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Abstract. An independent set of three vertices is called an asteroidal triple if between each pair
in the triple there exists a path that avoids the neighborhood of the third. A graph is asteroidal triple-
free (AT-free) if it contains no asteroidal triple. The motivation for this investigation is provided,
in part, by the fact that AT-free graphs offer a common generalization of interval, permutation,
trapezoid, and cocomparability graphs.

Previously, the authors have given an existential proof of the fact that every connected AT-free
graph contains a dominating pair, that is, a pair of vertices such that every path joining them is
a dominating set in the graph. The main contribution of this paper is a constructive proof of the
existence of dominating pairs in connected AT-free graphs. The resulting simple algorithm, based
on the well-known lexicographic breadth-first search, can be implemented to run in time linear in
the size of the input, whereas the best algorithm previously known for this problem has complexity
O(|V |3) for input graph G = (V,E). In addition, we indicate how our algorithm can be extended to
find, in time linear in the size of the input, all dominating pairs in a connected AT-free graph with
diameter greater than 3. A remarkable feature of the extended algorithm is that, even though there
may be O(|V |2) dominating pairs, the algorithm can compute and represent them in linear time.
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1. Introduction. Considerable attention has been paid to exploiting algorith-
mically different aspects of the linear structure exhibited by various families of graphs.
Examples of such families include interval graphs [15], permutation graphs [11], trape-
zoid graphs [6, 10], and cocomparability graphs [13].

The linearity of these four classes is usually described in terms of ad hoc properties
of each of these classes of graphs. For example, in the case of interval graphs, the
linearity property is traditionally expressed in terms of a linear order on the set of
maximal cliques [4, 5]. For permutation graphs the linear behavior is explained in
terms of the underlying partial order of dimension 2 [1]; for cocomparability graphs the
linear behavior is expressed in terms of topological orderings of transitive orientations
of comparability graphs [14], and so on.

As it turns out, the classes mentioned above are all subfamilies of a class of graphs
called the asteroidal triple-free graphs (AT-free graphs). An independent set of three
vertices is called an asteroidal triple if between any pair in the triple there exists a
path that avoids the neighborhood of the third. AT-free graphs were introduced over
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three decades ago by Lekkerkerker and Boland [15], who showed that a graph is an
interval graph if and only if it is chordal and AT-free. Thus, Lekkerkerker and Boland’s
result may be viewed as showing that the absence of asteroidal triples imposes the
linear structure on chordal graphs that results in interval graphs. Recently, we have
studied AT-free graphs with the stated goal of identifying the “agent” responsible for
the linear behavior observed in the four subfamilies. Specifically, in [9] we presented
evidence that the property of being AT-free is what is enforcing the linear behavior
of these classes.

One strong “certificate” of linearity is the existence of a dominating pair of ver-
tices, that is, a pair of vertices with the property that every path connecting them is
a dominating set. In [9], we gave an existential proof of the fact that every connected
AT-free graph contains a dominating pair.

The main contribution of this paper is a constructive proof of the existence of
dominating pairs in connected AT-free graphs. A remarkable feature of our approach
is that the resulting simple algorithm, based on the well-known lexicographic breadth-
first search of [16], can easily be implemented to run in time O(|V |+ |E|), where the
input is a connected AT-free graph G = (V,E). In addition, our algorithm can be
extended to find, in time linear in the size of the input, all dominating pairs in a
connected AT-free graph with diameter greater than 3.

It should be noted that the fastest algorithm known to us, which recognizes
whether or not a graph G = (V,E) is AT-free, runs in time O(|V |3).

To put our result in perspective, we observe that previously, the most efficient
algorithm for finding a dominating pair in a graph G = (V,E) was the straightforward
O(|V |3) algorithm described in [2].

For each of the four families mentioned above, vertices that occupy the extreme
positions in the corresponding intersection model [12] constitute a dominating pair. It
is interesting to note, however, that a linear time algorithm for finding a dominating
pair was not previously known, even for cocomparability graphs, a strict subclass of
AT-free graphs.

The remainder of this paper is organized as follows. Section 2 contains some
relevant terminology and background. Section 3 is a description of the lexicographic
breadth-first search algorithm of [16] along with some properties of that algorithm.
In section 4 we present an algorithm which finds a dominating pair in a connected
AT-free graph. In sections 5 and 6, we show how to extend the dominating pair
algorithm to find all dominating pairs in a connected AT-free graph with sufficiently
large diameter. Section 7 contains our conclusions.

2. Background. All the graphs in this work are finite with no loops or multiple
edges. In addition to standard graph theoretic terminology compatible with [3], we
shall define some new terms. We let d(v) denote the degree of vertex v; d(u, v) denotes
the distance between vertices u and v in a graph, that is, the number of edges on a
shortest path joining u and v. In addition, we let diam(G) denote the diameter of
the graph G, that is, maxu,v∈G d(u, v). Two vertices u and v with d(u, v) = diam(G)
are said to achieve the diameter. Given a graph G = (V,E) and a vertex x, we let
N(x) denote the set of neighbors of x; N ′(x) denotes the set of neighbors of x in the
complement G of G.

