C or Γτw,u ⊂ C must be satisfied.

Proof. By Claim 4.10 at least one of the conditions Γσw,v ⊂ C or Γτw,u ⊂ C
must hold. Suppose that both of the conditions are satisfied. Let σ′ and τ ′ be the
restrictions of σ and τ respectively to C \KC . Vertices u, v, and w belong to C\KC

since they are good in C (note that τ ends at u). Thus, Claim 4.3(v) applies and
Γσw,v\KC = Γσ

′

w,v ⊂ C\KC and Γτw,u\KC = Γτ
′

w,u ⊂ C\KC . Thus we may turn our
attention to σ′ and τ ′.

First, since Γσ
′

w,v ⊂ C\KC , the connectedness of C\KC guarantees the existence
of a vertex x in C \(Γσ

′

w,v∪KC) which, by Claim 3.5, is adjacent to all vertices in Γσ
′

w,v.
But now, we have reached a contradiction: If x ∈ C \ (Γτ

′

w,u∪KC) then, by Claim 3.5,
x is adjacent to u (since x is adjacent to w), implying that dC\KC

(u, v) ≤ 2 which
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implies diam(C \KC) ≤ 2 by Claim 4.7. If x ∈ Γτw,u then, by Claim 3.5, d(u, v) = 1
and C \KC is a clique.

Claim 4.12. Let S be an M-slice of an interval graph G with respect to some
good LBFS. Let u and v be arbitrary good vertices of S and let σ be a good LBFS of
S that places v last. Then, u and v are antipodal vertices in Γσu,v.

Proof. We proceed by induction on | Γσu,v|. If Γσu,v is a clique, then there is
nothing to prove. If Γσu,v is disconnected, enumerate its connected components as
C1, C2, . . . , Ck, (k ≥ 2), such that u ∈ C1 and v ∈ Ck. Now, u and v are antipodal as
confirmed by a good LBFS of Γσu,v that starts at u and, having exhausted C1, visits
in order C2, . . . , Ck−1 and then visits Ck in the same order as σ.

Therefore, from now on, we assume that Γσu,v is connected but not a clique.
Suppose Γσu,v starts with w and consider a good LBFS τ of Γσu,v that starts at v and
ends at w. By Claim 4.10, Γτu,w ⊂ Γσu,v and by Corollary 3.20, u is a good vertex in
Γτu,w. By the induction hypothesis applied to Γτu,w, u and w are antipodal vertices in
Γτu,w. In other words, there exists a good LBFS θ of Γτu,w that starts at w and ends
at u. But now, by combining τ and θ in the obvious way we obtain a good LBFS of
Γσu,v that starts at v and ends at u confirming that u and v are antipodal.

Claim 4.12 can be extended as follows.
Claim 4.13. Let S be an M-slice of an interval graph G with respect to some

good LBFS. Let u and v be arbitrary good vertices of S and let σ be a good LBFS of
S that places u before v. Then u and v are antipodal vertices in Γσu,v.

Proof. Let t be the last vertex in Γσu,v. If t and v coincide, the conclusion is
implied by Claim 4.12. Therefore, we assume that v and t are distinct. By Corollary
3.20, v is a good vertex in Γσv,t. Claim 4.12 guarantees that v and t are antipodal
vertices in Γσv,t. Thus, there exists a good LBFS τ of Γσv,t that starts at t and places v
last. We can now apply Claim 4.12 to the good LBFS of Γσu,v obtained by combining
σ and τ in the obvious way, confirming that u and v are antipodal vertices in Γσu,v.

Claims 4.12 and 4.13 can be specialized to slices of type 1 as follows.
Claim 4.14. Let C be a type 1 M-slice of an interval graph G with respect to

some good LBFS. Let u and v be good vertices of C and let σ be a good LBFS of
C that places u before v. Then u and v are antipodal vertices in C if and only if
Γσu,v ⊇ C\KC .

Proof. Notice that, by Claim 4.13, u and v are antipodal vertices in Γσu,v. If
Γσu,v ⊇ C\KC , then u and v are antipodal vertices in C, since vertices of KC are not

good in C.
Conversely, suppose that u and v are antipodal vertices in C. By Claim 4.7,

diam(C\KC) ≥ 3 guarantees that dC\KC
(u, v) ≥ 3. We now look at σ′, the restriction

of σ to C \KC .
Let a be the first vertex visited by σ′ in C \KC . If a ∈ Γσ

′

u,v, then Γσ
′

u,v = C \KC

which in turn, by Claim 4.3(v) implies Γσu,v ⊇ C\KC . Thus assume a /∈ Γσ
′

u,v. The
connectedness of C \KC guarantees that some vertex y of Γσ

′

u,v is adjacent to some
vertex x in C \ (Γσu,v ∪ KC) with x <σ′ y. By Claim 3.5, x is adjacent to all the
vertices in Γσ

′

u,v. But now, dC\KC
(u, v) = 2, a contradiction.

Let S be an M-slice of an interval graph G with respect to some good LBFS. Two
vertices u and v of S are said to be clones in S with respect to some vertex w of S if
there exist two good LBFSs of S starting at w and ending, respectively, at u and v.
We will also say that u and v are clones in S without specifying w. Our next result
shows that good vertices in an M-slice of an interval graph are related to one another
by the “antipodal” relation or by the “clone” relation, or both. Good vertices can be
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both clones and antipodal in M-slice S when S is a clique of size greater than two or
a type 2 interval graph in which S \KS has more than two connected components.

Claim 4.15. Let S be an M-slice of an interval graph G with respect to some
good LBFS and let u and v be two good vertices in S. Then u and v are antipodal or
clones in S.

Proof. Let C1, C2, . . . , Ck, (k ≥ 1), be the connected components of S and assume
without loss of generality that u ∈ Ci and v ∈ Cj , for some 1 ≤ i, j ≤ k. Notice that,
by Corollary 3.20, u and v are good vertices of Ci, and Cj , respectively. We claim
that

if i 6= j then u and v are antipodal in S.(4.3)

To justify (4.3), we only need construct a good LBFS of S that starts at u and
ends at v. Such an LBFS starts at u and, having exhausted Ci, visits in some order
S \ (Ci ∪ Cj) and then visits Cj starting at an antipodal vertex of v and ends at v.
Thus, (4.3) must hold.

Next, we claim that

if i = j and S is disconnected then u and v must be clones.(4.4)

To see this, let w be a good vertex in some component Ct distinct from Ci. Consider
the good LBFS of S that starts at w and, after exhausting Ct, proceeds with S \ (Ci∪
Ct) and then visits Ci starting at an antipodal vertex of u and ends at u. A good
LBFS starting at w and ending at v is constructed similarly, confirming that u and v
are clones. Thus, (4.4) must hold.

Finally, to complete the proof, we show that

if S is connected then u and v are either clones or antipodal vertices.(4.5)

Consider a good LBFS σ of S starting at u and ending at a vertex w. If v and w
coincide, then u and v are antipodal. Otherwise, consider Γσv,w. If Γσv,w ⊂ S then by
Claim 4.12 v and w are antipodal in Γσv,w, confirming that u and v are antipodal in
S.

Thus, from now on, we assume that Γσv,w = S. By Theorem 4.6, there exists a
good LBFS τ of S that starts at w and ends at u. By Claim 4.10, Γτv,u ⊂ S and by
Claim 4.12, u and v are antipodal in Γτv,u confirming that there exists a good LBFS
of S starting at w and ending at v. Thus, in this case, u and v are clones.

Claim 4.16. Let S be an M-slice of an interval graph G with respect to some
good LBFS and let u, v, w be arbitrary good vertices in S. At least one of the pairs
(u, v), (u,w), (v, w) is a pair of clones in S.

Proof. If u and v are clones in S, then there is nothing to prove. Otherwise, by
Claim 4.15, u and v must be antipodal in S.

If S is disconnected, then by Claim 3.6, u and v belong to distinct components
C and C ′ of S. Proceeding as in the proof of Claim 4.15, it is easy to see that in this
case either u and w, or v and w are clones.

Now, S is connected. Let σ be an LBFS of S that starts at u and ends at v. If
Γσw,v ⊂ S then, by Claim 4.12, v and w are antipodal vertices in Γσw,v, confirming that
v and w are clones in S. We assume, therefore, that Γσw,v = S. By Theorem 4.6, there
exists a good LBFS τ that starts at v and ends at u. By Claim 4.10 it must be the
case that Γτw,u ⊂ S. In this case, Claim 4.12 guarantees that u and w are antipodal
in Γτw,u, confirming that they are clones in S.
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Claim 4.17. Let C be a type 1 M-slice of an interval graph G with respect to a
good LBFS. Any two clones in C are distance at most two apart in C \KC .

Proof. Let u and v be clones in C. The fact that u and v are clones is confirmed
by a vertex a of C and two good LBFSs σ and τ starting at a and ending, respectively,
at u and v. We examine σ′ and τ ′, the restrictions of σ and τ to C \KC .

If Γσ
′

v,u ⊂ C \KC , then the connectedness of C \KC along with Claim 3.5 guaran-
tees the existence of a vertex w in C \(Γσ

′

v,u∪KC) adjacent to both u and v confirming
that dC\KC

(u, v) ≤ 2.
We shall assume, therefore, that Γσ

′

v,u = C \KC . By Theorem 3.10, there exists
a chordless prior a, v-path π all of whose internal vertices are missed by u. In fact, u
misses π entirely, for otherwise, uv ∈ E and we’re done. But now, we have reached a
contradiction: in τ , u misses π contradicting the fact that (a, v) is a dominating pair,
that is, contradicting Theorem 3.24.

Our next result provides a characterization of clones in connected components of
slices where the component is of type 1.

Claim 4.18. Let C be a type 1 M-slice of an interval graph G with respect to
a good LBFS. Two good vertices are clones of C if and only if in C \ KC they are
distance at most two apart.

Proof. One implication follows immediately from Claim 4.17. To prove the other
implication, let w and v be good vertices of C with dC\KC

(w, v) ≤ 2 and let σ be a
good LBFS of C starting at some vertex u and ending at v; since v is a good vertex,
such an LBFS must exist. We now look at σ′, the restriction of σ to C \KC . By Claim
4.7, diam(C \ KC) ≥ 3 implies that dC\KC

(u, v) ≥ 3. By Claim 4.12, w and v are
antipodal vertices in Γσ

′

w,v. Thus there is an LBFS τ of Γσ
′

w,v that starts at w and ends
at v. Since dC\KC

(u, v) ≥ 3 and dC\KC
(w, v) ≤ 2, w 6= u and thus Γσ

′

w,v 6= C \KC

and Γσw,v 6= C, establishing that Γσw,v ⊂ C. But now, by Claims 4.14 and 4.15 w
and v are clones, as claimed.

Claim 4.19. Let C be a type 1 M-slice of an interval graph G with respect to a
good LBFS σ, let u and v be, respectively, the first and last vertex of C visited by σ,
and let w be an arbitrary good vertex in C. Then either u and w are clones or else v
and w are clones in C, but not both.

Proof. By Claim 4.7, dC\KC
(u, v) ≥ 3 and thus u and v are not clones by Claim

4.18. By Claim 4.16, u and w are clones or v and w are clones (and possibly both).
Consider good LBFS τ of C that starts at v and ends at u, guaranteed by Theorem
4.6. By Theorem 4.11, exactly one of the conditions Γσw,v ⊂ C or Γτw,u ⊂ C holds.
Now Claim 4.12 guarantees that u,w or v, w are antipodal in C and, therefore, by
Claims 4.7 and 4.18, not clones.

We now examine type 1 interval graphs in more detail.
Theorem 4.20. Let C be an M-slice in a good LBFS of an interval graph. If C

is of type 1 (i.e. diam(C \KC) ≥ 3) then:
(i) The set of good vertices in C partitions into disjoint sets X1 and X2 such that

• good vertices u and v are antipodal in C if and only if they belong to
distinct Xis;

• good vertices u and v are clones in C if and only if they belong to the
same Xi.

(ii) There exist disjoint cliques K1 and K2 in C \ KC , universal to X1 and X2,
respectively, where K1 and K2 are minimal separators in C \KC between X1

and X2.
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(iii) K1 and K2 are universal to X ′1 and X ′2, respectively, where X ′1 ⊇ X1 (respectively
X ′2 ⊇ X2) is the set of all vertices that K1 (respectively K2) separates from
X2 (respectively X1).

