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Abstract

We show that the class of intersection graphs of subtree filaments in a tree is identical
to the class of overlap graphs of subtrees in a tree.
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1 Introduction

Subtree filament graphs, interval filament graphs, and other types of filament graphs were
introduced by Gavril in [5]. Independently, Čenek and Stewart studied subtree overlap graphs
[2]. Since interval filament graphs contain circle graphs and several other graph classes, it
seems reasonable to expect that subtree overlap graphs would form a proper subset of subtree
filament graphs. However, in this paper, we show that the classes of subtree filament graphs
and subtree overlap graphs are identical. This result first appeared in Enright’s MSc thesis
[3].

We consider finite, simple graphs. Two sets A and B are said to intersect if A ∩ B 6= ∅,
and to overlap if A ∩ B 6= ∅, A 6⊆ B, and B 6⊆ A. For nonempty sets A, B, C, and D, if A
overlaps B and C overlaps D, or A ∩ B = ∅ and C ∩ D = ∅, or (A ⊆ B or B ⊆ A) and
(C ⊆ D or D ⊆ C) then we say that sets A, B and sets C, D are similarly related and we
write A, B ∼ C, D.

Let S = {S1, S2, . . . , Sn} be a multiset of sets. The intersection graph (respectively
overlap graph) of S is the graph G = (V, E) where V = {v1, v2. . . . , vn} and, for all 1 ≤ i, j ≤
n, vivj ∈ E if and only if Si and Sj intersect (respectively overlap). The containment graph of
S is the graph G = (V, E) where V = {v1, v2. . . . , vn} and, for all 1 ≤ i, j ≤ n, vivj ∈ E if and
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only if Si ⊆ Sj or Sj ⊆ Si. If G is the intersection, overlap, or contaiment graph of S then
S is called an intersection, overlap, or containment representation for G. Every graph has
both an intersection representation [12] and an overlap representation (obtained by adding
a unique new element to each set of an intersection representation, as observed in [2]). We
assume without loss of generality that all sets in the representations that we consider are
nonempty. Note that, for S = {S1, . . . , Sn} and S ′ = {S ′

1, . . . , S
′
n}, where Si, Sj ∼ S ′

i, S
′
j for

all 1 ≤ i, j ≤ n, the intersection (respectively overlap, containment) graphs of S and S ′ are
isomorphic.

Interval graphs are the intersection graphs of intervals on a line and circle graphs are the
overlap graphs of intervals on a line. Chordal graphs are graphs in which every cycle of length
greater than three has a chord or, equivalently, the intersection graphs of subtrees in a tree.
Comparability graphs are graphs whose edges can be transitively oriented. Equivalently,
comparability graphs are the containment graphs of subtrees in a tree, the containment
graphs of substars in a star, and the set of all containment graphs [9]. For more information
on these and other graph classes, the reader is referred to [1] and [7].

Gavril [5] defines interval filament graphs as follows. Let I = {I1, I2, . . . , In} be a set of in-
tervals on a line L and let P be a plane containing L. We construct a set F = {f1, f2, . . . , fn}
of filaments on the intervals of I where, for each 1 ≤ i ≤ n, fi is a curve in P on and above
L, connecting the endpoints of Ii such that if two intervals are disjoint their curves do not
intersect. Pairs of filaments corresponding to overlapping intervals will necessarily intersect.
For a given pair of intervals, one of which is contained in the other, the corresponding fila-
ments may or may not intersect. Now, interval filament graphs are the intersection graphs
of interval filaments.

The intersection graphs of other types of filaments are also defined in [5]. In particular,
we are concerned with subtree filament graphs. Consider a tree T in a plane P and let
T = {t1, t2, . . . , tn} be a set of subtrees of T . Subtree filaments on the elements of T are
constructed in a surface perpendicular to P whose intersection with P is exactly T . In
this surface, in and above T , we construct filaments F = {f1, f2, . . . , fn} where each fi,
1 ≤ i ≤ n, is a curve connecting the leaves of ti such that (i) filaments corresponding to
disjoint subtrees do not intersect, and (ii) filaments corresponding to overlapping subtrees
intersect. Filaments corresponding to subtrees, one of which is contained in the other, may
or may not intersect. The leaves of ti are referred to as the leaves or the endpoints of fi.
Figure 1 depicts a set of filaments on subtrees of a tree, and the corresponding subtree
filament graph. It is necessary to explicitly require (ii) for subtree filaments, whereas this
requirement is always satisfied by interval filaments. To see this, consider two subtrees that
overlap in exactly one vertex of T such that the common vertex is an internal node in both
subtrees.