Let π = v1, v2, . . . , vk be a path of graph G. If the subgraph of G induced by
{v1, v2, . . . , vk} has exactly k − 1 edges, i.e., none other than the edges of the path,
then π is said to be an induced, or chordless, path. All the paths in this work are
assumed to be induced unless stated otherwise. We refer to a path joining vertices x
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Fig. 1. A connected AT-free graph G.

and y as an x,y-path. We say that a vertex u intercepts a path π if u is adjacent to
at least one vertex on π; otherwise, u is said to miss π. Let G = (V,E) be a graph,
π a path in G, x a vertex of G, and X a subset of V . Let V (π) be the vertices of
G that are on the path π. We shall use the following notation: π − x refers to the
subgraph of G induced by the vertices V (π)− {x}, π + x refers to the subgraph of G
induced by the vertices V (π) ∪ {x}, and π ∪X refers to the subgraph of G induced
by the vertices V (π) ∪X.

For a connected AT-free graph with a pair of vertices x, y we let D(x, y) denote
the set of vertices that intercept all x,y-paths. Note that (x, y) is a dominating pair if
and only if D(x, y) = V . We say that vertices u and v are unrelated with respect to x if
u 6∈ D(v, x) and v 6∈ D(u, x). A vertex x of an AT-free graph G is called pokable if the
graph obtained from G by adding a pendant vertex adjacent to x is AT-free. It is not
hard to see that if an AT-free graph G contains no unrelated vertices with respect to
x, then x is pokable. A pokable dominating pair is a dominating pair such that both
vertices are pokable. A vertex x is a pokable dominating pair vertex if x is pokable
and there exists y such that (x, y) is a dominating pair. To illustrate these definitions,
consider the graph G = (V,E) of Figure 1. In this graph, D(c, l) = {b, c, d, k, l, p, q},
D(c, e) = V \{a}, and D(a, e) = D(q, i) = V . Any pair consisting of one vertex from
{a, q} and one vertex from {e, f, g, h, i, j, k} is a dominating pair; a is pokable and h is
not pokable (adding a pendant vertex h′ adjacent to h would create the AT {f, j, h′}).

3. Lexicographic breadth-first search. Our dominating pair algorithm in-
vokes Procedure LBFS (short for lexicographic breadth-first search), which, when
given a connected graph G and a vertex x of G, returns a numbering of the vertices
of G. We reproduce below the details of LBFS from [16].
PROCEDURE LBFS(G, x).
{Input: a connected graph G = (V,E) and a distinguished vertex x of G;
Output: a numbering σ of the vertices of G}
begin

label(x) ← |V |;
for each vertex v in V − {x} do

label(v) ← Λ;
for i← |V | downto 1 do begin

pick an unnumbered vertex v with (lexicographically) the largest label;
σ(v)← i; {assign to v number i}
for each unnumbered vertex u in N(v) do
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append i to label(u)
end

end; {LBFS}
Notice that the numbering returned by LBFS is not unique. One numbering

that could result from LBFS(G, q), where G is the graph of Figure 1, is σ(q) = 14,
σ(p) = 13, σ(c) = 12, σ(a) = 11, σ(b) = 10, σ(l) = 9, σ(d) = 8, σ(k) = 7, σ(e) = 6,
σ(i) = 5, σ(h) = 4, σ(j) = 3, σ(g) = 2, σ(f) = 1.

A few definitions relating to LBFS are in order at this point. Let x be an arbitrary
vertex of a connected graph G, and consider running LBFS(G, x). For vertices a, b of
G we write a ≺ b whenever σ(a) < σ(b), and we shall say that b is larger than a. To
make the notation more manageable we shall sometimes write v1 ≺ v2 ≺ · · · ≺ vk as
shorthand for v1 ≺ v2, v2 ≺ v3, . . . , vk−1 ≺ vk. We shall denote by � the lexicographic
total order of the set of LBFS labels. We let λ(a, b) denote the label of a when b was
about to be numbered. Given vertices a, b, c with a ≺ c and b ≺ c, we shall say that
a and b are tied at c if λ(a, c) = λ(b, c). Given a vertex y, an a,b-path is said to be
y-majorizing if all the vertices on the path are larger than y.

We assume that G = (V,E) is an arbitrary connected graph and that LBFS(G, x)
has been invoked, where x is an arbitrary vertex of G. The following fundamental
properties of LBFS will be used later.

Proposition 3.1. Let a, b, and c be vertices of G satisfying a ≺ b, b ≺ c, ac ∈ E,
and bc 6∈ E. Then there exists a vertex d in G adjacent to b but not to a and such
that c ≺ d.

Proof. The existence of d follows immediately from the observation that when
b was about to be processed by LBFS it could not have been tied with a. Since a
inherited c’s label, b must have inherited the label of a larger vertex nonadjacent to
a; this is d.

Proposition 3.2 (monotonicity property). Let a, b, c, and d be vertices of G
such that a ≺ c or a = c, b ≺ c or b = c, and c ≺ d. If λ(a, d) � λ(b, d), then
λ(a, c) � λ(b, c).

Proof. The proof follows directly from the lexicographic ordering of labels.
Lemma 3.3. Let a, b, b′, and c be vertices of G such that a ≺ b ≺ c ≺ b′, bb′ ∈ E,

and b′c 6∈ E. Then a and c cannot be tied at b′.
Proof. By Proposition 3.1 applied to vertices b, c, and b′ we find a vertex c′

adjacent to c but not to b and such that b′ ≺ c′. Write C = {t | tc ∈ E, tb 6∈ E, b′ ≺ t}.
Clearly, c′ ∈ C. In fact, we select c′ to be the largest vertex in C.