See Figure 6.
Proof. Let u and v be the first and last vertex of C, respectively, visited by a

good LBFS σ of C. First, let X1 be the set of all vertices of C that are clones of u,
and let X2 be the set of vertices of C that are clones of v. By Claim 4.19 every good
vertex in C is either a clone of u or a clone of v but not both, confirming that

X1 ∩X2 = ∅.(4.6)

Let w be the earliest vertex in X2 visited by σ (possibly w = v). If w 6= v, then
since w and v are clones, dC\KC

(w, v) ≤ 2 by Claim 4.18. Therefore, w and v are not
antipodal in C by Claim 4.7. Thus, Γσw,v ⊂ C, by Claim 4.14. Note that if w = v,
then Γσw,v = {v}. Now consider σ′, the restriction of σ to C \KC . The connectedness
of C \KC along with Claim 3.5 guarantees that some vertex a of C \KC is universal
to Γσ

′

w,v and therefore to Γσw,v as well since Γσw,v\Γσ
′

w,v contains only vertices of KC .
Thus, a is universal to X2. By Corollary 3.13, the set of vertices in C \ Γσ

′

w,v that
are universal to Γσ

′

w,v (and thus to X2) forms a clique, denoted K2; clearly K2 ∪KC

separates Γσw,v from the rest of C. We now show that K2 is a minimal separator in
C \ KC between Γσ

′

w,v and C \ (K2 ∪ Γσ
′

w,v). Suppose not and let K ′2 ⊂ K2 be such
a minimal separator with x ∈ K2 \K ′2. Since K ′2 is a minimal separator in C \KC

between Γσ
′

w,v and C \ (K ′2∪Γσ
′

w,v), x has no neighbours in C \ (K2∪KC ∪Γσ
′

w,v). Thus
x is the first vertex of a slice that contains Γσ

′

w,v. If the slice is not a clique, then x is
not simplicial in the slice and we have contradicted the fact that σ is a good LBFS.
If the slice is a clique (possibly just containing x and v), then x is good but it is also
a good vertex of C, and thus in X2, contradicting the choice of w being the earliest
vertex in X2 visited by σ. We now have X ′2 = Γσw,v and thus K2 is universal to X ′2.

A similar argument applied to a good LBFS of C starting at v and ending at
u establishes the existence of clique K1 that is universal to X1 and is a minimal
separator in C \KC between X1 and X2 and is universal to X ′1.

The assumption diam(C \KC) ≥ 3 ensures that K1 and K2 are disjoint, thereby
settling (ii) and (iii). In turn, this guarantees that every two vertices inX2 are distance
at most two apart in C \KC . By Claim 4.18, all vertices in X2 are clones. A similar
argument shows that all vertices in X1 are clones. Our discussion in conjunction with
(4.6) guarantees that two good vertices of C are clones if and only if they belong to
the same Xi. Finally, let x1 and x2 be arbitrary vertices in X1 and X2, respectively.
By the above argument, dC\KC

(x1, x2) ≥ 3 and thus by Claims 4.15 and 4.18, x1 and
x2 are antipodal and not clones.

Claim 4.21. Let C be a type 1 M-slice of an interval graph G with respect to a
good LBFS σ. In every LBFS of C all vertices of X ′1 occur before all vertices of X ′2
or vice versa.

Proof. By consideration of distances in C \KC , if some LBFS of C starts at some
vertex in X ′1 ∪ K1 then, trivially, X ′1 will be visited before X ′2. Similarly, if some
LBFS starts at a vertex in X ′2 ∪K2, then all vertices in X ′2 will be visited before any
vertex in X ′1.

Suppose, therefore, that some LBFS starts at a vertex x outside X ′1∪K1∪X ′2∪K2.
Let z be the first vertex of X ′1∪K1∪X ′2∪K2 visited by this LBFS. Since, as observed
above, both K1 and K2 are cutsets of C \KC , it must be the case that z ∈ K1 ∪K2.
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Fig. 6. The structure of type 1 interval graphs as described in Theorem 4.20

Since K1∩K2 = ∅, we may assume, without loss of generality, that z ∈ K1. But now,
all the vertices in X ′1, and no vertices in X ′2, inherit the label of z. The conclusion
follows.

Claim 4.22. Let u and v be nonadjacent good vertices of interval graph G and
let σ be a good LBFS of G that ends at v. Consider A = Γ̃σu,v. (Note that u and v
are antipodal in A, by Claim 4.12.) Now let A1 (respectively A2) be the clones of u
(respectively v) in A. Then, A1 ∩ A2 = ∅ and, in every good LBFS of G, either all
vertices of A1 are before all vertices of A2 or vice versa.

Proof. The proof follows from elementary properties of LBFS, the LBFS Theorem
and previous results. Since G is not a clique and A is an M-slice defined by two
nonadjacent good vertices, there is no universal clique in A and diam(A) ≥ 3 or A is
disconnected. If diam(A) ≥ 3, the claim follows from Claim 4.21. If A is disconnected,
it follows from Corollary 3.18.

Let S be a subset of the vertices of an interval graph. A vertex w ∈ S is called
an S-flyer with respect to LBFS σ (or a flyer of S in σ) and is said to fly with respect
to S, if w is adjacent to a vertex x that occurs, in σ, after all of the vertices in S. We
let FS denote the set of S-flyers in S.

Claim 4.23. Let C be an M-slice of an interval graph G with respect to some
LBFS σ of G. If a vertex w of C is a C-flyer with respect to σ, then either w is a
good vertex in C or else it is adjacent to a good vertex in C.

Proof. Let w be a counterexample: w is not good in C and none of its neighbours
is good in C, yet it flies to a vertex x that occurs after C in σ. Let L be the set of all
LBFS orderings of C. From L select an LBFS ρ such that for some suitably chosen
vertex z of C, z is the last vertex of C visited by ρ and | Γρw,z| is as small as possible.
We note that since w cannot be the last vertex of any LBFS in L, such a vertex z 6= w
must exist. We claim that

Γρw,z is connected.(4.7)

To see that this must be the case, let C ′ be the connected component of Γρw,z containing
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w and let z′ be the last vertex in C ′. Note that if w were a good vertex in C ′ it would
also be a good vertex in C. Therefore, w cannot be good in C ′, and so w and
z′ are distinct vertices. Since Γρw,z′ ⊆ C ′ ⊆ Γρw,z, our choice of ρ guarantees that
Γρw,z′ = Γρw,z = C ′. Thus, (4.7) must hold.

Let τ be an LBFS of Γρw,z starting at z and ending at some vertex a. Since w is
adjacent to no good vertices in C, aw, wz /∈ E. The minimality of | Γρw,z| guarantees
that Γρw,z = Γτw,a. We claim that x is not admissible in the subgraph of G induced by
W∪{x} where W is the set of vertices that appear before x in σ, thereby contradicting
Theorem 3.23. Note that xz, xa /∈ E by the P3 Rule (Theorem 3.12) applied to σ.
Consider, by the Flipping Lemma (Lemma 4.4), an LBFS θ of Γρw,z from a to z. Again
by the minimality assumption Γρw,z = Γθw,z. Now, the following paths demonstrate
that x is not admissible: a prior path in Γτw,a from z to w (guaranteed by Theorem
3.10) and the edge wx (missed by a), and a prior path in Γθw,z from a to w (guaranteed
by Theorem 3.10) and the edge wx (missed by z).

Claim 4.24. Let S be a connected M-slice of interval graph G with respect to good
LBFS σ. For all x′, y′ that occur after S in σ and have neighbours in S, N(x′)∩S ⊆
N(y′) ∩ S or N(y′) ∩ S ⊆ N(x′) ∩ S.

Proof. If not then there exist x, y ∈ S and x′, y′ /∈ S such that xx′, yy′ ∈ E and
xy′, yx′ /∈ E. If x′y′ ∈ E, then the P3 Rule has been violated (assume without loss of
generality that x′ <σ y′ and consider the P3 : yy′x′). Thus x′y′ /∈ E but now G has an
AT: x′, y′, and a vertex z that is universal to clσ(S) but not in clσ(S), guaranteed by
Claim 3.22. Note that z is not adjacent to x′ or y′ or else the P3 Rule is violated in σ
by zx′x or zy′y. Paths demonstrating the AT are induced on: z, ỹ, x, x′; z, x̃, y, y′; and
x′, x, an x, y-path in S, y, y′; where x̃ ∈ clσ(S) is not adjacent to x′ and ỹ ∈ clσ(S) is
not adjacent to y′ (guaranteed by Claim 3.7).

Corollary 4.25. Let S be a connected M-slice of interval graph G with respect
to good LBFS σ. The flyers of S with respect to σ induce a clique in G.

Proof. From Claim 4.24, there exists a vertex w after S in σ that is universal to
FS . Therefore, by the P3 Rule, FS induces a clique.

Claim 4.26. Let C be an M-slice of type 1 of an interval graph G with respect
to some good LBFS σ. Let X1 and X2 be the sets of good vertices of C and let X̃1

(respectively X̃2) denote X1∪(N(X1)∩(C\KC)) (respectively X2∪(N(X2)∩(C\KC))).
Then at most one of X̃1 and X̃2 can contain vertices that fly, with respect to σ, out
of C.

Proof. Suppose to the contrary that x ∈ FC ∩ X̃1 and y ∈ FC ∩ X̃2. Then, by
Claim 4.24, x and y fly to a common vertex z and, therefore, xy ∈ E by the P3 Rule.
Thus x ∈ K1 and y ∈ K2 (Theorem 4.20). But now there is an AT on {x′, z, y′} where
x′ and y′ are arbitrary vertices in X1 and X2 respectively. (The paths are: z, x, x′;
z, y, y′; and x′, z′, y′ where z′, guaranteed by Claim 3.7, is in the clique of attachment
of C and zz′ /∈ E.)

We now turn our attention to type 2 M-slices (i.e. M-slices C where C \KC is
disconnected).

Claim 4.27. Let C be a connected M-slice of type 2 of an interval graph G
with respect to some good LBFS σ. Let the connected components of C \ KC be
C1, . . . , Ck (k ≥ 2) with Xi being the good vertices of Ci, (1 ≤ i ≤ k). Let X̃i denote
Xi ∪ (N(Xi)∩Ci). Then at most one X̃i set can contain vertices that fly with respect
to σ out of C.

Proof. This follows immediately from Corollary 4.25.
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We now describe the structure of a connected type 2 M-slice when the given
interval graph is module free.

Corollary 4.28. Let G be a module free interval graph with good LBFS σ. For
any connected type 2 M-slice C in σ, C\KC has exactly two connected components:
one contains a C-flyer with respect to σ and the other consists of a single vertex that
does not fly out of C.

Proof. If no component C1, C2, . . . , Ck of C \ KC flies, then any union of com-
ponents forms a module in G; thus by Claim 4.27, exactly one component contains
vertices that fly. G being module free requires k = 2 and the non-flying component
to consist of a single vertex.

Note that Claim 4.27 and Corollary 4.28 require the type 2 M-slice C to be
connected. We now indicate what happens when KC = ∅.

Claim 4.29. Let C be a disconnected M-slice of type 2 of an interval graph G with
respect to some good LBFS σ. Let the connected components of C be C1, . . . , Ck (k ≥
2) with Xi being the good vertices of Ci (1 ≤ i ≤ k). Let X̃i denote Xi∪ (N(Xi)∩Ci).
Then at most two X̃i sets can contain vertices that fly with respect to σ out of C. If
x ∈ Ci flies to x̃ and y ∈ Cj (j 6= i) flies to ỹ where x̃ <σ ỹ, then T , the connected
component of ΓσC,x̃ that contains C and x̃ is strictly contained in T ′, the connected
component of ΓσC,ỹ that contains C and ỹ.

Proof. First we note that, by the P3 Rule, xỹ, yx̃, x̃ỹ /∈ E. We prove the second
part first. Suppose that two components Ci and Cj , j 6= i contain flyers x and y, as
stated above, but T = T ′. We now claim that t, the first vertex of T is inadmissible
contradicting the fact that σ is good. To see this, let x′, y′ be vertices in the clique
of attachment of C ∩ T that miss x̃, ỹ respectively; possibly x′ = y′. The paths are:
t, P, x′, y, ỹ and t, P ′, y′, x, x̃ where P is an arbitrary prior path from t to x′ and P ′ is
an arbitrary prior path from t to y′. Thus T ⊂ T ′.

Now suppose that three different connected components, Ch, Ci, Cj contain ver-
tices x, y, z respectively, that fly to x̃, ỹ, z̃, respectively where x̃ <σ ỹ <σ z̃. By the
result above, we know that T ⊂ T ′ ⊂ T ′′, where T ′′ is the connected component of
ΓσC,z̃ that contains C and z̃. Now let x′ be a vertex in the clique of attachment of
C ∩ T that misses x̃ and let y′ be a vertex in the clique of attachment of T ∩ T ′
that misses ỹ. By examining the paths induced on ỹ, y, x′, z, z̃ and x̃, y′, z, z̃, we see
that z̃ is not admissible in the graph induced on z̃ and the vertices before it in σ,
contradicting Theorem 3.23.

Note that there is a similar Corollary to Claim 4.29 as Corollary 4.28 is to Claim
4.27.

We now examine the behaviour of LBFS with respect to minimal separators of
interval graph M-slices. We let S be an M-slice of interval graph G with respect to
LBFS σ. Let A be a minimal separator of S (since G is chordal, A is a clique by
Dirac’s Theorem [12]) with C1 ∪ C2 ∪ · · · ∪ Ck, (k ≥ 2) the connected components
of S \ A. We let C̃i denote the vertices in Ci that are universal to A. (For chordal
graphs, it is well known (for example, see Exercise 12, page 101 of [15]) that C̃i 6= ∅).
In fact we can say something stronger.

Claim 4.30. Let A be a minimal separator of chordal graph G with C̃i the vertices
in Ci (a connected component of G\A) that are universal to A. Then C̃i is connected.

