

Outline

- Motivation
- What is a Belief Net?
 - Example
 - Inference
 - Maximize Expected Utility
 - Semantics
 - Relation to other Models
- Learning a Belief Net
- My Research

Utility-Based Agents

- MEU Principle:
 Agent should act to maximize expected utility
- Choose action $A^* = \operatorname{argmax}_A \{ EU(A|O) \}$ that maximizes

expected utility of state after A, given prior observations O:

```
EU( A | O ) =

= \sum_{S'} P(S'|A,O) U(S')

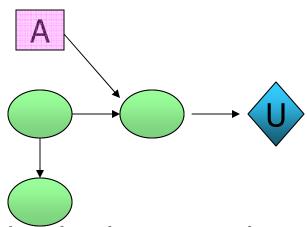
= \sum_{S'} \sum_{S} P(S | O) P(S' | S,A) U(S')

= \sum_{S'} \sum_{S} [\alpha P(O | S) P(S)] P(S' | S,A) U(S')
```

- Given simple assumptions, this is best possible action!
 (Average of utility, not of utility), not minimaxing...)
- Good decision, bad outcome.

4

Decision Network



- Chance Nodes: S, O, S'
 - Bayesian net = decision diagram w/ only chance nodes
 - Specify: P(S), P(O | S), P(S' | S, A)
 - Here: S ≡ Current State ≡ Observation
 S' ≡ Resulting State
- Decision Nodes: A
 - represents decision/action to make.
 - Specify: set of possible actions a ∈ Dom(A)
- Utility Node(s): U
 - represents utility of each value-set of its parent chance variables
 - Specify: set of U(s') for each s' ∈ Dom(S')

4

Perform a Medical Treatment?

• EU(T = 1) = $\sum_{r} P(R = r \mid T = 1) U(R = r)$

$$EU(T = 0) = \sum_{r} P(R = r | T = 0) U(R = r)$$

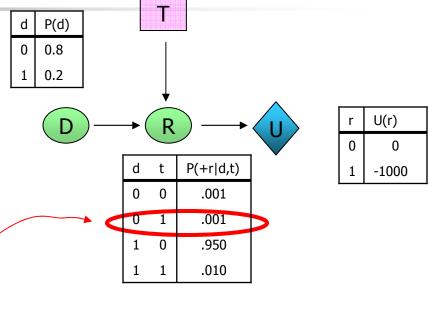
• $P(R = 1 | T = 1) = \sum_{d} P(R = 1, D = d | T = 1)$

$$=\sum_{d} P(R = 1 \mid D = d, T = 1) P(D = d)$$

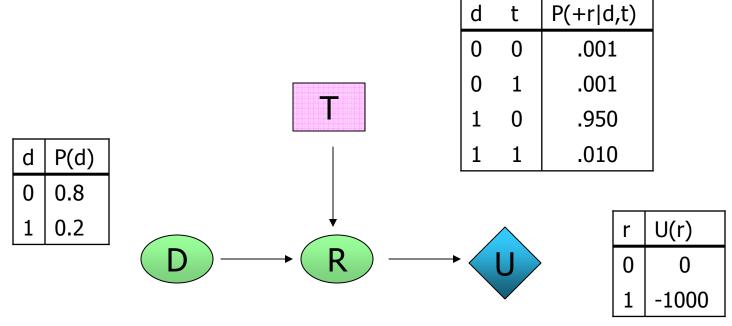
$$= P(R = 1 \mid D = 0, T = 1) P(D = 0) + P(R = 1 \mid D = 1, T = 1) P(D = 1)$$

$$= (0.001 \times 0.8) + (0.01 \times 0.2) = 0.0028$$

- P(R = 0 | T = 1) = 1 P(R = 1 | T = 1) = 0.9972
- Similarly:
 - P(R = 1 | T = 0) = 0.1908
 - P(R = 0 | T = 0) = 0.8092

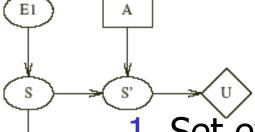


Medical Treatment (con't)