All of the graph classes defined in this section are hereditary, that is, every induced
subgraph of a graph in the class is also in the class.
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Figure 1: (i) A set of filaments on subtrees of a tree and (ii) the corresponding subtree
filament graph. Labels a, b, c, d, and e indicate the correspondence between filaments and
vertices.

2 Equivalence of subtree filament graphs and subtree

overlap graphs

In this section, we present a proof of the equivalence of subtree filament graphs and subtree
overlap graphs. Since the intersection graphs of interval filaments is a much larger graph
class than that of interval overlap graphs (i.e. circle graphs), it is surprising that the graph
family defined by subtree filament intersection is exactly the class of subtree overlap graphs.

We first identify some operations on trees and subtrees that preserve relationships (dis-
jointness, overlapping, and containment) among subtrees. We start with a technical lemma
which shows that relationships among subtrees are preserved by the addition of a new leaf to
a given subtree provided the leaf is also added to all subtrees that contain the given subtree.

Lemma 1 Let T = (VT , ET ) be a tree and T = {t1 = (Vt1 , Et1), . . . , tn = (Vtn , Etn)} be a
multiset of subtrees of T . Let x /∈ VT . For any given 1 ≤ k ≤ n, and any given v ∈ tk, let
T ′ = (VT ∪ {x}, ET ∪ {vx}) and T ′ = {t′1, . . . , t′n} where, for all 1 ≤ i ≤ n, t′i is defined as

t′i =

{
(Vti ∪ {x}, Eti ∪ {vx}) if tk ⊆ ti
ti otherwise

Then, for all 1 ≤ i, j ≤ n, ti, tj ∼ t′i, t
′
j.

Proof. It is clear that T ′ is a tree and T ′ is a multiset of subtrees of T ′. Note that the
relationship between two nonempty sets A and B (i.e. whether they are equal, disjoint,
overlap, or one is properly contained in the other) is completely determined by whether each
of the following is empty: A ∩B, A\B, and B\A. We consider three cases.
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• If v ∈ ti ∩ tj then ti ∩ tj 6= ∅, t′i ∩ t′j 6= ∅, t′i\t′j = ti\tj, and t′j\t′i = tj\ti.

• If v ∈ ti\tj then ti ∩ tj = t′i ∩ t′j, ti\tj 6= ∅, t′i\t′j 6= ∅, and t′j\t′i = tj\ti.

• If v /∈ ti ∪ tj then t′i = ti and t′j = tj.

In each case, the conclusion that ti, tj ∼ t′i, t
′
j follows. 2

The next lemma shows that, given a tree and a set of subtrees, the operation of adding
a new leaf to an arbitrary vertex v of the tree and to exactly the subtrees that contain v,
preserves the disjointness, overlapping, and containment relationships among the subtrees.
Repeated application of the lemma results in a representation in which every subtree contains
an edge and every two intersecting subtrees share an edge.

Lemma 2 Let T = (VT , ET ) be a tree and T = {t1 = (Vt1 , Et1), . . . , tn = (Vtn , Etn)} be a
multiset of subtrees of T . Let x /∈ VT . For any given v ∈ VT , let T ′ = (VT ∪ {x}, ET ∪ {vx})
and T ′ = {t′1, . . . , t′n} where, for all 1 ≤ i ≤ n, t′i is defined as

t′i =

{
(Vti ∪ {x}, Eti ∪ {vx}) if v ∈ Vti

ti otherwise

Then, for all 1 ≤ i, j ≤ n, ti, tj ∼ t′i, t
′
j.