Proof. Suppose not and let c1 and c2 be in different connected components of
C̃i. Since Ci is connected, consider an induced path P : c1 = p0, p1, · · · , ph = c2) in
Ci. Without loss of generality assume that p1 /∈ C̃i and suppose p1 is not adjacent
to a′ ∈ A. Let pj , 2 ≤ j ≤ h, be the first vertex on P after p1 that is adjacent to a′.
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Now the subgraph induced on a′, c1, p1, · · · , pj forms a cycle of size > 3, contradicting
G being chordal.

Lemma 4.31. Let S be a connected M-slice of interval graph G with respect to good
LBFS σ where S has a minimal separator A and connected components C1, C2, · · · , Ck
(k ≥ 2) of S \A. In any LBFS τ of G with the first vertex of S \A in Ci, all vertices
of A appear before any vertices of Cj , j 6= i, and every C̃j , j 6= i appears as an M-slice
in τ .

Proof. By the LBFS Theorem, τS is an LBFS of S. Since A is a minimal separator
of S, no vertex of Cj , j 6= i, can appear until at least one vertex of A has been visited.
Let x be the first vertex of τS . Let a be the last vertex of A, u be the first vertex of
Ci and v be the first vertex of Cj , j 6= i, visited by τ .

We now show that no vertex of Cj , j 6= i, can be before any vertex of A ∪ clσ(S)
in τ . Suppose v <τS

a. By the choice of u, u <τS
v. Consider an arbitrary induced

u, a-path P in Ci∪{a}, and an arbitrary induced v, a-path Q in Cj∪{a}. By Corollary
3.15, u′, v′, the neighbours of a on P,Q respectively must be before a. But now the
P3 Rule is violated since u′ ∈ Ci, v′ ∈ Cj , j 6= i. If v appears before a vertex of clσ(S)
in τ then the P3 Rule is violated in τ .

By Corollary 4.25, at most one connected component of S\A has an S-flyer with
respect to σ. If no Cj , j 6= i, has an S-flyer then, since all of A∪clσ(S) appears before
Cj , the slice starting at v consists of exactly the C̃j ’s, j 6= i, or contains all of the
C̃j ’s, j 6= i, as modules, and thus every C̃j , j 6= i appears as an M-slice, as required.

Otherwise, some vertex of Cj , j 6= i, has an S-flyer with respect to σ. But then
Ci has no such vertex. Consider the moment just before u, the first vertex of Ci,
is visited in τ . Since Ci cannot be pulled, the only already visited neighbours of u
at this point are in A′ ∪ clσ(S), where A′ is the set of already visited vertices of A.
(It is possible that A′ = ∅ or the subset of clσ(S) before u = ∅.) Vertex u must be
universal to A′ because there is such a vertex in Ci, for example the vertices of C̃i,
and therefore LBFS τ must choose such a vertex. At this moment, the slice T of τ
consists of vertices universal to both A′ and the already visited clσ(S) vertices. Slice
T includes A\A′ (A is a clique, since G is a chordal graph), the unvisited vertices of
clσ(S), all of the C̃j ’s, j 6= i, possibly some other vertices of S\A, and possibly some
other vertices not in S. The subslice of T starting immediately after u contains all
unvisited vertices of clσ(S), no vertices that appear after S in σ, and no vertices of
Cj , j 6= i. Thus, in slice T , all vertices of clσ(S) are visited before any vertices not in
S except possibly vertices that are universal to S. This, in turn, causes all vertices
of S ∩ T to be visited before any vertex of T\S that is not universal to S. Since, in
addition, all of A∪ clσ(S) is visited before v, the subslice of T starting at v consists of
exactly the C̃j ’s, j 6= i, or contains all of the C̃j ’s, j 6= i, as modules, and thus, each
C̃j appears as an M-slice, as required.

The next claim shows conditions where an M-slice in one good LBFS is also an
M-slice in another good LBFS.

Claim 4.32. Let C be a connected nonclique M-slice of an interval graph G =
(V,E) with respect to some good LBFS σ. Let C1, C2, . . . , Ck, k ≥ 1, be the connected
components of C \ KC . If C is of type 1 (k = 1), let X1, X2, K1, K2, X̃1, X̃2

be as defined in Theorem 4.20 and Claim 4.26 and, if C is of type 2 (k ≥ 2), let
X1, X2, . . . , Xk, X̃1, X̃2, . . . , X̃k be as defined in Claim 4.27. Suppose that some vertex
in X̃1 flies out of C in σ. Then for any good LBFS τ of G where the last C vertex is
in X1, C must appear as an M-slice.
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Proof. Note that in any LBFS, C and C \ KC are both M-slices or neither is.
Assume for contradiction that C and C \KC are not M-slices in good LBFS τ . By
Claims 4.26 and 4.27, no vertex in Xi, i 6= 1, flies or neighbour flies out of C, unless
it neighbour flies via a vertex of KC . By Lemma 3.21, if τC\KC

is not a good LBFS
of C \ KC , then the first vertex of scτ (C \ KC) must be pulled and thus is in X̃1,
contradicting Claim 4.3 or Claim 4.21. Thus v, the first vertex of scτ (C \KC) is good
and must be in Xi, i 6= 1. We let S be the smallest M-slice of τ that starts at v and
contains all of C \KC . Since C \KC is not an M-slice of S, there are some vertices
in S \ C adjacent to some, but not all, vertices of C \ KC and these vertices must
occur after C in σ. We let y (adjacent to x in C \KC) be such a vertex and denote
by Y the subset of clσ(C) that is not adjacent to y (by Claim 3.7, Y 6= ∅ since in σ,
y /∈ C). In τ , no vertex in Y can be before v, since otherwise y /∈ S. No vertex of Y
can be after S in τ ; otherwise the P3 Rule is violated since C is not a clique. Thus in
τ , all vertices in Y are in N(v) ∩ S.

Now consider σ and let C ′ be the smallest connected M-slice that strictly contains
C and some vertices before C (in σ) and denote (clσ(C) ∪KC) ∩ C ′ by A. In C ′, A
is a minimal separator between C and C ′1, the connected component of C ′ \ A that
precedes A (C ′1 6= ∅ since C ′ cannot start with a vertex that is universal to C since
such a vertex is not simplicial). By Lemma 4.31, in τ , if any vertex of C ′1 precedes
v then all of clσ(C), including Y , is before v, a contradiction. Thus c̃, an arbitrary
vertex of C̃ ′1 (vertices of C ′1 that are universal to A) must be after v in τ , and c̃ must
be in S since it is universal to clσ(C). But now, looking at S, the paths v, y′, c̃ and
v, P, x, y (where y′ is an arbitrary vertex in Y and P is an arbitrary path between v
and x in C) show that v is not admissible in S, contradicting τ being a good LBFS.
(Note: c̃v, c̃x /∈ E since A separates c̃ from C in C ′; yy′ /∈ E by the definition of Y ;
yc̃ /∈ E since otherwise the P3 Rule is violated in σ; and yv /∈ E since only vertices in
X̃1 can fly to y and v /∈ X̃1.)

We now consider two good LBFSs operating on a type 1 interval graph, both
starting from good vertices in the same clone set. Note that the notation follows that
presented in Figure 6 and that we are dealing with “outermost” slices; recall that slice
S′ ⊂ S is an outermost slice of S with respect to σ if there is no slice T of S such
that S′ ⊂ T ⊂ S. We define an M-outermost slice of S to be an outermost slice of S,
a nontrivial module of an outermost slice of S, or a nontrivial module of S.

Lemma 4.33. Let S be a type 1 M-slice of an interval graph G with respect to a
good LBFS and let X1, X2, K1, K2, X ′1, X ′2 be as defined in Theorem 4.20. Let u
and v be arbitrary good vertices in X1 and let σ and τ be arbitrary good LBFSs of S
starting at u and v respectively. Then S′ ⊆ S\(K1∪KS∪X ′1) is an M-outermost slice
of S with respect to σ if and only if S′ is an M-outermost slice of S with respect to τ .
Furthermore every connected component of X ′1 is an M-outermost slice with respect
to both σ and τ .

Proof. To simplify the argument we will assume that KS = ∅. First we note that
if a subgraph H of S appears as an M-outermost slice in both σ and τ then, by the
definition of a module, all modules of H are M-outermost slices in both σ and τ . Let
C1, · · · , Ck be the connected components of X ′1 where u ∈ C1 and v ∈ Ci, 1 ≤ i ≤ k.
Since X ′1 is a module of S, each Ci, 1 ≤ i ≤ k is a module of S and thus an M-
outermost slice of S with respect to both σ and τ .

We let Z denote the vertices in S \ (X ′1 ∪ K1) that are universal to K1; Z is
guaranteed by Theorem 4.20 and Lemma 4.31. Any LBFS starting at u will next visit
NC1(u) ∪K1 followed by the rest of C1 followed by an outermost slice T containing
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the components C2, · · · , Ck, Z in arbitrary order. Since Z is a module of T , it is an
M-outermost slice of S with respect to σ. A similar argument shows that Z is also an
M-outermost slice of S with respect to τ . The slice (possibly a trivial slice consisting
of a single vertex) immediately following Z in both σ and τ is determined strictly by
its neighbourhood in Z ∪K1 and is not affected by the ordering of σZ∪K1 and τZ∪K1 .
This is because, for all y, z ∈ S\(X ′1 ∪K1 ∪Z), N(y)∩ (K1 ∪Z) ⊆ N(z)∩ (K1 ∪Z) or
N(y) ∩ (K1 ∪ Z) ⊇ N(z) ∩ (K1 ∪ Z); otherwise, we either violate the P3 Rule or find
vertices unrelated with respect to u, contradicting the admissibility of u. Again the
orderings of this slice do not affect the determination of the next slice and the process
continues until K2 is encountered. The last outermost slice (again possibly trivial) is
X ′2, which is a module of S.

PART 2
THE MULTI-SWEEP LBFS

INTERVAL GRAPH RECOGNITION ALGORITHM

5. The interval graph recognition algorithm. Our initial algorithm re-
ported in [10] uses four LBFS sweeps and, as shown in §5.2, this algorithm is flawed
since a particular early sweep must be good (i.e. the result of an LBFS+). In the
following, a six sweep algorithm is presented and proved correct. We strongly believe
that the five sweep version is also correct; however, the proof of that algorithm is
more complicated than the proof of correctness of the six sweep algorithm. Note that
the difference amongst these various algorithms is the number of LBFS+ sweeps that
follow an arbitrary preprocessing LBFS. After the last LBFS+ sweep, the algorithms
employ a new LBFS, called LBFS* that chooses the first vertex of a slice based on the
two previous LBFS+ sweeps. Before specifying the full algorithm we describe LBFS*.
Note that the correctness of the six sweep algorithm is presented in §6 together with
suggestions for the proof of correctness of the five sweep algorithm. The linear time
implementation details are presented in §7.

5.1. LBFS*. Given an M-slice S recall that vertex x in S flies (F) with respect
to S if there is a vertex y such that y occurs after S and xy ∈ E. Further x is said
to neighbour fly (NF) with respect to S if it does not fly but it has a neighbour in S
that flies. Finally, vertex x is said to be OK with respect to S if it neither flies nor
neighbour flies with respect to S. As before, reference to S will be omitted when the
context makes it obvious.

Procedure LBFS* (G, τ1, τ2):
This variant of LBFS needs two previous LBFS sweeps, τ1 and τ2. Given a slice S
(i.e. as identified in step (?) of LBFS), we select two vertices α and β where α is the
last S-vertex in τ1 and β is the last S-vertex in τ2. LBFS* chooses between α and β
by referring to the following decision table.
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β

F NF OK

F β β β

α NF α β β

OK α α β

Table 1: Tie-breaking rules for LBFS*

For example, if α neighbour flies and β flies, then α is chosen. When α is chosen
we say that the α-Rule has been followed (similarly for the β-Rule). Implementation
details of this algorithm are provided in §7.

5.2. Overview of the algorithm. The interval graph recognition algorithm is
as follows:

1. Do an arbitrary LBFS π′.
2. LBFS+ (G, π′) yielding sweep π.
3. LBFS+ (G, π) yielding sweep σ.
4. LBFS+ (G, σ) yielding sweep σ+.
5. LBFS+ (G, σ+) yielding sweep σ++.
6. LBFS* (G, σ+, σ++) yielding sweep σ∗.
7. If σ∗ is an I-ordering then conclude that G is an interval graph; else, conclude

that G is not an interval graph.

The algorithm does six LBFS sweeps. The four sweep version of this algorithm
does an arbitrary LBFS followed by two LBFS+ sweeps followed by LBFS* (in partic-
ular steps 2 and 3 are omitted and the LBFS+ in step 4 is with respect to π′ instead
of σ). As mentioned previously, the four sweep algorithm is flawed since it allows the
sweep preceding σ+ to be arbitrary; however, as shown below, this sweep must be
good (as guaranteed by LBFS+).

To illustrate the various features of the algorithm, we assume that the five sweep
algorithm is run on the graph of Figure 7. Thus we have an initial sweep π′ that is
followed by three LBFS+ sweeps, followed by an LBFS* sweep (in particular step 2
is omitted and the LBFS+ in step 3 is with respect to π′ rather than π). For the
given π′, the algorithm will produce the following sweeps σ, σ+, σ++ and σ∗. Square
brackets indicate the slice structure of each sweep.