If the statement is false, then a and c are tied at b′. Since b′ ≺ c′ and since
cc′ ∈ E, we must have ac′ ∈ E. Now, Proposition 3.1 applied to vertices a, b, and c′

yields a vertex b′′ adjacent to b but not to a such that c′ ≺ b′′.
Since b′ ≺ b′′, the assumption that a and c are tied at b′ guarantees that b′′ is

not adjacent to c. Therefore, Proposition 3.1 can be applied to vertices b, c, and
b′′, yielding a vertex c′′ adjacent to c but not to b and such that b′′ ≺ c′′. Since
b′ ≺ c′ ≺ b′′ ≺ c′′, it must be that c′′ ∈ C, contradicting that c′ is the largest vertex
in C.

Lemma 3.4. Let y, a, and b be pairwise nonadjacent vertices of G such that
y ≺ a and a ≺ b. If a and y are not tied at b, then y misses a y-majorizing a,b-path.

Proof. Assume that a and y are not tied at b. We must exhibit a y-majorizing
a,b-path missed by y.

Since y ≺ a, λ(y, a) �λ(a, a) or λ(y, a) = λ(a, a). Therefore, by the monotonicity
property (Proposition 3.2), λ(y, b) � λ(a, b) or λ(y, b) = λ(a, b). Now, since a and y
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are not tied at b, λ(y, b) � λ(a, b). Consequently, we find a vertex a1 adjacent to a
but not to y and such that b ≺ a1. (Vertex a1 is chosen to be the largest satisfying
these conditions.) We may assume that a1 is not adjacent to b, since otherwise the
path a, a1, b is the desired y-majorizing path.

Now, Lemma 3.3 guarantees that b and y cannot be tied at a1. Thus, we find a
vertex b1 adjacent to b but not to y and such that a1 ≺ b1. (As before, we select as b1
the largest vertex with this property.) Trivially, we may assume that b1 is adjacent to
neither a nor a1; else we have the desired y-majorizing path. Again, Lemma 3.3 tells
us that a1 and y cannot be tied at b1 and so we find a vertex a2 adjacent to a1 but
not to y and such that b1 ≺ a2. (As before, we select as a2 the largest vertex with
this property.) It is easy to verify that a2 is not adjacent to a (by the choice of a1),
b, or b1.

Continuing as above, we obtain two chordless y-majorizing paths a = a0, a1, a2, . . .
and b = b0, b1, b2, . . . , both missed by y. If no vertex on the first path is adjacent to
a vertex on the second one, then the paths are infinite, contradicting that G is finite.
Therefore, such an adjacency must exist, yielding the desired a,b-path.

4. The dominating pair algorithm. Our dominating pair algorithm takes as
input a connected AT-free graph G and returns a pokable dominating pair of G. The
algorithm provides a constructive proof of the existence of pokable dominating pairs
in connected AT-free graphs. (An existential proof of this fact was given in [9].)

The four properties of LBFS specified in the preceding section hold for every
connected graph G. The proof of correctness of the dominating pair algorithm relies
on two additional properties of LBFS which hold when the input graph is a connected
AT-free graph. We present these properties next.

Theorem 4.1. Let G = (V,E) be a connected AT-free graph and let x and y be
arbitrary vertices of G. Let ≺ be the vertex ordering corresponding to a numbering
produced by LBFS(G, x). The subgraph of G induced by y and all vertices z with y ≺ z
contains no unrelated vertices with respect to y.

Proof. First, we give an overview of the proof. The existence of such unrelated
vertices, u and v, and the fact that they are numbered before y in an LBFS from x,
would imply that u and v are connected by a path through x. If y misses such a path,
then {y, u, v} is an AT.

In particular, if the statement is false, we find a vertex y and vertices u, v with
y ≺ u ≺ v, such that u and v are unrelated with respect to y. This implies the
existence of chordless paths π(y, u) : y = u1, u2, . . . , up = u missed by v, and π(y, v) :
y = v1, v2, . . . , vq = v missed by u, with the vertices on both paths, except for y,
numbered by LBFS before y. We claim that

u ≺ v3.(4.1)

If (4.1) is false, then v3 ≺ u and u ≺ v, and we must find a subscript i (3 ≤ i ≤ q− 1)
such that vi ≺ u and u ≺ vi+1. Now, Lemma 3.3 tells us that u and y cannot be tied
at vi+1. In turn, Lemma 3.4 guarantees the existence of a y-majorizing u,vi+1-path
missed by y. This path extends trivially to a y-majorizing u,v-path, implying that
{y, u, v} is an AT. Thus, (4.1) must hold.

Next, we claim that

u and y are tied at v3.(4.2)

The contrary would imply, by virtue of Lemma 3.4, the existence of a y-majorizing
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u,v3-path missed by y. This extends easily into a y-majorizing u,v-path missed by y,
implying that {y, u, v} is an AT. Thus, (4.2) must hold.

We note that v2 ≺ v3; otherwise, since v2 is adjacent to y and not to u, we would
contradict (4.2). Further, we claim that

u ≺ v2.(4.3)

Otherwise, by (4.1) we have v2 ≺ u and u ≺ v3. Now, Lemma 3.3 specifies that u and
y cannot be tied at v3, contradicting (4.2). Thus, (4.3) must be true.