Proof. Add a new subtree tn+1 = {v} to T , apply Lemma 1 with tk = tn+1, and then
remove t′n+1 from T ′. 2

It has often been pointed out in the literature that, for any multiset of intervals on a
line, there is a set of intervals exhibiting the same intersection, overlapping, and containment
relationships, in which no two intervals share an endpoint. The next lemma shows that a
similar observation holds for subtrees of a tree. Specifically, the proof of the lemma shows
how to transform an arbitrary multiset of subtrees of a tree into a set of subtrees which
preserves the disjointness, overlapping, and containment relationships among the subtrees
and in which no vertex of the tree is a leaf in two distinct subtrees.

Lemma 3 Let T = (VT , ET ) be a tree and T = {t1, . . . , tn} be a multiset of subtrees of T .
There exists a tree T ′ = (VT ′ , ET ′) and set T ′ = {t′1, . . . , t′n} of subtrees of T ′ such that, for
all 1 ≤ i, j ≤ n, ti, tj ∼ t′i, t

′
j and no element of VT ′ is a leaf of two distinct elements of T ′.

Proof. We assume without loss of generality that every subtree of T contains at least two
vertices. If this were not the case, we could apply the transformation of Lemma 1 to each
single vertex subtree of T .

First, for each vertex v ∈ VT , for each subtree ti that contains v as a leaf, add a new
leaf `i adjacent to v in T , and add `i to ti and to all subtrees that contain ti or are equal
to ti. Let L be the entire set of new leaves added after processing all vertices of VT , and let
T ′ and T ′ = {t′1, . . . , t′n} be the resulting tree and multiset of subtrees. Now, all leaves of
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subtrees in T ′ are leaves of T ′ and, by repeated applications of Lemma 1, for 1 ≤ i, j ≤ n,
ti, tj ∼ t′i, t

′
j.

Now, for each leaf ` of T ′ that is contained in two or more subtrees of T ′, let t′`,1, t
′
`,2, . . . , t

′
`,k

be the subtrees, in nondecreasing order of size, of T ′ that contain `. Attach a path of k − 1
new vertices: p1, . . . , pk−1 to ` by adding the edge `p1 to T ′. Now, add vertices p1, . . . , pi−1

and the edges of the `, . . . , pi−1 path to t′`,i, for 2 ≤ i ≤ k. This step finally ensures that no
two subtrees share a common leaf. Disjointness is not affected by this operation; proper con-
tainment is guaranteed to be preserved because of the order in which the t′`,i’s are handled,
and overlapping cannot be destroyed by the addition of new vertices. Any two subtrees that
were originally equal are now such that one is properly contained in the other. 2

We make use of Lemmas 2 and 3 in the proof of Theorem 1.

Theorem 1 A graph is a subtree overlap graph if and only if it is a subtree filament graph.

Proof. We first prove that every subtree overlap graph is a subtree filament graph. Given
a set of subtrees T = {t1 = (Vt1 , Et1), . . . , tn = (Vtn , Etn)} of a tree T , we construct a set
of filaments on T whose intersection graph is the overlap graph of T . We may assume that
every subtree contains at least two vertices and that every two subtrees are either disjoint
or share an edge, since this could be achieved by applying the transformation of Lemma 2
to each vertex of T . In addition, by Lemma 3 we may assume that no two subtrees share an
endpoint, which implies that no two subtrees are equal.

Let the elements of T be indexed such that i < j implies |Vti| ≤ |Vtj |. We first construct
a set F = {f1, . . . , fn} of filaments, for i from 1 to n, as follows: every point of fi is above a
point of ti and fi is entirely above every fj, j < i for which tj ⊂ ti. In addition, we choose
fi to be a function, i.e. such that no point of fi is above any other point of fi.

Now, F contains non-intersecting filaments for all pairs of subtrees that are disjoint and
for all pairs in which one contains the other. However, there may be overlapping subtrees
with corresponding filaments that do not intersect. Thus, to complete the construction, we
may need to change some elements of F to ensure that overlapping subtrees correspond to
intersecting filaments.