π′: [20 [ 8 [ 2 4 ] 21] [16 [15 [9 12] ] 13 [11 14] 17 10 18 7 19 6] 5 3 1 22]
σ: [22 4 [3 2 [5 6 [7 8] 9 [18 17 12 [14 13 [11 15] 16] 10] 19 20] 21] 1]
σ+: [1 2 [20 [8 4] [19 18 [17 9] 12 [16 15 13 [11 14] ] 10 7 6] 5 3] 21 22]
σ++: [22 4 [21 20 [8 2] [6 7 9 [10 11 [13 12] [14 15] 16 17 18] 19] 5 3] 1]
σ∗: [1 2 [3 4 [5 6 [7 8] 9 [10 11 [12 13] [14 15] 16 17 18] 19 20] ] 21 22]

There are a few interesting facts illustrated by this example. First it shows many
of the cases of tie-breaking illustrated in Table 1. To illustrate the LBFS* algorithm,
we will examine each slice in turn and show how the algorithm made its choice in
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Fig. 7. Illustrating the interval graph recognition algorithm: the slice structure of σ∗

producing σ∗. The first slice is V itself. Here α = 22 and β = 1. Since there are no
vertices outside this slice, both α and β are OK and thus β is chosen. The next slice
includes vertices 3 to 20; here α = β = 3; both α and β neighbour fly (because of
the edge from 4 to 21) and β is chosen. The next slice includes vertices 5 to 20; now
α = β = 5 and both α and β are OK so β is chosen. The clique {7, 8} is next and
α = β = 7 (both α and β fly because of the edge from 7 to 9 and β is chosen). Now
S = {10, 11, 12, 13, 14, 15, 16, 17, 18} is encountered; α = 10 and β = 18. Since β flies
and α is OK, α is chosen. {12, 13} is next; α = 13 and β = 12. Both fly and β is
chosen. Finally, when {14, 15} is encountered, α = 14 and β = 15; here, β flies and α
is OK and α is chosen. In both cases where α is chosen, if an ordinary LBFS+ were
used, the β vertex would have been chosen resulting in umbrellas. Thus, in addition
to the examples produced by Ma [26], this example shows how the Simon approach
[31] fails even when extended to five sweeps. (Note that in σ++ there are a number of
umbrellas, adding to Ma’s list of counter-examples to Simon’s four sweep algorithm.)

Secondly, this example shows the necessity of the preprocessing sweep that was
omitted from our initial four sweep algorithm reported in [10]. In our example, assume
that the four sweeps are π′, σ, σ+, and an LBFS* done on (σ, σ+); this produces the
ordering: [22 4 [21 20 [8 2] [19 18 [9 17] 12 [14 13 [11 15] 16] 10 7 6] 5 3] 1] which has
the umbrellas 11 15 10 and 11 16 10.

The next claim shows that, in the six sweep algorithm, the sweeps σ+, σ++ and
σ∗ “flip” the first and last vertices of the previous sweep.

Claim 5.1. In the six sweep algorithm, suppose that σ starts at vertex y and ends
at vertex z. Then σ+ starts at z and ends at y, σ++ starts at y and ends at z, and
σ∗ starts at z and ends at y.
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Proof. The claims for σ+ and σ++ follow from Theorem 4.6 and Corollary 3.19.
Turning our attention to σ∗ we immediately see that it starts at z since V (G) has no
flyers and thus the β Rule is invoked. To show that σ∗ ends at y we follow the proof
of Theorem 4.6 and note that v must be a β vertex since Γ∗y,w has no vertices after it
in σ∗ and thus no flyers.

5.3. Overview of the proof of correctness. The first step (§6.1) in the proof
assumes that the algorithm fails to produce an umbrella free ordering σ∗ for some
interval graph G with initial LBFS π′. A specific umbrella uw over v is identified
and the structure of S = Γσ

∗

u,v is examined in σ∗, σ++, σ+ and σ. In §6.2, the set
W is defined to be the set of vertices that occur after S (in σ∗) and are reachable
by a monotone path from vertices in FS \ KS (note that w ∈ W ) where FS is the
set of flyers from S and KS is the universal clique of S (recall that it is possible that
KS = ∅). It is shown that in σ++, σ+ and σ, all vertices of S must occur before the
vertices of W . The proof concludes in §6.3 where the structure of G outside S ∪W
is examined. By considering an M-slice in a fictitious LBFS of G, we show that its
behaviour in at least one of σ, σ+ or σ++ must require W to precede S.

6. Correctness of the algorithm. Before studying the correctness of the al-
gorithm itself we present some notation. We will use Γ+, Γ++ and Γ∗ to denote Γσ

+
,

Γσ
++

and Γσ
∗

respectively. Similarly <+, <++, <∗, cl+, cl++ and cl∗ will denote
<σ+ , <σ++ , <σ∗ , clσ+ , clσ++ and clσ∗ .

6.1. Choice of the umbrella and definition of S. We now examine the
algorithm itself. First, we assume that G is an interval graph, but for initial LBFS
π′, the resulting σ∗ is not umbrella free. We also assume, without loss of generality,
that diam(G) ≥ 3. Clearly we may assume that any counterexample is connected;
if diam(G) = 2, then there is a universal clique whose removal does not affect the
orderings of the algorithm. We now choose a particular umbrella in σ∗.

Let uw (u <∗ w) be an umbrella of G flying over a vertex v, such that Γ∗u,w is
as outermost as possible (i.e. no slice strictly containing Γ∗u,w has an umbrella that
is not contained in a subslice) for all umbrella edges in G with respect to σ∗. Note
that by the P3 Rule wv /∈ E. Amongst the tied umbrellas choose one such that v is
as rightmost as possible. We also assume without loss of generality that G has no
nontrivial modules. To justify this assumption, note that a problem could occur only
if exactly two of {u, v, w} were in a module M . By the definition of module, the pairs
{u, v} and {v, w} are ruled out; the exclusion of pair {u,w} follows from Lemma 3.3.

Let S = Γ∗u,v with first vertex s. It is possible, for now, that u = s; later (Claim
6.8), we will show that this cannot happen. Note that, by the choice of v, u is adjacent
to all vertices between v and w (in σ∗). Since there is a u,w-path missing v, Claim
4.9 ensures w /∈ S and thus S ⊂ Γ∗u,w. Clearly, v is the last vertex of S. (If there is
a vertex v′ after v in S, with uv′ ∈ E, then by the P3 Rule, vv′ /∈ E. Now there is a
u, v′-path missing v which by Claim 4.9 implies v′ /∈ Γ∗u,v = S. If uv′ /∈ E, then, as
before, we have contradicted the choice of v.)

We now examine various forms that S may have and define sets L,R, L̃ and R̃.
Clearly diam(S) 6= 1, since otherwise S is a clique and uv ∈ E. If S is of type 1
(i.e. diam(S \ KS) ≥ 3), then we define L to be the clones of s in S and R to be
the clones of v in S. L̃ and R̃ denote L ∪ (N(L) ∩ S \KS) and R ∪ (N(R) ∩ S \KS)
respectively. Recall the definitions of X1, X2,K1,K2, X̃1 and X̃2 from Theorem 4.20
and Claim 4.26. If s ∈ X1 then L = X1, R = X2, L̃ = X̃1 and R̃ = X̃2. Now,
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by Theorem 4.20, K1 and K2 are minimal separating cliques universal to L and R
respectively and, thus, K1 ⊆ L̃\L and K2 ⊆ R̃\R.

Suppose S is of type 2 (i.e. S \KS is disconnected) with connected components
C1, C2, . . . , Ck (k ≥ 2) of S \ KS , as ordered by σ∗. If S is connected then, by the
definition of Γ∗u,v, Theorem 3.10, Claim 4.3, and Corollary 4.28, k = 2, {u, s} ⊆ C1,
C2 = {v} and v does not fly. Now we define L to be the good vertices in C1 and R

to be {v}. Here L̃ denotes L ∪ (N(L) ∩ C1) and R̃ = {v}. We now examine the case
where S is disconnected; as before, s, u ∈ C1 and v ∈ Ck. By Claim 4.29, at most one
other component Cj , j 6= 1, of S may contain flyers, where Cj contains vertex x that
flies to x̃; then by Claim 4.29 and the choice of u, v, w, x̃ <∗ w. But now we have
contradicted the choice of v since v <∗ x̃ and ux̃, wx̃ /∈ E by the P3 Rule. Thus we
have exactly the same situation as when S is connected, namely, k = 2, {u, s} ⊂ C1,
C2 = {v} and v does not fly. The L and R sets are the same as above.

We now study the structure of S and its projections in σ+ and σ++. Later, we
will examine its projections in σ. First, some results on vertex u.

Claim 6.1. u ∈ L̃.
Proof. For each type of S, this is a straightforward observation. First, by Claim

4.23, u is either good or adjacent to a good vertex. If S is of type 1, then if u ∈ R̃\K2

then Γ∗u,v ⊂ S, contradicting the definition of S, and if u ∈ K2, then uv ∈ E. If S is
of type 2 then, as noted above, u ∈ C1 and thus u must be in L̃.

If diam(S) = 2, some flying vertices of S may be in KS , the universal clique. Of
course, such edges cannot form an umbrella and, thus, have no effect on the algorithm.
We let Fu denote the set of flying vertices in S \KS . Since u is not in KS , Fu is not
empty.

Claim 6.2. Fu induces a clique in G.
Proof. If S is connected then this follows immediately from Corollary 4.25. Oth-

erwise, Fu is a subset of C1 and the result follows by applying Corollary 4.25 to C1.

We now examine which vertices in S may fly out of S.
Claim 6.3. No vertex outside L̃ may fly with respect to S, except for a vertex in

KS, the universal clique, if diam(S) = 2.
Proof. This follows immediately from Claims 4.26, 4.27, 6.1, and 6.2.
Corollary 6.4. No vertex in R may fly with respect to S; a vertex in R may

neighbour fly only if diam(S) = 2 and a vertex in the universal clique KS flies with
respect to S.

Claim 6.5. In σ, σ+ and σ++ either all vertices of L are before all vertices of R
or vice versa.

Proof. This follows from Claim 4.22.
Claim 6.6. In σ++, sc++(S) must have all the vertices in R occur before the

vertices in L.
Proof. This follows immediately from Claim 6.3, Corollary 6.4, Claim 6.5 and the

algorithm. In particular, if sc++(S) ended with an R vertex, then it would have to
be chosen, contradicting the fact that s ∈ L.

Claim 6.7. In σ+, sc+(S) must have all the vertices in L occur before the vertices
in R.

Proof. Let a1 be the first vertex of sc++(S). By Lemma 3.21, either a1 is a bad
vertex that has been pulled, or a1 is a good vertex and σ++

S is a good LBFS of S. In
the latter case, a1 ∈ R by Claim 6.6. Now look at the set of vertices tied with a1 as
it is visited by σ++. If this set does not include a2, the last vertex of sc++(S), then
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there is a vertex x /∈ S such that x is adjacent to a1 ∈ R but not adjacent to a2 ∈ L.
This contradicts Corollary 6.4. Thus, the set of tied vertices contains a2. Since a1

was chosen by the algorithm, a1 is the last vertex of sc+(S). Thus, by Claim 6.5, in
σ+, the L vertices occur before the R vertices in σ+.

Thus a1 is a bad vertex and is pulled. Let a′1 be the first vertex of S \KS in σ++

(note it is possible that a1 ∈ KS and is pulled). Again, consider the set of vertices
tied with a′1 as it is visited by σ++. If this set does not include a2, then a′1 has been
pulled and thus, by Claim 4.23, a′1 is good or adjacent to a good vertex in S \KS . We
claim that a′1 is not good in S\KS . This is clearly true if a1 = a′1. Now, proceeding as
above, we see that a′1 ∈ R has been pulled but a2 ∈ L has not, contradicting Corollary
6.4. Thus a′1 ∈ L̃ \L or a′1 ∈ R̃ \R. If S is of type 2, a′1 /∈ L̃ \L by Corollary 3.18
and a′1 /∈ R̃ \R since R̃ \R = ∅. If S is of type 1, then a′1 /∈ L̃ \L by Claim 4.21 (note
that σ++

S would have a vertex in L̃ \L, namely a′1, followed by vertices in R, followed
by vertices in L as guaranteed by Claim 6.6). Thus, a′1 ∈ R̃ \R but this contradicts
Corollary 6.4. Now the set of tied vertices includes a2; thus since a′1 ∈ S it is the
last vertex of sc+(S) and thus is good in S. This implies, by Claim 6.6, that a′1 ∈ R
thereby completing the proof.

Claim 6.8. Vertex s is a β vertex and does not fly with respect to S; s neighbour
flies only if diam(S) = 2 and a vertex in the universal clique KS flies with respect to
S.

Proof. The fact that s is the β vertex follows immediately from Claims 6.6 and
6.7. Now examine the possible situations where β is chosen, according to the decision
table for the LBFS* algorithm. By Table 1, if β flies, then α must fly, contradicting
Corollary 6.4. If β neighbour flies, then α either flies (contradicting Corollary 6.4)
or neighbour flies. Again, by Corollary 6.4, this implies that diam(S) = 2 and a
universal vertex flies.

Corollary 6.9. Vertex s is adjacent to no vertices in Fu.
Proof. The result follows from Claim 6.8 and the definitions of s and Fu.