Proposition 3.1 applied to vertices y ≺ u and u ≺ v2 guarantees the existence of a
vertex u′ adjacent to u but not to y and such that v2 ≺ u′. Since u and y are tied at
v3, it must be the case that y ≺ u, u ≺ v2, v2 ≺ u′, and u′ ≺ v3. If u′ is adjacent to v3,
then we have a u,v-path missed by y, contradicting that the graph is AT-free. Thus,
u′ is not adjacent to v3. But now, Lemma 3.3 guarantees that y and u′ cannot be tied
at v3. Further, Lemma 3.4 tells us that there must exist a y-majorizing u′,v3-path
missed by y. This path extends in the obvious way to a y-majorizing u,v-path missed
by y, contradicting that the graph is AT-free. This completes the proof of Theorem
4.1.

We observe that, if G contains no unrelated vertices with respect to vertex v, then
v is pokable. This observation and Theorem 4.1 combined imply that each vertex y
of G is pokable in the subgraph of G induced by y and all vertices z with y ≺ z. In
particular, the last vertex numbered by LBFS(G, x) is pokable in G.

One additional theorem about LBFS, specialized to connected AT-free graphs,
will lead to the dominating pair algorithm.

Theorem 4.2. Let G = (V,E) be a connected AT-free graph and suppose that G
contains no vertices unrelated with respect to vertex x of G. Let ≺ be a vertex ordering
corresponding to a numbering produced by LBFS(G, x). Then, for all vertices u, v in
V with u ≺ v, v ∈ D(u, x).

Proof. The argument proceeds by noting that if v /∈ D(u, x), then there is a
u,x-path missed by v and no v,x-path missed by u (since u and v cannot be unrelated
with respect to x). However, an LBFS from x would number u before v, contradicting
the conditions of the theorem.

Assume that the theorem is false and let v be the largest vertex in V for which
there exists a vertex u with u ≺ v and v 6∈ D(u, x). We now select a specific path π
and a vertex u with u ≺ v such that π is a u,x-path missed by v. Let U be the set
of all vertices u such that u ≺ v and v 6∈ D(u, x) and let P be the set of all chordless
u,x-paths in G that are missed by v. Among all minimum length paths in P, we
choose π to be the one that extends to the largest possible vertex at each step. Now
u is the endpoint of π that is in the set U .

Formally, let PM be the subset of P consisting of all minimum length paths of
P. For paths P = p1, p2, . . . , pk and P ′ = p′1, p

′
2, . . . , p

′
k in PM, we say that P ′ is

greater than P if there exists a subscript i, 1 ≤ i ≤ k, such that σ(p′j) = σ(pj) for
all 1 ≤ j < i and σ(p′i) > σ(pi). Clearly, “greater than” is a total order on PM. We
choose π : u = u1, u2, . . . , uk = x to be the unique greatest element of PM.

Observe that u1 ≺ v and v ≺ u2; otherwise we contradict the fact that π is in
PM. Now Proposition 3.1 guarantees the existence of a vertex v2 adjacent to v = v1

but not to u1 and such that u2 ≺ v2.
It is easily seen that v2 is nonadjacent to ui for all i > 2, since otherwise u and v

are unrelated with respect to x. This immediately implies that v2 ≺ u3 (otherwise we
contradict the choice of v) and u2v2 ∈ E (otherwise we contradict the choice of both
u and v).
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Now apply Proposition 3.1 to vertices u2, v2, and u3; we find a vertex v3 adjacent
to v2 but not to u2 and such that u3 ≺ v3.

Since u2 ≺ v3, v3 cannot miss the path u2, u3, . . . , uk = x. Let t (t ≥ 3) be the
largest subscript for which v3ut ∈ E. Now v3 must be adjacent to u1; else u1 and v1

are unrelated with respect to x. (The v1,x-path missed by u1 is v1, v2, v3, ut, . . . , x.)
Note also that v3 must be adjacent to v1; otherwise we contradict the choice of π.
(To see this, note that u1, v3 extends to a minimum length chordless u,x-path via ut.)
Now, t = 3; else the assignment v ← u2 and u← v contradicts the initial choice of u
and v.

Now assume that we have constructed a sequence v = v1, v2, . . . , vi of vertices
such that vi (i ≥ 3) satisfies the following conditions:

(a) vivi−1, viui ∈ E;
(b) ui ≺ vi and viui−1 6∈ E;
(c) viuj 6∈ E for j > i;
(d) viu1, viv1 ∈ E.

We argue that there exists a vertex vi+1 satisfying conditions (a)–(d) with i + 1 in
place of i. For this purpose, note that ui+1 exists since ui ≺ vi implies that ui 6= x.
Now, vi ≺ ui+1 since otherwise the assignment v ← vi and u← ui+1 contradicts the
initial choice of u and v.

Now, by (c), Proposition 3.1 applied to vertices ui, vi, and ui+1 guarantees the
existence of a vertex vi+1 adjacent to vi but not to ui and such that ui+1 ≺ vi+1.
Thus, (b) is verified. Let t be the largest subscript for which vi+1 is adjacent to ut.
(t exists and t ≥ i+1, since otherwise the assignment v ← vi+1 and u← ui contradicts
the initial choice of u and v.)