For every 1 ≤ i, j,≤ n such that ti overlaps tj but fi does not intersect fj, we alter
filaments as follows. Assume without loss of generality that fi is entirely below fj. As
previously mentioned, there is an edge uv that is in both ti and tj. Let p be a point on fi

that is directly above the edge uv but not directly above either u or v. Thus, p is not directly
above an endpoint of any subtree. We now draw p upwards so that it intersects fj. Imagine
that, as p is drawn upwards, the neighbourhood of p on fi is also drawn upwards, so that fi

is stretched in such a way that it remains a curve and none of its points is above any other
point of fi. For each filament fk that we encounter when drawing p up, if ti overlaps tk,
we draw p across fk so that fi intersects fk; otherwise (ti ⊂ tk), we draw the point q of fk

that is directly above p, along with q’s neighbourhood on fk, up such that fi and fk remain
non-intersecting. Note that fk will intersect fj in this case. We say that fk was pushed up.

Now, disjoint subtrees are still represented by non-intersecting filaments and overlapping
subtrees are guaranteed to have intersecting filaments. Before any of the filaments were
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drawn up, pairs of subtrees exhibiting containment were represented by non-intersecting
filaments. We must show that this is still the case.

Suppose that, during the drawing upwards of a point of fi to cross fj, an intersection is
created between two filaments fk and f`, where tk ⊂ t`. We know that fk 6= fi, since the
processing of the fi, fj pair results in correct intersections between fi and fj and between
fi and all filaments encountered between fi and fj. Further, since fk is pushed up by fi, it
must be that ti ⊂ tk and therefore ti ⊂ t`. But, since fi pushed fk upwards to intersect f`,
ti must overlap t`, a contradiction. Thus, the intersection graph of the modified filaments F
is the overlap graph of T .

To complete the proof of the theorem, we now show that every subtree filament graph is a
subtree overlap graph. Given filaments F = {f1, . . . , fn} on tree T = (VT , ET ), we construct
a tree T ′ and a set T ′ = {t′1, . . . , t′n} of subtrees of T ′ such that, for all 1 ≤ i, j ≤ n, t′i and
t′j overlap if and only if fi and fj intersect.

The subtree of T induced by the endpoints of filament fi, denoted by Tfi
, is defined to be

the subtree of T induced by Xi ∪ {x|x ∈ VT is on a path in T between two vertices of Xi}
where Xi is the set of endpoints of fi.

First, we define T ′ to be the tree T with n additional nodes X = {x1, x2, . . . , xn} attached
as follows: for 1 ≤ i ≤ n, xi is adjacent in T ′ to a node of VT that, in T , is an endpoint of
fi. Next, we define the subtrees of T ′. For 1 ≤ i ≤ n, t′i is the subtree of T ′ induced by the
vertices of Tfi

plus {xi} ∪ {xj | Tfj
⊂ Tfi

and fi does not intersect fj}.
It remains to show that the overlap graph of T ′ is identical to the intersection graph of

F . Suppose fi ∩ fj 6= ∅. Then Tfi
∩ Tfj

6= ∅ and therefore t′i ∩ t′j 6= ∅. By the construction
of the subtrees, since fi intersects fj, xi ∈ t′i\t′j and xj ∈ t′j\t′i and, therefore, t′i overlaps t′j.

Suppose fi ∩ fj = ∅. If Tfi
∩ Tfj

= ∅ then t′i ∩ t′j = ∅ as required. If one of Tfi
and Tfj

is contained in the other then assume, without loss of generality, that Tfj
⊂ Tfi

. Then, by
the construction of t′i, xj and the vertices of Tfj

are in t′i. The vertices of t′j, other than xj

and the vertices of Tfj
, are {xk | Tfk

⊂ Tfj
and fk does not intersect fj}. However, all such

vertices xk are also in t′i since Tfk
⊂ Tfj

⊂ Tfi
and fk cannot intersect fi (otherwise, one of

fk or fi would intersect fj, a contradiction). Therefore, t′j ⊂ t′i as required. 2

Theorem 1 may be helpful in the search for an efficient recognition algorithm, and in the
development of exact and approximation algorithms for various optimization problems, for
subtree filament graphs. It is known that the following problems are polynomially solvable
for subtree overlap graphs, given a subtree overlap representation: maximum weight clique
and maximum weight independent set [2] [5], and finding holes and antiholes of a given
parity, and minimum dominating holes [6]. The problems of vertex colouring [4], clique
cover [11], and dominating set [10], among others, remain NP-complete when restricted to
circle graphs and therefore to subtree overlap graphs. Approximation algorithms for the
following problems on subtree filament graphs are given in [11], where it is assumed that a
subtree filament representation is given: minimum vertex colouring, maximum k-colourable
subgraph, minimum clique cover, and maximum h-coverable subgraph.