6.2. The definition of W and its placement in σ∗, σ++, σ+ and σ. Now
define W , with last vertex w̃, to be the set of vertices that occur after S in σ∗ and are
reachable by a monotone path from Fu. The rest of this subsection discusses basic
properties of W in σ∗, σ++, σ+ and σ. In particular, in all three sweeps, all vertices
of S occur before the vertices of W .

Lemma 6.10. In σ∗, the vertices in W are consecutive and occur immediately
after S.

Proof. Suppose they are not consecutive and consider the path P in Fu ∪ W :
u, · · · , w1, w2 such that w1 <∗ p <∗ w2 where p /∈ W . (Note that by Claim 6.2 the
neighbour of u in P possibly is a vertex in Fu.) Such a path exists by the existence
of w̃. By the choice of v, u is adjacent to all vertices after v up to and including w
and thus w <∗ p. From the definition of slices it follows that Γ∗u,w ⊆ Γ∗u,p ⊆ Γ∗u,w2

.
Since p misses P , by Claim 4.9, w2 /∈ Γ∗u,p and thus Γ∗u,w ⊂ Γ∗u,w2

. Since p /∈ W ,
p is not adjacent to any vertex of P up to and including w1. Also, pw2 /∈ E or
else we have the P3 : w1w2p. The existence of P implies that u ∈ Γ∗w1,w2

and thus
Γ∗w1,w2

= Γ∗u,w2
⊃ Γ∗u,w. But now, the umbrella w1, w2 over p contradicts our choice

of u,w (i.e. Γ∗u,w is not outermost).
The structure of S and W in sweep σ∗ is depicted in Figure 8.
Lemma 6.11. In σ++, all vertices of W occur after sc++(S).
Proof. Let x′ be an arbitrary vertex in W that is adjacent to some vertex x in

Fu; by Claim 6.3, x ∈ L̃.
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Fig. 8. The structure of S and W in σ∗

First, we claim that x′ must occur after s in σ++. Recall that s is the last vertex
of sc++(S). We assume that x′ <++ s and will show that x′ and v are unrelated with
respect to s, contradicting Theorem 3.23. If S is of type 1, we assume without loss of
generality that s ∈ X1 and v ∈ X2. Thus, L = X1, L̃ ⊆ X ′1 ∪K1, and R = X2. Now
we note that Fu ∩K1 = ∅ by Claim 6.8 and thus x /∈ K1. Now the path s,K1, x, x

′

and an s, v-path through K1 and K2, show that x′ and v are unrelated with respect
to s. If S is of type 2, let x̃ be an arbitrary vertex in cl∗(S) such that x̃x′ /∈ E (such
a vertex exists by Claim 3.7). Note that, by the P3 Rule, in σ++, x̃ is before the first
nonadjacent pair of S vertices and thus is before s. Now consider the paths s, x̃, v
and an s, x-path in C1 together with the edge xx′. Again, this shows that x′ and v
are unrelated with respect to s.

Having shown s <++ x′ we finish the proof by noting that all paths from Fu to
vertices in W must be monotone. To see this, let P be a path from vertex x ∈ Fu to
a vertex w′ ∈ W where w′ is the first vertex after x on P such that w′ <++ s. Since
x′, the neighbour of x on P is after s in σ++, we have contradicted Corollary 3.14.

This structure in σ++ is illustrated in Figure 9.
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Fig. 9. The structure of S and W in σ++

Lemma 6.12. In σ+, all vertices of W occur after sc+(S).
Proof. Consider σ+ at the point that it visits s1, the first vertex of sc+(S \KS).

If the set of vertices tied with s1 does not include s2, the last vertex of sc+(S), then
there is some vertex x before s1 in σ+ that is adjacent to s1 but not adjacent to s2
(Claim 3.7(i)). Thus x is not universal to S and therefore x is in W and s1 ∈ Fu.
Now, by Claim 6.8, since s does not fly, s1 6= s, and by Corollary 6.9, s1s /∈ E.
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Since s is the last S-vertex in σ++ (Claim 6.8), s1 <++ s. Now look at Γ++
s1,s with

first vertex a. Clearly, a 6= s1 since s1 could never have been chosen as the first vertex
(since s1 is before s in σ+). In σ+ we have s1 <+ s <+ a. By Theorem 3.10 applied
to σ++, there is a prior path P from s1 to a that is missed by s. Now try to place a
in σ∗. Because of P , a does not occur before S in σ∗; since W is after sc(S) in σ++

(by Lemma 6.11) a 6∈W . Thus a ∈ S.
Now look at Γ+

s1,s and let b be the first vertex (b 6= s1 since x <+ s1, s1x ∈ E
and sx /∈ E). By Claim 4.9, the path P forces a 6∈ Γ+

s1,s. Thus, there is a vertex
c ∈ cl+(Γ+

s1,s) such that ca 6∈ E. Trying to place c in σ∗, we easily see that c ∈ S \KS

(c /∈ cl∗(S)∪KS since ca /∈ E; c is not after S since s does not fly with respect to S).
But now, we have contradicted the fact that s1 is the first vertex of sc+(S \KS).

The above argument shows that s1, the first vertex of sc+(S \ KS) cannot be
pulled and thus is good. Therefore, X, the set of vertices tied with s1 at the moment
when σ+ visits s1, includes s2, the last vertex of sc+(S).

We first claim that no vertex of W occurs before s1 in σ+. To see this, let w0 be
any vertex in W that occurs before s1 and consider any shortest path P from w0 to
a vertex in Fu. On P there must be an edge w1w2 such that w1 <+ s1 <+ w2. Since
w1 must be homogeneous to X, S\KS ⊆ Fu, contradicting Claim 6.3.

We now show that a vertex w1 ∈ W (without loss of generality, let w1 be the
leftmost W vertex in σ+) can be inside sc+(S) only if it is in N(s1). To see this, let
w′1 be a vertex of cl∗(S) that is not adjacent to w1. Since w1 ∈ X, w′1 /∈ cl+(X) and
thus s1 <+ w′1. No vertex of S\N(s1) can occur before w′1 in σ+ since this would
violate the P3 Rule. Once w′1 (which is universal to S) has been visited, all other
vertices of S must occur in σ+ before w1. Otherwise, by Theorem 3.1, w1 is adjacent
to a neighbour a of s1 that occurs before w′1 in σ+ and is not adjacent to s2, but then
w1 and s2 are unrelated in X with respect to s1, contradicting that s1 is good.

Consider a good LBFS θ that is identical to σ∗ until slice S is encountered, and
then S is visited in θ in the order of a good LBFS of S that begins at v and ends at
s. (Theorem 4.6 guarantees the existence of such an ordering of S.)

To complete the proof, suppose that w1 ∈ N(s1) is in sc+(S). Then, again, since
s1 ∈ Fu, s1 6= s and s1s /∈ E by Claim 6.8 and Corollary 6.9. Now, let A = Γ̃θs1,s
and let A1 be the clones of s1 in A and A2 the clones of s in A. By Claim 4.22,
A1 ∩ A2 = ∅. s1 ∈ A1 and thus from Claim 4.22 we conclude that A1 <+ A2. Now
look at sc++(A) with first vertex a. The last A vertex in σ++ is s; thus by Claim
4.22 A1 <++ A2. In σ++, a is either pulled or good. By Lemma 6.11, all W vertices
are after sc++(S) and thus there are no vertices before a in σ++ that are adjacent
to a but not to s. Now, when σ++ reaches a, there is a nontrivial slice but we have
reached a contradiction since a ∈ A1 but A1 <+ A2.

See Figure 10 for a depiction of the structure in σ+.
Now we turn our attention to σ and examine the relative positions of L and R as

well as W and S.
Claim 6.13. In scσ(S), the vertices in R occur before the vertices in L.
Proof. The proof is similar to that of Claim 6.7. Let a1 be the first vertex of

sc+(S). By Lemma 3.21, either a1 is a bad vertex that has been pulled or a1 is a
good vertex and σ+

S is a good LBFS of S. In the latter case, by Claim 6.7, a1 ∈ L.
Consider the set of vertices tied with a1 as it is visited by σ+. If this set does not
include a2, the last vertex of sc+(S), then there exists vertex x /∈ S, such that x is
adjacent to a1 ∈ L and not adjacent to a2 ∈ R. Thus, x ∈ W contradicting Lemma
6.12. Now, the set of tied vertices includes a2. Since a1 was chosen by the LBFS+
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Fig. 10. The structure of S and W in σ+

algorithm, a1 is the last vertex of scσ(S) and, thus, by Claim 6.5, the vertices in R
occur before the vertices in L.

Thus, a1 is a bad vertex and is pulled. Let a′1 be the first vertex of S \ KS in
σ+. Again we look at the set of vertices tied with a′1 as it is visited by σ+. If this
set does not include a2, then a′1 has been pulled and thus following the argument in
the proof of Claim 6.7, a′1 ∈ L̃ \L or a′1 ∈ R̃ \R. a′1 /∈ R̃ \R by Corollary 6.4; thus
a′1 ∈ L̃ \L and the pulling vertex is in W contradicting Lemma 6.12. Thus, the set
of tied vertices includes a2 and as above, a′1 is good and is the last vertex of scσ(S).
Therefore, a′1 ∈ L and the proof is complete.

Lemma 6.14. In σ, all vertices of W occur after scσ(S).
Proof. Let s′ be the last vertex of scσ(S). By Claim 6.13, s′ ∈ L, and thus s′ 6= v

and s′v /∈ E. Suppose xx′ is a flying edge where x ∈ Fu, x′ ∈ W and x′ <σ s
′. Note

there is a vertex x̃ ∈ cl∗(S) such that x̃x′ /∈ E; x̃ must be before s′ in σ, otherwise it
would form a P3 with any nonadjacent pair of vertices of S. If x = s′, x′ <σ x and
we have contradicted the P3 Rule. Thus x 6= s′. Similarly, by the P3 Rule, s′x′ /∈ E.
If s′x ∈ E, then we immediately see that x′ and v are unrelated with respect to
s′ contradicting Theorem 3.23 (consider the paths s′, x, x′ and s′, x̃, v). Finally, we
examine the case where s′ is not adjacent to any neighbour of x′ in Fu. (Having fixed
the adjacencies of s′ to x and x′, the proof proceeds exactly as in Lemma 6.11 where
s′ now plays the role of s.) If S is of type 1 (where we assume X1 = L), consider
the paths s′,K1, x, x

′ and s′,K1, · · · ,K2, v; if S is of type 2, consider the paths s′, x̃, v
and s′ followed by a path in C1 to x and then x′. As with Lemma 6.11, the proof
follows from the fact that the paths starting with the edge xx′ must be monotone.

See Figure 11.
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Fig. 11. The structure of S and W in σ

To summarize the results of this subsection, Lemmas 6.14, 6.12 and 6.11, com-
bined, guarantee that in all three sweeps, σ, σ+ and σ++, all vertices of S precede all
vertices of W .
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6.3. Completion of the proof. To complete the proof of correctness of the
algorithm, we will show that at least one of σ, σ+, and σ++ must have violated
Lemma 6.14, Lemma 6.12, or Lemma 6.11, respectively. We do this by examining
a sequence of super slices of S (called the S-hierarchy), as seen in σ∗, and seeing
the structure of such slices when they are visited from the “other direction”, i.e.
the opposite direction from σ∗. The motivation behind the structure results we now
present is to understand the effects of the parts of G that precede S and follow W .
Clearly these parts of the graph will play a role in the various good sweeps of the
algorithm. We now define the S-hierarchy, a nesting of slices between S and G, with
respect to σ∗. S0 is defined to be S, and for i > 0, Si is the smallest connected slice
strictly containing Si−1. Let G = Sg and let si denote the first vertex (with respect
to σ∗) of Si (note s0 = s). Since G is module free, Corollary 4.28 implies that if
Si, i > 0, is of type 2 then it consists of a (possibly empty) universal clique, one
component that flies and one component of a single vertex that does not fly. Such
a single vertex has no impact on subsequent arguments completing the correctness
proof of the algorithm.

To illustrate these and subsequent definitions, we consider the graph in Figure
12, together with the sweeps that illustrated the counter-example to the four sweep
algorithm; in particular, consider the sweeps:
π′: [20 [ 8 [ 2 4 ] 21] [16 [15 [9 12] ] 13 [11 14] 17 10 18 7 19 6] 5 3 1 22]
σ: [22 4 [3 2 [5 6 [7 8] 9 [18 17 12 [14 13 [11 15] 16] 10] 19 20] 21] 1]
σ+: [1 2 [20 [8 4] [19 18 [17 9] 12 [16 15 13 [11 14] ] 10 7 6] 5 3] 21 22]
σ∗: [22 4 [21 20 [8 2] [19 18 [9 17] 12 [14 13 [11 15] 16] 10 7 6] 5 3] 1],
where σ∗ = LBFS*(σ, σ+).

As mentioned previously, this σ∗ has the umbrellas 11 15 10 and 11 16 10. By
our choice of {u, v, w}, u = 11, v = 16 and w = 10. (See Figure 12.) The S-hierarchy
for this example is:
S0(= S): [14 13 [11 15] 16]
S1: [19 18 [9 17] 12 [14 13 [11 15] 16] 10 7 6]
S2: [21 20 [8 2] [19 18 [9 17] 12 [14 13 [11 15] 16] 10 7 6] 5 3]
S3(= G).