Note that ui−1 is adjacent to vi+1, since if it is not, then ui−1 and v1 are unrelated
with respect to x. (By (b) and (d), the path contained in v1, vi, vi+1, ut, ut+1, . . . , x is
missed by ui−1.) Also v1 is adjacent to vi+1, since otherwise we contradict the choice
of π by going down π and picking the first edge ujvi+1, which we know exists (in
particular, we know that ui−1vi+1 ∈ E) and then going to ut and on to x. Now u1 is
adjacent to vi+1, since otherwise u1 and v1 are unrelated with respect to x (the path
v1, vi+1, ut, . . . , x would be missed by u1). Thus, (d) holds.

Note that t = i+1; otherwise we should have picked ui instead of v (for ui misses
the path u1, vi+1, ut, etc.). Thus, both (a) and (c) hold.

But now we have reached a contradiction: vk must exist and it must be that
x = uk ≺ vk, which is absurd.

Theorem 4.2 implies that if G contains no vertices unrelated with respect to x,
then (x, y) is a dominating pair in the subgraph of G induced by y and all vertices z
with y ≺ z. In particular, x and the last vertex numbered by LBFS(G, x) constitute
a dominating pair of G.

We are now in a position to spell out the details of the dominating pair algorithm.
PROCEDURE DP(G).
{Input: a connected AT-free graph G;
Output: (y, z) a pokable dominating pair of G}
begin

choose an arbitrary vertex x of G;
if N ′(x) = ∅ then return (x, x);
LBFS(G, x);
let y be the vertex numbered last by LBFS(G, x);
LBFS(G, y);
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let z be the vertex numbered last by LBFS(G, y);
return(y, z)
end; {DP}

As an example, we refer again to the graph G of Figure 1. We saw earlier that a
possible numbering resulting from LBFS(G, q) corresponds to the ordering

f ≺ g ≺ j ≺ h ≺ i ≺ e ≺ k ≺ d ≺ l ≺ b ≺ a ≺ c ≺ p ≺ q.

LBFS(G, f) may produce the ordering

a ≺ q ≺ b ≺ p ≺ c ≺ l ≺ d ≺ j ≺ i ≺ h ≺ g ≺ k ≺ e ≺ f.

Thus, DP(G) may output the pokable dominating pair (a, f).
Finally, we state the following result.
Theorem 4.3. Procedure DP finds a pokable dominating pair in a connected

AT-free graph, G = (V,E), in O(|V |+ |E|) time.
Proof. Clearly, (x, x) is a pokable dominating pair of G if N ′(x) = ∅. Otherwise,

by Theorem 4.1, G contains no unrelated vertices with respect to y and, hence, by
Theorem 4.2, (y, z) is a dominating pair of G. In addition, Theorem 4.1 implies that
both y and z are pokable in G. It is clear that a linear time implementation is possible
(see [16] for details of a linear time implementation of LBFS).

5. Computing dominated sets. Since dominating pairs play an important role
in the study of AT-free graphs and, intuitively, correspond to the extreme endpoints of
the linear structure of the graph, it is interesting to ask whether the above algorithm
can be the basis of an efficient algorithm to find all of the dominating pairs in a
connected AT-free graph. It turns out that we can indeed extend the algorithm to
efficiently find all dominating pairs in a connected AT-free graph provided that the
graph has diameter greater than 3. The diameter restriction is a consequence of
Theorem 6.1, which states that the set of dominating pairs is precisely the Cartesian
product of two subsets of vertices X and Y , provided the diameter of the graph
is greater than 3. Thus, by computing X and Y , we have a linear-sized implicit
representation of all dominating pairs. Such representations do not seem to hold for
AT-free graphs with diameter less than 4.

Perhaps even more interesting in its own right, and a step in the direction of
computing all dominating pairs, is a method that, given a connected AT-free graph
G and a pokable dominating pair vertex x of G, computes the sets D(v, x) for all
vertices v of G. (Recall that D(v, x) denotes the set of vertices that intercept all
v,x-paths.) We describe this method first and, in the next section, we show how the
information obtained can be used to compute all the dominating pairs in a connected
AT-free graph with diameter greater than 3.

In order to understand our approach, which relies on a variant of LBFS, let us
examine a few details of an efficient LBFS implementation. We use an adjacency list
representation of a graph. Additionally, unnumbered vertices are stored in another
data structure, specifically, a list of lists. At each stage of the algorithm, each list
contains unnumbered vertices having the same label (i.e., vertices that are tied at the
current stage), and lists are stored in decreasing lexicographic order of the correspond-
ing labels. Thus, the largest label can be found in constant time. Let us examine the
evolution of the list of lists during the execution of LBFS(G, x) where G = (V,E).
Initially, there are two lists: one contains the vertex x and corresponds to the label
|V |, and the other contains all other vertices of G and corresponds to the label Λ.
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Each time a new vertex u is numbered, it is removed from its list and its number is
appended to the labels of its unnumbered neighbors. Each list that contains both an
unnumbered neighbor of u and a vertex that is not adjacent to u, is split into two
lists, one for the original label and one corresponding to the original label with σ(u)
appended. The first list follows the second in the ordered list of lists. It is important
to note that, by the monotonicity property (Proposition 3.2), the relative order of the
lists never changes. In order to access and move the neighbors of u in O(d(u)) time,
an array of |V | pointers indicates the location of each unnumbered vertex within the
list of lists, and the lists are doubly linked.