Edge intersection graphs of subtrees in a tree were defined in [8]; we give an analogous
definition of edge overlap graphs of subtrees in a tree. The edge intersection (respectively
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overlap) graph of subtrees T = {t1, t2, . . . , tn} in a tree T is the graph G = (V, E) where
v = {v1, . . . , vn} and, for all 1 ≤ i, j ≤ n, vivj ∈ E if and only if ti and tj have an edge of T
in common, i.e., if and only if ti and tj share at least two vertices of T (respectively, Ti and
Tj overlap and share at least two vertices of T ).

By Lemma 2, we can transform an arbitrary set of subtrees into an equivalent set (i.e. one
which preserves the disjointness, overlapping, and containment relationships among subtrees)
such that every two subtrees are either disjoint or share an edge, by appending a new leaf
to each node of the tree and expanding all subtrees that contain the original node to also
contain the new leaf. Thus, subtree overlap graphs are edge overlap graphs of subtrees in
a tree. This raises the question of whether all edge overlap graphs of subtrees in a tree
are subtree overlap graphs. We answer this question in the negative by noting that not all
graphs are subtree overlap graphs [2], and showing that every graph is an edge overlap graph
of subtrees in a tree.

Golumbic and Jamison [8] showed that every graph is the edge intersection graph of
subtrees in a tree. It turns out that a small alteration to the construction of [8] shows that
every graph is the edge overlap graph of subtrees in a tree. Let G = (V, E) be an arbitrary
graph. Define T = (VT , ET ) where VT = V ∪E ∪{x} and ET = {xv | v ∈ V }∪{xe | e ∈ E}.
Now, for each v ∈ V , let tv be the subtree of T induced by {v}∪{e | e is incident to v in G}∪
{x}. Now, all subtrees contain x, and each subtree contains a vertex that no other subtree
contains. Therefore, all subtrees overlap and two subtrees share an edge of T if and only if
the associated vertices are adjacent in G.
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[2] E. Čenek and L. Stewart, Maximum independent set and maximum clique algorithms
for overlap graphs, Discrete Applied Mathematics, 131 (2003) 77-91.

[3] J.A. Enright, Subtree overlap graphs – towards recognition, MSc thesis, Department of
Computing Science, University of Alberta, 2006.

[4] M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou, The complexity of
coloring circular arcs and chords, SIAM Journal on Algebraic and Discrete Methods, 1
(1980) 216-227.

7



[5] F. Gavril, Maximum weight independent sets and cliques in intersection graphs of fila-
ments, Information Processing Letters, 73 (2000) 181-188.

[6] F. Gavril, Algorithms on interval filament graphs, Technical Report CS-2007-03, Com-
puter Science Department, Technion, Haifa, 2007.

[7] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York, 1980; Second edition, North Holland, 2004.

[8] M.C. Golumbic and R.E. Jamison, The edge intersection graphs of paths in a tree,
Journal of Combinatorial Theory, Series B, 38 (1985) 8-22.

[9] M.C. Golumbic and E.R. Scheinerman, Containment graphs, posets, and related classes
of graphs, Combinatorial Mathematics: Proceedings of the Third International Confer-
ence (New York, 1985) 192-204, Annals of the New York Academy of Sciences, 555, New
York Academy of Sciences, New York, 1989.

[10] J.M. Keil, The complexity of the domination problems in circle graphs, Discrete Applied
Mathematics. 42 (1993) 51-63.

[11] J.M. Keil and L. Stewart, Approximating the minimum clique cover and other hard
problems in subtree filament graphs, Discrete Applied Mathematics, 154 (2006) 1983-
1995.

[12] E. Marczewski, Sur deux propriétés des classes d’ensembles, Fundamenta Mathematicae,
33 (1945) 303-307.

8