For 0 ≤ i < g we define cl′∗(Si) = cl∗(Si) ∩ Si+1. For the example in Figure 12,
cl′∗(S1) = {2, 8}, whereas cl∗(S1) = {2, 4, 8}. We let Sj , j ≥ 1 be the innermost slice
in the S-hierarchy that contains all of W . In our example j = 1; subsequently (Claim
6.18) we will show that S0, . . . , Sj−1 all end at v. For 0 ≤ i ≤ g, we let Li denote
the good vertices of Si that are clones of si, the first Si vertex in σ∗. Later (Claim
6.15), we will see that the vertices in Li cannot fly with respect to Si. We let Ri
denote the good vertices of Si that are clones of the last Si vertex in σ∗. Vertices of
Li (respectively Ri) will be termed the L or left (respectively R or right) end of Si.
When we say that a slice occurs in the L-to-R direction in an LBFS sweep, we mean
that the vertices of Li occur before the vertices of Ri in the sweep. A slice occurring
in the R-to-L direction has Ri < Li. (Recall Claim 4.22.)

In Claim 6.3 and Corollary 6.4 we saw that the only vertices in S0 that fly with
respect to S0 must be in Fu ∪ KS0 . We now look at flyers in other slices in the
S-hierarchy.

Claim 6.15. The only vertices in Si (i > 0) that occur in σ∗ before Si−1 and fly
with respect to Si, are in cl′∗(Si−1).

Proof. Suppose a ∈ Si, a is before Si−1 in σ∗, a flies to vertex b and a /∈ cl′∗(Si−1).
Thus a is not adjacent to any vertices in Si−1. Now, any such b must occur after W
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Fig. 12. G, as seen by LBFS* on σ, σ+

in σ∗; otherwise, repeated applications of the P3 Rule would contradict the fact that
a is adjacent to no vertex of Si−1. Since a is not adjacent to w and edge ab is an
umbrella over w, either Γ∗a,b ⊃ Γ∗u,w or Γ∗a,b = Γ∗u,w and v <∗ w; in either case the
choice of u, v, and w is contradicted. Thus, the only possible flyers in Si before Si−1

are in cl′∗(Si−1).
We now show how type 2 elements of the S-hierarchy are arranged in σ∗ and, as

a consequence, conclude that Sj must be of type 1.
Claim 6.16. If Si, i > 0, is of type 2 then the single vertex component of Si\KSi

is the first vertex of Si in σ∗.
Proof. By Corollary 4.28 and the definition of the S-hierarchy, KSi

6= ∅ and
Si\KSi

has exactly two connected components: C1 which contains vertices that fly
out of Si with respect to σ∗, and C2 which consists of a single vertex that does not fly.
Suppose the claim is false. Si cannot start with a vertex of KSi since such a vertex is
not good; thus, by Lemma 4.3, the single vertex of C2 is the last vertex of σ∗Si

, and
si ∈ C1.

If C2 = {v} then u flies out of Si and therefore u ∈ C1. Now, any si, u-path in C1

contains a vertex of cl∗(S0)\KSi
. But now si and v are connected by a similar path

in Si\KSi
contradicting that C2 = {v}.

If C2 = {x}, x 6= v, then v <∗ x and, by Corollary 4.28, an edge from a flying
vertex of C1 forms an umbrella over x. But now the choice of u, v, w is contradicted.

Corollary 6.17. Sj is of type 1.
Proof. Otherwise, by Claim 6.16, Sj\(KSj

∪{sj}) is an element of the S-hierarchy
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that contradicts the choice of j.
Having examined the structure of the vertices of G that precede v in σ∗, we now

turn our attention to the vertices of G that follow W in σ∗. Let Z be the set of
vertices that occur in σ∗ after w̃ with connected components Z1, . . . , Zp having first
vertices z1, . . . , zp, respectively. Note that Z 6= ∅ since otherwise, by Claim 5.1, both
σ and σ++ would start with w̃, contradicting Lemmas 6.14 and 6.11. For any z ∈ Z,
we let N ′(z) denote the neighbourhood of z that occurs before Z in σ∗; N ′(z) is a
clique by the P3 Rule.

For the graph in Figure 12, {7, 6, 5} is the Z1 set and N ′(z1) = {4, 8, 2, 9}, Z2 =
{3} with N ′(z2) = {4, 2} and Z3 = {1} with N ′(z3) = {2}. We let ind(N ′(zi)), 1 ≤
i ≤ p denote the minimum k such that N ′(zi) ∩ Sk 6= ∅. In subsequent arguments we
denote ind(N ′(zi)) by i′. Now by Claim 6.15 and the definitions of W and the Z sets,
N ′(zi) ⊆ cl∗(Si′−1) if i′ > 0 and N ′(zi) ⊆ KS0 ∪ cl∗(S0) if i′ = 0.

We now show that all S0, . . . , Sj−1 end at v and that Sj must intersect Z.
Claim 6.18. No slice in the S-hierarchy may contain an element of W unless it

intersects Z. Thus in σ∗, all S0, . . . , Sj−1 end at v.
Proof. Suppose to the contrary that S′ is the lowest indexed element of the S-

hierarchy that contains part or all of W but none of Z (S′ 6= S0 by the definition of
S0), and let S′′ be the largest element of the S-hierarchy strictly contained in S′. Let
s′ be the first vertex of S′ in σ∗ and let w1 and ŵ, respectively, be the first and last
vertices of S′ ∩W in σ∗.

First we prove that S′ is of type 1. Suppose not. Then, by Claim 6.16, s′ must
be the single vertex component of S′\KS′ . Now, by Lemma 4.3, vertices of KS′

immediately follow s′ in σ∗. Thus, S′\({s′} ∪ KS′) is a connected component of
S′\KS′ and is therefore a slice in the S-hierarchy that contradicts our choice of S′.

Next, we prove that all clones of ŵ in S′ are in W . Let X1, X2, K1, K2, X ′1,
X ′2 be defined as in Theorem 4.20, where ŵ ∈ X2. Since ŵ /∈ S′′, Claim 3.7 implies
the existence of w′ ∈ cl′∗(S

′′) such that w′ŵ /∈ E. The distance in S′\KS′ from s′

to w′ is strictly less than the distance from s′ to ŵ since cl′∗(S
′′) minimally separates

S′′ ∪ W from s′. Now, since K2 ⊆ N(ŵ), and by the above distance observation,
w′ /∈ K2 ∪ X ′2. Any vertex in S′\W either has a path to s′ that is shorter than
dist(s′, ŵ), or is adjacent to w′. Thus no such vertex can be in X ′2 and X ′2 ⊆ W .
Therefore, all clones of ŵ in S′ are in W .

Finally, since S′ is a slice in σ∗, s′ must have been last, and a clone of ŵ must
have been first, in sc+(S′) or sc++(S′) (depending on whether s′ is α or β), thus
contradicting either Lemma 6.11 or Lemma 6.12.

Now we know that Sj is the lowest slice in the S-hierarchy that contains an
element of W and that it intersects Z; in particular, we assume that the last vertex of
Sj is in Zh. In subsequent arguments we will examine the appearance of Sj in sweeps
when its first vertex is in Zh. First we establish some claims about the Z sets.

Claim 6.19. The neighbourhoods of vertices in N ′(zi), 1 ≤ i ≤ p include the
following sets:
(i) z̃ ∈ N ′(zi)∩S0 implies that z̃ is universal to all vertices other than itself that occur
between s0 and zi, as well as all vertices of cl∗(S0).
(ii) z̃ ∈ N ′(zi)∩ (Sk \Sk−1), k > 0 implies that z̃ is universal to all vertices that occur
between sk−1 and zi, as well as all vertices other than itself of cl∗(Sk−1).

Proof. In case (i), by Claim 6.3 and Corollary 6.4, z̃ ∈ KS0 and thus is universal to
all vertices other than itself between s0 and v, and all vertices of cl∗(S0). In case (ii),
by Claim 6.15, z̃ ∈ cl′∗(Sk−1) and thus is universal to all vertices between sk−1 and
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v, as well as other vertices in Sk−1 that follow v, and all other vertices of cl∗(Sk−1).
Now suppose z̃ misses y ∈W ∪Zq (q < i) (i.e. z̃ <∗ v <∗ y <∗ zi); either Γ∗z̃,zi

⊃ Γ∗u,w
or they are equal and v < y, thereby contradicting the choice of u, v, w.

Claim 6.20. If z, z′ ∈ Z with z <∗ z′, then N ′(z) ⊇ N ′(z′).
Proof. Suppose z̃ ∈ N ′(z′)\N ′(z); by the P3 Rule. zz′ /∈ E and z̃z′ is an umbrella

over z. Using the previous argument, z̃, z, z′ would contradict our choice of u, v, w.
Henceforth, for i > 1, we assume that N ′(zi) ⊂ N ′(zi−1). Otherwise, N ′(zi) =

N ′(zi−1) and either there is a module in G or |Zi−1| = 1. As indicated previously,
such single vertex Z sets will be ignored.

Claim 6.21. Each Zi (1 ≤ i ≤ p) is consecutive in σ∗.
Proof. Suppose Zi is not consecutive and consider the path in Zi, zi, · · · , z′, z′′,

such that z′ <∗ y <∗ z′′ and y /∈ Zi. Note that y /∈ W by Lemma 6.10, and that the
path is guaranteed since Zi is connected. Again using previous arguments, it is clear
that z′, y, z′′ contradict the choice of u, v, w.

Since Sj \ Zh does not contain a module of G, N ′(zh) ∩ Sj 6= ∅. Let Zk be the
rightmost Z set such that N ′(zk) ∩ Sj 6= ∅. By Claim 6.20, h ≤ k. If h = k, then
Zh 6⊂ Sj since otherwise, Sj is a module in G.

In order to complete the proof (i.e., show that at least one of Lemmas 6.14,
6.12 or 6.11 has been violated) we use the previous technique of studying a fictitious
LBFS in order to define the T -hierarchy which corresponds to the S-hierarchy and to
identify T1, a specific M-slice in this hierarchy. In particular, our fictitious LBFS is
ρ = LBFS+(σ∗). For the example in Figure 12:

ρ: [1 2 [3 4 [5 6 [7 8] 9 [10 11 [13 12] [15 14] 16 17 18] 19 20] ] 21 22]

which is the same as the sweep illustrated in Figure 7, with the reversal of 12 with 13
and 14 with 15. By convention Tp+1 is G. Sweep ρ starts in Zp which is minimally
separated from G\Zp by the clique N ′(zp). Let T ′p be the slice of ρ consisting of
the vertices of G\Zp that are universal to N ′(zp). Then Tp is defined to be the
connected component of T ′p that contains S ∪ W . Recall that i′ = ind(N ′(zi)) is
the smallest integer such that N ′(zi) ∩ Si′ 6= ∅. Claims 6.15 and 6.19 imply that
Tp has the following composition. (Note: The first case can occur for any value of
p′; the second case can occur only when p′ > 0.) If N ′(zp) ∩ KSp′ 6= ∅, then Tp
consists of Z1 ∪ . . . ∪ Zp−1 ∪W ∪ (Sp′ ∪ cl∗(Sp′))\N ′(zp). Otherwise, Tp consists of
Z1 ∪ . . .∪Zp−1 ∪W ∪Sp′−1 ∪ cl∗(Sp′−1)\N ′(zp) ∪ vertices in Sp′ \ cl′∗(Sp′−1) that are
universal to cl′∗(Sp′−1) ∩ N ′(zp) and occur before Sp′−1. The good vertices of Tp in
this set are denoted by s̃p′ . Such vertices are guaranteed to exist by Claim 3.22, and
are guaranteed to be in Tp since cl∗(Sp′−1) 6⊆ N ′(zp) by Claim 3.7. For example, in
the graph in Figure 12, p = 3, Z3 = {1}, N ′(z3) = {2}, p′ = 2, and s̃2 = {20}. T3 is
thus the slice of ρ on the vertices {3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 12, 15, 14, 16, 17, 18, 19, 20}
(see Figure 12). Once N ′(zp) ∪ Zp has been visited in ρ, by Lemma 4.31, slice Tp is
encountered and since ρ is an LBFS+, the first Tp vertex visited in ρ is the vertex
preceding zp in σ∗, namely the last vertex of Zp−1, assuming p > 1, otherwise it is
the last vertex of W . The process continues where Tq is the M-slice identified after
visiting all vertices in Zq, 1 ≤ q < p. The configuration of Tq, an element of the
T -hierarchy in which N ′(zq) ∩KSq′ = ∅, is illustrated in Figure 13.

Consider when q = 1 and M-slice T1 is encountered. As before, 1′ denotes
ind(N ′(z1)). T1 has the following composition. (The first case can occur for any
value of 1′ and the second case can occur only when 1′ > 0.) If N ′(z1) ∩KS1′ 6= ∅,
then T1 consists of W ∪ (S1′ ∪ cl∗(S1′))\N ′(z1). Otherwise, T1 consists of W ∪S1′−1∪
cl∗(S1′−1)\N ′(z1) ∪ vertices in S1′ \cl′∗(S1′−1) that are universal to cl′∗(S1′−1)∩N ′(z1)
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Sq'
Sq'-1

S0
W Z1 Zq-1 Zqsq'~

... ... ... ...