We now return to the problem at hand, namely, given a connected AT-free graph
G = (V,E) and a pokable dominating pair vertex x of G, we wish to compute the
sets D(v, x) for all vertices v of G. We will modify LBFS to obtain a linear time
algorithm for this problem. To begin, we observe that the sum of the cardinalities of
the sets D(v, x), for all v ∈ V , may be O(|V |2), and hence, a linear time algorithm
must use an implicit representation of these sets. We handle this as follows: for each
vertex v we compute a number, span(v), 1 ≤ span(v) ≤ σ(v), with the property
that D(v, x) = {u|σ(u) ≥ span(v)} ∪ N−(v), where σ is a numbering resulting from
LBFS(G, x) and N−(v) = N(v) ∩ {w|σ(w) < σ(v)}. Thus, span(v) indicates an
interval, with respect to σ, of vertices to be included in D(v, x). When all vertices of
a set W ⊆ V have the same span value, we refer to that value as span(W ).

The values of span(v) for all vertices v are computed incrementally. It is not
necessary to update the values individually because all vertices on the same list will
have the same span value. Thus, we store span values for each list, rather than for
each vertex. The two initial lists have span values of |V |. Just before a vertex is
numbered, the span value of its list is updated. When a list is split, the two new lists
inherit the span value of the original list. A span value is assigned to an individual
vertex when that vertex is finally numbered. As we maintain the lists, we store the
size of each list. Thus, for the list W in each iteration, W , |W |, and span(W ) can be
accessed in constant time. Furthermore, over all iterations, all updates of span values
can be accomplished in linear time. Thus, the overall complexity of the algorithm
below is O(|V |+ |E|).

Procedure DSETS is a modified LBFS which computes implicit representations
of D(v, x) for all v ∈ V .
PROCEDURE DSETS(G, x).
{Input: a connected AT-free graph G = (V,E) and a pokable dominating pair vertex
x of G;
Output: a numbering σ of the vertices of G and, for each vertex v, span(v) such that
D(v, x) = {u|σ(u) ≥ span(v)} ∪N−(v) }
begin

label(x) ← |V |;
for each vertex v in V − {x} do

label(v) ← Λ;
W1 ← {x}; W2 ← V − {x}; {Initialize two lists}
span(W1) ← span(W2) ← |V |;
for i← |V | downto 1 do begin {main for loop}

pick an unnumbered vertex v with (lexicographically) the largest label;
let W be the list containing v and all vertices tied with v;
span(W ) ← min {span(W ), i+ 1− |W | };
remove v from W ;
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σ(v)← i; {assign to v number i}
span(v) ← span(W );
for each unnumbered vertex u in N(v) do

append i to label(u);
split lists as necessary so that there is a one-to-one correspondence between the
resulting set of lists and the vertex labels
end {main for loop}

end; {DSETS}

Let us look again at the graph G of Figure 1. Suppose that the numbering
returned by DSETS(G, q) corresponds to the ordering

f ≺ g ≺ j ≺ h ≺ i ≺ e ≺ k ≺ d ≺ l ≺ b ≺ a ≺ c ≺ p ≺ q.
Now the span values computed by DSETS(G, q) will be

v a b c d e f g h i j k l p q
span(v) 11 10 11 8 6 1 1 1 1 1 7 9 11 14

It is easy to verify that the corresponding sets are correctly represented in this case.
For example, D(q, q) = {a, c, p, q}, D(l, q) = {a, b, c, d, k, l, p, q}, and D(e, q) = V .

Before presenting the proof of correctness of Procedure DSETS, we examine the
relationship between vertices x (such that there are no vertices unrelated with respect
to x) and pokable dominating pair vertices. The following lemma acts as a bridge
between the results of section 4 and the subsequent results of this section.

Lemma 5.1. Let G be a connected AT-free graph and let x be an arbitrary vertex
of G. Then G contains no vertices unrelated with respect to x if and only if x is a
pokable dominating pair vertex of G.

Proof. The “only if” part follows from Theorem 4.2 and the fact that if G contains
no vertices unrelated with respect to x, then x is pokable (since no AT can be created
by adding a pendant vertex adjacent to x). To prove the “if” part, let y be a vertex
of G such that (x, y) is a dominating pair of G, and consider unrelated vertices u and
v with respect to x. Since (x, y) is a dominating pair, u and v intercept every path
joining x and y. Let π be an x,y-path and let u′ and v′ be vertices on π adjacent to
u and v, respectively. Trivially, both u′ and v′ are distinct from x. But now there
exists a u,v-path in G that does not contain x (this path contains vertices u′, v′ and
a subpath of π), implying that x is not pokable.

The correctness of Procedure DSETS relies on the following theorem.
Theorem 5.2. Let x be a pokable dominating pair vertex of a connected AT-free

graph G = (V,E). For every vertex v of G, D(v, x) = {u|σ(u) ≥ span(v)} ∪N−(v).
Proof. Informally, notice that span(v) is the smallest numbered vertex that is tied

with v at any point in the algorithm. Intuitively, all vertices in {u|σ(u) ≥ span(v)},
as well as all neighbors of v, are in D(v, x). The proof demonstrates that D(v, x) is
exactly equal to this set of vertices.