Tq

......
cl'*(Sq'-1)
......

Fig. 13. Tq shown in σ∗

and occur before S1′−1. Such vertices are guaranteed by Claim 3.22. Note that w̃ ∈W
is the last vertex (from the perspective of σ∗) in T1. For our example in Figure 7:

T2 = {5, 6, 7, 8, 9, 10, 11, 13, 12, 15, 14, 16, 17, 18, 19, 20}
T1 = {10, 11, 13, 12, 15, 14, 16, 17, 18}.

We will prove the correctness of the algorithm by showing that, in at least one of
σ, σ+, σ++, T1 is “twisted” so that W < S. As with the S-hierarchy, we identify a
left and right “end” of each Tq (1 ≤ q ≤ p) with respect to its ordering in σ∗. When
we refer to the “ends” of Tq, we are consistent with the locations of the last vertices
in Tq, as visited by σ∗. In particular, we define the R (right) end to be the clones of
the last vertex in Zq−1 if q > 1 and to be the clones of w̃ otherwise.

The next two claims examine some properties of the elements of the T -hierarchy
in good LBFSs.

Claim 6.22. In ρ = LBFS+(σ∗), for all 1 ≤ i ≤ p, the L end (with respect to
σ∗) of Ti flies or neighbour flies via a vertex not in KTi and the R end does not fly
or neighbour fly except possibly through a vertex of KTi

.
Proof. Since G is module free and Ti\KTi is an M-slice in ρ, some vertex of Ti\KTi

must fly in ρ. By Claim 4.23, every such flyer is good or adjacent to a good vertex.
We show that the good vertices in the R end cannot fly or neighbour fly, thereby
implying that the L end must fly or neighbour fly. The right good vertices of Ti are in
Zi−1 or in W if i = 1. Thus, the right good vertices and their neighbours in Ti\KTi

are in Zi−1 ∪ N ′(zi−1)\KTi or in W ∪ Fu if i = 1. By Claim 6.15, N ′(zi−1)\KTi ⊆
cl∗(Si′−1) ∪ Si′−1. No vertex of Fu ∪ W ∪ Z1 ∪ . . . ∪ Zi−1 ∪ N ′(zi−1)\KTi has an
unvisited neighbour outside of Ti at the moment when Ti is encountered as an M-
slice in ρ, since all of cl∗(Si′−1) is already visited or in Ti and since Si′−1 ∪W ⊂ Ti.
Therefore, the R end of Ti cannot fly or neighbour fly except via KTi

and, hence, the
L end must fly or neighbour fly.

Note that, for all j ≤ i ≤ g, only the R end of Si flies or neighbour flies with
respect to σ∗, by Claims 4.26 and 4.27, since all flying vertices must be adjacent to
the rightmost vertex of Si by Claim 6.19.

We say that W,Z1, . . . , Zq, (1 ≤ q ≤ p) are “stacked” in a sweep if W < Z1 <
. . . < Zq in the sweep.

Claim 6.23. In any good LBFS θ, if T`, h ≤ ` ≤ k, is in the L-to-R direction
then W,Z1, . . . , Z`−1 are stacked.

Proof. Since ` ≤ k, `′ ≤ j, where `′ is the index of z`. Consider θ on T`. Since
T` is L-to-R in θ, the first good vertex of θT`

is a vertex of s̃`′ (if z` is adjacent to
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a vertex of S`′\KS`′ ) or a vertex of L`′ (the left good vertices of S`′ ; this happens
if z` is adjacent only to vertices of KS`′ in S`′). In T`, cl∗(S`′−1) ∩ T` minimally
separates (s̃`′ ∪L`′)∩T` from S`′−1∪W ∪Z1∪ . . .∪Z`−1. Thus, by Lemma 4.31, all of
(s̃`′ ∪L`′ ∪ cl∗(S`′−1))∩T` is visited before any vertices in S`′−1 ∪W ∪Z1 ∪ . . .∪Z`−1

in θ. Since W is not in S`′−1 and W ⊆ Sj , there is some vertex x in cl∗(S`′−1) ∩ Sj
that is not adjacent to the first vertex of W . x /∈ N ′(z`) since this would imply the
existence of an umbrella over the first vertex of W , contradicting the choice of u, v, w.
Thus, x ∈ T`. Thus, S`′−1 is visited before any vertices of W ∪ Z1 ∪ . . . ∪ Z`−1. At
this point, all neighbours of vertices in W ∪ Z1 ∪ . . . ∪ Z`−1 have been visited and
therefore, by the definition of W and Claim 6.20, W <θ Z1 <θ . . . <θ Z`−1.

In addition, S-hierarchy slices in the L-to-R direction sometimes imply stacking.
In particular, if Sj is in the L-to-R direction in a good LBFS, and thus is an M-slice
by Claim 4.32, then by the neighbourhood containment of the Z sets, W,Z1, . . . , Zk
are “stacked” in this sweep. The importance of stacking is captured in the next claim.

Claim 6.24. Let θ be an LBFS of G with sets W,Z1, · · · , Zq (q ≤ p) “stacked”
where the last Tq+1 vertex is in Zq. If Tq+1 (q < p) appears as an M-slice in the
subsequent LBFS+ sweep, θ+, then T1 must appear as an M-slice in θ+ and W <θ+
S.

Proof. Since Tq+1 is an M-slice in θ+, the first vertex of Tq+1 is in Zq (i.e. Tq+1 is
in the R-to-L direction) which implies that Tq is encountered as an M-slice with its first
vertex in Zq−1. Thus Tq is also in the R-to-L direction. Clearly all Ti, 1 ≤ i ≤ q are
in the R-to-L direction and in particular since T1 is in the R-to-L direction W <θ+ S,
as required.

Having defined the T -hierarchy and considered the behaviour of the S-hierarchy
and the T -hierarchy with respect to flying and stacking, we now return to the al-
gorithm and examine how LBFS* chose Sj to be in the L-to-R direction in σ∗. In
particular, we let τ3 be the sweep (either σ+ or σ++) that was chosen by the algorithm
to orient Sj in σ∗ (τ1 and τ2 are the two sweeps that precede τ3). Thus Sj is in the
R-to-L direction in τ3.

We now prove that some element of the T -hierarchy appears as a slice in τ3,
and then show that, in one of σ, σ+, σ++, we must have W < S thereby proving the
correctness of the algorithm.

Claim 6.25. T` occurs as an M-slice in τ3, for some h ≤ ` ≤ k.
Proof. Let x be the first vertex of Sj and t the first vertex of Zh in τ3.
Case 1. t ≤ x.
Let U be the slice of τ3 starting at t. Vertices in clτ3(U) are adjacent to t ∈ Zh

but are not in Zh since t is the first vertex of Zh, and are not in Sj since x is the first
vertex of Sj . Therefore, clτ3(U) ⊆ cl∗(Sj) and all of Sj is in U . Thus all of Zh ∩ Sj
and perhaps more of Zh is in U , and possibly some of Zh is after U . Note that U
could be Si for some i ≥ j, in the R-to-L direction. As previously mentioned, h′ ≤ j
since otherwise Sj\Zh is a module in G. This observation, combined with the fact
that zh ∈ Sj , implies that cl∗(Sj) ⊂ N ′(zh) and therefore Th ⊂ Sj ⊂ U .

We now look at Claim 4.31 applied to U . All of (Zh ∩ U) ∪ (N ′(zh) ∩ U) will be
visited in τ3 before the rest of U . In particular, N ′(zh) ∩ U is a separator and Th is
an M-slice of the vertices in the rest of U universal to N ′(zh) ∩ U .

Case 2. x < t.
We first claim that there exists a unique index `, h < ` ≤ k, such that there is a

vertex z ∈ Z` that is before x and adjacent to x. Suppose no such index exists and
consider the slice U starting at x. clτ3(U) contains only vertices in cl∗(Sj) and thus
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all of Sj is in U . Since Sj is R-to-L and x /∈ Zh, x must be in Sj∩N ′(zh) and therefore
adjacent to u and v by Claim 6.19. But now x is not simplicial in U contradicting
the fact that τ3 is a good LBFS. Thus such an index exists and, furthermore, it is
unique since otherwise the P3 Rule would be violated by x and neighbours of x from
two distinct Z sets occurring before x.

Let z′ be the leftmost vertex in Z` in τ3 and consider U , the slice of τ3 starting
at z′. It is possible that z′ = z but, in general, z′ may or may not be adjacent to x.
Since clτ3(U) contains only vertices in cl∗(Sj), all of Sj is in U . By Claim 6.20, since
z′ ∈ U , all vertices of Zh∪ . . .∪Z`−1 are also in U . (Vertices of Zh∪ . . .∪Z`−1 cannot
occur before U since they are all adjacent to x by Claim 6.20 and therefore would
violate the P3 Rule with x and z.) Note, however, that some vertices of Z` may occur
after U . This will occur, for example, if U is some R-to-L S set that cuts Z`.

Now, as in Case 1, consider Claim 4.31 applied to U . All of (Z`∩U)∪(N ′(z`)∩U)
is before the rest of U in τ3. In particular, N ′(z`) ∩ U is a separator and T` is an
M-slice of the vertices in the rest of U universal to N ′(z`) ∩ U .

Theorem 6.26. The algorithm is correct.
Proof. By Claim 6.25, there is a T`, h ≤ ` ≤ k, M-slice in τ3.
Case 1. T` is L-to-R in τ3.
Since T` is a L-to-R M-slice in τ3, it begins with a good vertex in its L end, which

must be the last vertex of scτ2(T`). Thus T` is R-to-L in τ2. Thus, by Claims 6.22
and 4.32, T` is an M-slice in τ2. Therefore, T` is L-to-R in τ1 and, by Claim 6.23,
W,Z1, . . . , Z`−1 are stacked in τ1. But now W <τ2 S by Claim 6.24, contradicting
Lemma 6.12 or Lemma 6.14.

Case 2. T` is R-to-L in τ3.
In this case, T` must be L-to-R in τ2 and therefore, by Claim 6.23, W,Z1, . . . , Z`−1

are stacked in τ2. Now we have W <τ3 S by Claim 6.24, contradicting Lemma 6.11
or Lemma 6.12.

Note that we fully believe that the five sweep version is correct. In the proof of
correctness of the six sweep algorithm all that we require of τ1 is that it be good.
This allows us to conclude, in Case 1 of Theorem 6.26, that we have the “stacking”
required. Note that if τ3 = σ++, (i.e. the β-Rule was invoked for Sj), then τ1 = σ
which is guaranteed to be good in both the five and six sweep versions. Only when
τ3 = σ+, (i.e. the α-Rule was invoked for Sj) do we require τ1 = π to be good. To
prove the correctness of the five sweep version, there are two possible approaches.
The first would examine exactly how T` could be L-to-R in τ3 while Sj is R-to-L in
τ3. There may be extra structure results that show this cannot happen. The second
would show that the properties required of the various S and T slices in τ3 (= σ+)
would contradict the structure of σ++. In particular, for the algorithm to have chosen
σ+ to orient Sj in σ∗, Sj must be in the L-to-R direction in σ++, and thus a slice.
Possibly the structure of superM-slices of Sj would not allow that.

7. Linear time implementation of the algorithm. We now show how the
algorithm can be implemented in linear time using elementary data structures. Linear
time implementations of LBFS itself are described in [30, 15, 16]. In our discussion we
will follow the implementation presented in [16], namely, one that follows the paradigm
of “partioning”. In this scheme, we start with all vertices in the same cell (i.e. slice)
and choose an arbitrary vertex, in particular, for reasons that will become clear, the
first vertex in the cell. As we will see during our discussion of the implementation of
LBFS+ and LBFS*, it will be very advantageous for us to assume that the vertices
already have some order. When a vertex is chosen as the pivot, it is placed in its
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own cell and invokes a partitioning of all cells that follow it in the ordering. Under
this partitioning of a cell, vertices that are adjacent to the pivot form a new cell
that precedes the cell containing the vertices not adjacent to the pivot. After this
partitioning is complete, a new pivot is chosen from the cell immediately following
the old pivot and the process of refinement continues. We refer the reader to Figure
14 for an example of a few steps of partitioning on the graph of Figure 1.

pivot

pivot

pivot

8 4 2 7 5 10 3 111 6 9

11 6 9 8 7 5 4 2 10 3 1

11 6 10 9 8 7 5 4 3 2 1

11 10 9 8 7 6 5 4 3 2 1

Fig. 14. The first few steps of a partitioning

As pointed out by Lanlignel [24], one of the advantages of using this paradigm is
that we immediately have an implementation of LBFS+. Once our initial LBFS has
terminated, we merely reverse the ordering of the vertices produced by the first LBFS
and run the algorithm again. Every time a slice is encountered, the last vertex from
the previous LBFS is automatically the vertex at the front of the list. The example in
Figure 14 is the LBFS+ for the output of the LBFS indicated by the vertex numbering
in Figure 1.