Formally, let σ : V 7→ {1, 2, . . . , n} be a numbering returned by DSETS(G, x), let
v be an arbitrary vertex of V , and let D(v) = {u|σ(u) ≥ span(v)} ∪N−(v).

Our plan is to prove that D(v) = D(v, x). To implement this plan we first prove
that D(v) ⊆ D(v, x). Suppose that D(v) 6⊆ D(v, x), and let u be a vertex in D(v)
but not in D(v, x). Now uv 6∈ E and, by Theorem 4.2 and Lemma 5.1, σ(u) < σ(v).
Thus, by the algorithm, span(v) ≤ σ(u) < σ(v). (To see this, notice that during the
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iteration of the main for loop in which vertex v is numbered, the list W that contains
v receives a span value less than or equal to i+ 1−|W |. Since W contains v, |W | ≥ 1
and hence span(W ) ≤ i. Now, the desired inequality follows, since σ(v) is assigned
the value i and span(v) is assigned the value span(W ).)

Let w be the vertex being processed when span(v) was first set to its final value. (It
could be that w = v.) Then u, v, and w were tied at w; that is, N(u)∩{t|σ(t) > σ(w)}
= N(v) ∩ {t|σ(t) > σ(w)} = N(w) ∩ {t|σ(t) > σ(w)}. Since u 6∈ D(v, x) there
exists a v,x-path π : v = v1, v2, . . . , vk = x missed by u. By Theorem 4.2 and
Lemma 5.1, all vertices of π are larger than u. Let i be the greatest index such
that σ(vi) < σ(w). Clearly, i < k, since σ(w) < σ(x). Now σ(u) < σ(vi) < σ(w)
and thus, by the monotonicity property (Proposition 3.2), vi was tied with u, v,
and w at w. But vi is adjacent to vi+1 with σ(w) < σ(vi+1); thus, vi+1 belongs to
N(w)∩ {t|σ(t) > σ(w)} and is therefore adjacent to u, contradicting that π is missed
by u. Thus, D(v) ⊆ D(v, x).

We now prove that D(v, x) ⊆ D(v), thereby completing the proof of the theorem.
Suppose that D(v, x) 6⊆ D(v). Let u be a vertex in D(v, x) but not in D(v). Clearly,
uv 6∈ E and σ(u) < span(v) ≤ σ(v).

If at any stage u and v are tied with the vertex being processed, then span(v) is
set to a value less than or equal to σ(u), and span(v) is never increased. Thus, since
span(v) > σ(u), we know that u and v are never tied with the vertex being processed.
Let z be the largest neighbor of v. Since u cannot be adjacent to any vertex greater
than z (else σ(u) < σ(v) is contradicted), and since there is a z,x-path consisting
entirely of z and vertices larger than z (by the breadth-first nature of the search), u
must be adjacent to z. (Otherwise we contradict the fact that u ∈ D(v, x).) Now let
Z be the vertices of N(v)∩{t|σ(t) > σ(v)} which have a neighbor greater than z, and
let Z ′ be the remaining vertices of N(v) ∩ {t|σ(t) > σ(v)}. Clearly, z ∈ Z. Note that
u is adjacent to all vertices of Z; otherwise there is a v,x-path missed by u, which is
a contradiction. We observe that for every z ∈ Z and every z′ ∈ Z ′, it must be that
z′ ≺ z. This follows from the monotonicity property (Proposition 3.2) and by the
fact that, at z, all vertices of Z ′ have labels lexicographically less than all vertices of
Z. Finally, all vertices of Z ′ are adjacent to all vertices of Z, since any vertex of Z ′

nonadjacent to a vertex of Z would have been processed after v. But when the first
vertex of Z ′ is processed, all vertices of Z ′, u, and v are tied, contradicting our earlier
statement that u and v are not tied at any stage. This completes the proof.

Theorem 5.2, along with the discussion preceding Procedure DSETS, implies the
following result.

Theorem 5.3. Let G = (V,E) be a connected AT-free graph and let x be a pokable
dominating pair vertex of G. Procedure DSETS computes implicit representations for
the sets D(v, x) for every vertex v of G in O(|V |+ |E|) time.

6. Computing all dominating pairs. We now describe how to use the span
values computed by Procedure DSETS to compute all dominating pairs in a connected
AT-free graph with sufficiently large diameter. Our algorithm relies on the following
result, the proof of which appears in [9].

Theorem 6.1 (see [9]). Let G be a connected AT-free graph with diam(G) > 3.
There exist nonempty, disjoint sets X and Y of vertices of G such that (x, y) is a
dominating pair if and only if x ∈ X and y ∈ Y .

We note that Theorem 6.1 is best possible in the sense that, for AT-free graphs
of diameter less than 4, the sets X and Y are not guaranteed to exist. To wit, C5 and
the graph of Figure 2 provide counterexamples of diameters 2 and 3, respectively.
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Fig. 2. An AT-free graph of diameter 3 for which the sets X and Y do not exist.

Procedure ALL-DPs takes as input a connected AT-free graph G = (V,E) with
diameter greater than 3, and returns X and Y , subsets of V such that (x, y) is a
dominating pair if and only if x ∈ X and y ∈ Y . Procedure DSETS is an integral
part of Procedure ALL-DPs.