We now turn to the issue of implementing LBFS*. The first problem is to identify
α and β easily. To do this, we follow the idea used to implement LBFS+. This time
we run two parallel LBFSs, one on the reverse of the σ+ ordering and the other on
the reverse of the σ++ ordering. As seen above, once a slice is identified, the α vertex
is the first vertex in the σ+ ordering, whereas the β vertex is the first vertex in the
σ++ ordering. Once we have chosen which vertex should be first in the σ∗ ordering,
we place it first in both orderings and continue with the partitioning process. For
example, if the β vertex is chosen, the LBFS that is operating on the σ++ ordering is
not touched whereas the LBFS that is operating on the σ+ ordering removes β from
the slice and places it first before continuing. When the sweep is completed, both of
the parallel LBFSs contain σ∗.

Thus, the only remaining problem is to implement efficiently the choice between
α and β. To do this, we first introduce the neighbour index value. For any LBFS τ
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and vertex x, the neighbour index value of x in τ , denoted iτ (x) is the index, with
respect to τ , of the rightmost vertex of N [x]. As previously, we let i+(x), i++(x) and
i∗(x) denote iσ+(x), iσ++(x), and iσ∗(x), respectively. Thus i+(x) > x if and only if
x is adjacent to some vertex to the right of it in σ+ and i+(x) = x if and only if x
is not adjacent to any vertex to the right of it. As described above, we can easily
find the last vertex of sc+(S) and sc++(S), i.e. α and β respectively for any slice S.
Hereafter, all flying and neighbour flying are assumed to be in σ∗ and with respect to
slice S.

Claim 7.1. Let S be a nonclique slice in σ∗ and let τ be any LBFS of G where
x is the last vertex of scτ (S). In σ∗, x is a flyer if and only if iτ (x) > x.

Proof. For the “only if” part, suppose xy is a flying edge in σ∗. In σ∗ there is a
vertex y′ ∈ cl∗(S) such that y′ is universal to S but is not adjacent to y. By the P3

Rule, and since S is not a clique, y′ <τ x. If y <τ x then we have a P3: y′, x, y. Thus,
y must occur after x in τ and iτ (x) > x.

For the “if” part, suppose iτ (x) > x as witnessed by vertex y. Since S is not a
clique, x is not universal to S (since x is last in scτ (S) and by the P3 Rule). Thus
there is a vertex v ∈ S such that xv /∈ E. Since y is after x in τ , then by the P3 Rule,
y is not adjacent to v and thus y is not universal to S. Thus, in σ∗, y must be after
S by Claim 3.5.

Corollary 7.2. To check to see if α (respectively β) flies (when S is not a
clique) we just have to check whether i+(α) > α (respectively i++(β) > β).

Claim 7.3. Let S be a nonclique slice in the σ∗ sweep and let τ be any LBFS of
G with x the last vertex in scτ (S). If iτ (x) = x, then we have the following:

1. If diam(S) 6= 2:
x neighbour flies if and only if there is a y ∈ S such that xy ∈ E and
iτ (y) > x.

2. If diam(S) = 2:
(a) If there is a y ∈ S such that xy ∈ E and iτ (y) > x, then x neighbour

flies.
(b) If there is no such y ∈ S, and x neighbour flies, then all neighbours of

x that fly are universal to S.
Proof.
1. diam(S) 6= 2:

Thus y, an arbitrary neighbour of x in S is not universal to S and there is a
vertex v ∈ S such that yv /∈ E. Furthermore by the P3 Rule in τ , xv /∈ E.
For the “only if” part, suppose x neighbour flies with yz a flying edge where
y ∈ S and xy ∈ E. In σ∗ there is a vertex z′ in cl∗(S) such that z′z /∈ E.
By the P3 Rule, z′ <τ x and zv /∈ E (by the P3 Rule in σ∗). Suppose that
z <τ x. Now in τ we have unrelated vertices v and z with respect to x
contradicting Theorem 3.23 (the paths are x, z′, v and x, y, z). Recall that
since x neighbour flies, it does not fly and thus xz /∈ E. Thus iτ (y) > x.
For the “if” part, suppose iτ (y) > x and let z be a vertex after x in τ such
that yz ∈ E. Then xz /∈ E since iτ (x) = x and thus z is not universal to S.
In σ∗, z must be after S by Claim 3.5.

2. diam(S) = 2:
(a) As in “if” part above.
(b) Suppose the claim is false and that there is y, a non-universal vertex of S

that flies in S via edge yz. In τ , z is before x. Since y is not universal to
S, there is a vertex v such that yv /∈ E. Now using the same technique



46 D. G. CORNEIL, S. OLARIU, AND L. STEWART

as in “only if” part above, we see that x is not admissible in τ .

We now elaborate on some steps of the interval graph recognition algorithm and
discuss the complexity of the algorithm.

Interval Graph Recognition Algorithm
Step 1. LBFS from an arbitrary vertex x and let y be the last vertex visited by this

sweep, π′.
Step 2. Using π′, LBFS+ (from y) and let z be the last vertex visited by this sweep,

π.
Step 3. Using π, LBFS+ (from z) and let y be the last vertex visited by this sweep,

σ.
Step 4. Using σ, LBFS+ (from y); by Claim 5.1, z is the last vertex visited by this

sweep, σ+.
In this sweep, for every vertex v ∈ V , calculate its index i+(v) and its A set
where Av = {z|zv ∈ E, z <+ v ∧ i+(z) > v}. Note that we link the elements
of these sets so that a particular element may be removed from all A sets in
O(the number of occurrences of the element). We also store the cardinalities
of these sets and update these cardinalities every time a vertex is removed.

Step 5. Using σ+, LBFS+ (from z, ending at y, by Claim 5.1), creating the sweep
σ++.
In this sweep, for every vertex v ∈ V , calculate its index i++(v) and its B
set where Bv = {z|zv ∈ E, z <++ v ∧ i++(z) > v}. Again the elements are
linked to allow fast deletion and the cardinalities are stored and updated.

Step 6. Using σ+ and σ++, LBFS*, creating the sweep σ∗.
As each vertex is visited in this sweep, it is removed from all the A and B sets
that contain it and the cardinalities of these sets are updated. The cost to do
the removal of vertex v is bounded by O(deg(v)). We now indicate how ties
are broken in this sweep, i.e. how the table in §5.1 is implemented. Assume
that slice S has been identified with α the last vertex of sc+(S) and β the
last vertex of sc++(S).

1. if i+(α) > α (i.e. α flies), then choose β.
2. else if i++(β) > β (i.e. β flies), then choose α.
3. else if (|Bβ | = 0) ∨ (|Aα| 6= 0), then choose β.
4. else let y be an arbitrary element of Bβ ; if i+(y) = α then choose β else

choose α.
Note that since the cardinalities are stored, all steps can be done in O(1)
time.

Step 6. If σ∗ is umbrella-free then G is an interval graph; otherwise, G is not interval.

Claim 7.4. LBFS* can be implemented to run in linear time.
Proof. First we show that the above algorithm correctly determines whether α

or β should be chosen. If S is a clique, then we do not care which vertex is chosen
since there can be no umbrella u, v, w where u and v are in S. Thus we assume that
S is not a clique and go through each part of Step 5 and show that we have made
the correct choice for α and β. We also refer to the appropriate row and column of
the algorithm table. Again, all flying and neighbour flying are assumed to be with
respect to S.

(a) If i+(α) > α (i.e. α flies by Corollary 7.2), then choose β.
From the first row of the table, if α flies, then β must be chosen.
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(b) If i++(β) > β (i.e. β flies by Corollary 7.2), then choose α.
Since α does not fly, and β does, entries (2,1) and (3,1) of the table show that
α has to be chosen.
Note that at this point neither α nor β fly.

(c) If (|Bβ | = 0) ∨ (|Aα| 6= 0), then choose β.
Case 1: |Bβ | = 0.
There are a few subcases to consider here. If diam(S) 6= 2 then we know
by Case 1 of Claim 7.3 that β does not neighbour fly and thus is “OK”.
Regardless of α’s condition we choose β. (See entries (2,3) and (3,3) of the
table.) If diam(S) = 2, then we know by Case 2(b) of Claim 7.3 that if β
neighbour flies, then all neighbours of β that fly are universal to S and thus
are adjacent to α too (i.e. α neighbour flies). Thus either β is “OK” and we
choose β (see entries (2,3) and (3,3)) or β neighbour flies, in which case so
does α and we choose β (entry (2,2)).
Case 2: |Aα| 6= 0.
Thus α neighbour flies and regardless of β’s condition we choose β (entries
(2,2) and (2,3)).

(d) If i+(y) = α, then choose β else choose α.
Now β neighbour flies but we’re not sure whether α neighbour flies (in the
case that diam(S) = 2). First we show that α neighbour flies if and only if
for arbitrary y in Bβ , αy ∈ E. If αy ∈ E, then clearly α neighbour flies.
Now assume α neighbour flies. Thus, by Claim 7.3, diam(S) = 2. If αβ ∈ E,
then immediately αy ∈ E by the P3 Rule on the σ++ sweep. Next we show
that the only neighbours of β that fly are universal to S. To see this, note
that since both α and β neighbour fly, the algorithm will choose β (entry
(2,2)). If β has a neighbour that flies and this neighbour is not adjacent
to α, then there will be an umbrella over α contradicting the correctness of
the algorithm. (Note that all neighbours of β in S will be visited before
non-neighbours.)
Our final point is that ay ∈ E if and only if i+(y) = α. If ay ∈ E and if
i+(y) > α, then immediately we contradict |Aα| = 0. If i+(y) = α, then by
definition ay ∈ E.
Now we have shown that α neighbour flies if and only if i+(y) = α. If so, we
choose β (entry (2,2)) and otherwise we choose α (entry (3,2)).

The description of the data structures used to choose α and β show that the
algorithm can be easily implemented to run in linear time.

Theorem 7.5. The six sweep interval graph recognition algorithm is imple-
mentable to run in O(n+m) time.

Proof. This follows immediately from Claim 7.4 and the observation that it is easy
to determine if a given ordering of V , in our case the σ∗ ordering, is an I-ordering.

8. Concluding remarks and open problems. Apart from being umbrella
free, the final LBFS of our interval graph recognition algorithm has other interesting
properties that we now discuss.

First, directly from this final sweep we can construct an interval representation of
G by representing vertex v by the interval [σ∗(v), i∗(v)]. (Recall that i∗(v) = σ∗(v) if
v is not adjacent to any vertices that follow it in σ∗.) The interval representation for
the graph in Figure 12 is presented in Figure 15. Note that we have slightly extended
the intervals to make the intersections more obvious.

Secondly, either from such an interval representation, or directly from the final
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Fig. 15. Interval representation for the graph in Figure 7

sweep, we can easily construct a linear ordering of the maximal cliques of G (i.e.
an ordering that satisfies Theorem 1.2). To construct such a set from the interval
representation, sweep from left to right. For each position determine the intervals
that overlap this position; this set clearly forms a clique, although it may not be
maximal. To ensure that we only keep maximal cliques, the clique at position i is
rejected if it is strictly included in the clique at position i + 1. For our example the
set of cliques in linear order are:

1, 2
2, 3, 4
2, 4, 5, 6
2, 4, 6, 7, 8
2, 4, 7, 8, 9
2, 4, 8, 9, 10, 11
2, 4, 8, 9, 11, 12, 13
2, 4, 8, 9, 12, 13, 14
2, 4, 8, 9, 12, 13, 15
2, 4, 8, 9, 12, 15, 16
2, 4, 8, 9, 12, 17
2, 4, 8, 9, 17, 18
2, 4, 8, 18, 19
2, 4, 8, 20
4, 20, 21
4, 22

We now turn our attention to two open problems. The first is whether the five
sweep algorithm is correct (as we believe). The second is whether the techniques used
in this paper can be used to recognize other families of graphs. (Note that unit inter-
val graphs [5] and cographs [3] also have multisweep LBFS recognition algorithms.)
The most important such family is cocomparability graphs (the complement has a
transitive orientation). Cocomparability graphs are strictly between AT-free graphs
and interval graphs and have a characterization very similar to that of interval graphs
(i.e. Theorem 1.3) as observed by Kratsch and Stewart [23].

Observation 8.1. [23] A graph G = (V,E) is a cocomparability graph if and
only if there exists a linear order ≺ on the set of its vertices such that for every choice
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of vertices u, v, w, with u ≺ v and v ≺ w, uw ∈ E implies uv ∈ E or vw ∈ E.
We call such an ordering a CO-ordering. By examining the LBFS+ of any CO-

ordering, it is straightforward to see that this new sweep is both an LBFS and a
CO-ordering [7]. This raises the fascinating question of whether there is a multi-
sweep LBFS algorithm to find a CO-ordering of a cocomparability graph.

Finally we note that the LBFS structure on interval graphs and their superfamilies
presented in §4 and §3 respectively should be of use in solving other algorithmic
problems on interval graphs as well as to give insight into the various applications of
interval graphs.
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Flipping Lemma, 15
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flyer, 23
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I-ordering, 3
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intercept a path, 3

L-to-R direction (pc), 37
LBFS, 4
LBFS Theorem, 10
LBFS*, 28
LBFS+, 5
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M-outermost slice, 27
M-slice, 6
miss a path, 3
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neighbour fly, 28
neighbour index value, 44
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pokable, 4
prior path, 9
Prior Path Theorem, 9
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R-to-L direction (pc), 37
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simplicial, 3
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