We begin with an informal description of Procedure ALL-DPs. The first step is to
find a pokable dominating pair vertex, which is done by LBFS in linear time. Then,
Procedure DSETS(G, x) computes span(v) for all vertices v in linear time. From the
resulting span values, and by Theorem 6.1, it is easy to see how to proceed.

Now, Y is the set of all vertices y with D(y, x) = V (whether or not D(y, x) = V
can be computed in O(d(y)) time by scanning the adjacency list of y and checking
whether all vertices w with σ(w) < span(y) are adjacent to v). Finally, we call
DSETS(G, y), where y is the vertex that was numbered last by DSETS(G, x). The
new set of span values can be used to compute the set X in a manner identical to the
above method for computing Y . We now state the procedure more precisely.
PROCEDURE ALL-DPs(G).
{Input: connected AT-free graph G = (V,E) with diam(G) > 3;
Output: X ⊆ V and Y ⊆ V such that (x, y) is a dominating pair of G if and only if
x ∈ X and y ∈ Y }
begin

choose an arbitrary vertex w of G;
LBFS(G,w);
let x be the vertex numbered last by LBFS(G,w);
DSETS(G, x);
Y = ∅;
for every y ∈ V do begin

count ← |V | − span(y); {number of vertices not in {u|σ(u) ≥ span(y)}
for each u ∈ N(y) do

if σ(u) < span(y) then count← count− 1;
if count = 0 then Y ← Y ∪ {y}
end;

let y be the vertex numbered last by LBFS(G, x);
DSETS(G, y);
X = ∅;
for every x ∈ V do begin

count ← |V | − span(x); {number of vertices not in {u|σ(u) ≥ span(x)}
for each u ∈ N(x) do

if σ(u) < span(x) then count← count− 1;
if count = 0 then X ← X ∪ {x}
end;

return(X,Y )
end; {ALL-DPs}
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As an illustration, when run with the graph G of Figure 1 as input, Procedure
ALL-DPs returns X = {a, q}, Y = {e, f, g, h, i, j, k} or X = {e, f, g, h, i, j, k}, Y =
{a, q} (depending upon the initial choice of w).

Theorem 6.2. For a connected AT-free graph G = (V,E) with diam(G) > 3,
Procedure ALL-DPs computes sets X and Y such that (x, y) is a dominating pair of
G if and only if x ∈ X and y ∈ Y in O(|V |+ |E|) time.

Proof. We observe that, by Theorem 4.1 and Lemma 5.1, the vertex x in ALL-
DPs is guaranteed to be a pokable dominating pair vertex. Similarly, by Theorem
4.1 and Lemma 5.1, the vertex y is a pokable dominating pair vertex. (This follows
from the observation that the set of possible numberings produced by DSETS(G, x)
is exactly the set of possible numberings of LBFS(G, x), since DSETS is simply LBFS
with some additional computations.) Thus, the correctness of Procedure ALL-DPs
follows from Theorem 5.3 and Theorem 6.1. Similarly, the complexity of ALL-DPs is
the sum of the complexities of LBFS and DSETS plus an O(|V |+ |E|) term.

Let G = (V,E) be a connected AT-free graph with diam(G) > 3. Notice that,
even though there may be O(|V |2) dominating pairs in G, Procedure ALL-DPs can
compute and represent them in linear time, by virtue of Theorem 6.1. A similar
comment applies to the sets D(v, x) for all v ∈ V ; even though the sum of the
cardinalities of the sets may be O(|V |2), Procedure DSETS can compute an implicit
representation of them in linear time.

We conclude with a corollary, which follows from the fact that some minimum
cardinality connected dominating set must be a shortest path between the vertices of a
dominating pair (proved in [9]). Once X and Y have been found, a minimum distance
dominating pair can be found in linear time by performing a breadth-first search
starting at X until a vertex of Y is encountered. In [7], we presented a linear time
algorithm to compute a dominating path in an arbitrary connected AT-free graph,
but that algorithm does not guarantee a minimum cardinality dominating path. The
method of the present paper does guarantee a minimum cardinality dominating path
for connected AT-free graphs with diameter greater than 3.

Corollary 6.3. Let G = (V,E) be a connected AT-free graph with diameter
greater than 3. A minimum cardinality connected dominating set of G can be computed
in O(|V |+ |E|) time.

7. Conclusions. We have presented a linear time algorithm, based on the well-
known lexicographic breadth-first search of [16], for finding a pokable dominating
pair in a connected AT-free graph, G = (V,E). The algorithm provides a construc-
tive proof of the existence of pokable dominating pairs in connected AT-free graphs
(an existential proof of this fact was given in [9]). It is an improvement over the
previously known O(|V |3) algorithm of [2]. In addition, we extended the dominating
pair algorithm to find all dominating pairs in a connected AT-free graph, G = (V,E),
with diameter greater than 3. Even though there may be O(|V |2) dominating pairs,
the extended algorithm can compute and implicitly represent them in O(|V | + |E|)
time. We remark that the simpler maximum cardinality search (MCS) of Tarjan and
Yannakakis [17] cannot take the place of LBFS in these algorithms.

In [8], we presented a different linear time algorithm for finding a dominating pair
in a connected AT-free graph. This other algorithm is based on a recursive use of a
maximum cardinality breadth-first search. The method does not seem to allow linear
time calculation of D(v, x) for all vertices v where x is a pokable dominating pair
vertex, or of sets X and Y when the diameter of the graph is greater than 3.
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