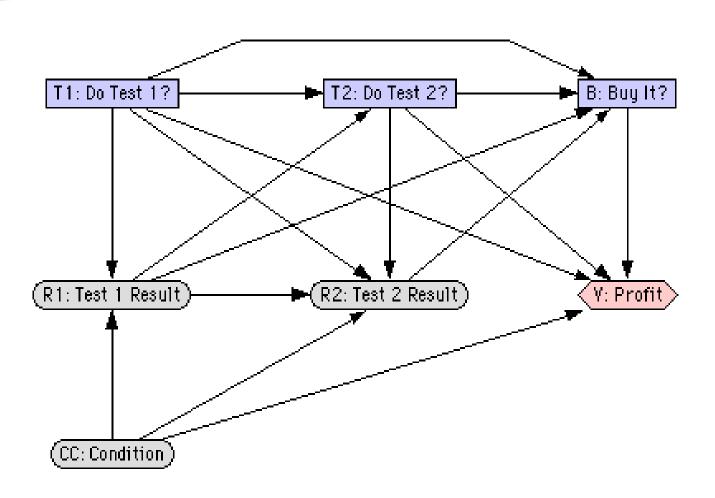
	P(R T)		U(R)			
T	0	1	0	1	EU(T)	
0	.8092	.1908	0	-1000	-190.8	
1	.9972	.0028	0	-1000	-2.8	← chosen
						action

Evaluating a Decision Network



- 1. Set evidence variables E₁, E₂ Update distribution over current state S
- 2. For each possible action a of decision node A
 - (a) Set decision node A to a
 - (b) For each parent { S' } of utility node U: Calculate posterior probability of S Here, just P(S' | E₁, E₂, A = a)
 - (c) Calculate expected utility for action a: $EU(A \mid E_1, E_2) = \sum_{S'} P(S' \mid E_1, E_2, a) U(S')$
- 3. Choose action $a^* = arg max_a \{ EU(a \mid ...) \}$ with highest expected utility

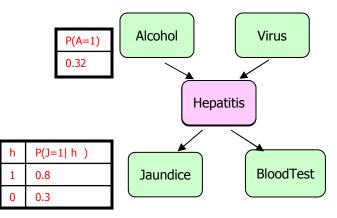
Decision Net: Test/Buy a Car



Outline

- Motivation
- What is a Belief Net?
 - Example
 - Inference
 - Semantics
 - d-separation
 - Noisy-Or
 - Continuous variables
 - Relation to other Models
- Learning a Belief Net
- My Research

Belief Nets



P(V=1)
0.20

a	٧	P(H=1 a ,v)
1	1	0.82
1	0	0.10
0	1	0.45
0	0	0.04

h	P(B=1 h)
1	0.98
0	0.01

- DAG structure
 - Each node \equiv Variable ν
 - v depends (only) on its parents
 - + conditional prob: $P(v_i \mid parent_i = \langle 0, 1, ... \rangle)$
- v is INDEPENDENT of non-descendants, given assignments to its parents
- Given H = 1,
 - A has no influence on J
 - J has no influence on B
 - etc.

Factoid: Chain Rule

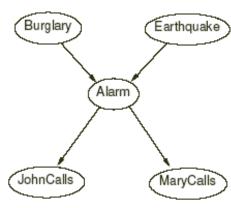
 $P(A,B,C) = P(A \mid B,C)P(B,C)$ $= P(A \mid B,C)P(B|C)P(C)$

In general:

$$P(X_{1}, X_{2}, ..., X_{m}) = P(X_{1} | X_{2}, ..., X_{m}) P(X_{2}, ..., X_{m}) = P(X_{1} | X_{2}, ..., X_{m}) P(X_{2} | X_{3}, ..., X_{m}) P(X_{3}, ..., X_{m}) = \prod_{i} P(X_{i} | X_{i+1}, ..., X_{m})$$

Joint Distribution

Node is INDEPENDENT of non-descendants, given assignments to its parents



P(+j,+m,+a,-b,-e)
=
$$P(+j + m, +a, -b, -e)$$

 $= P(+j + m, +a, -b, -e)$ P(+j +a)

$$P(+m \mid +a, -b, -e) \xrightarrow{M \perp \{B,E\} \mid A} P(+m \mid +a)$$

$$P(+a|-b,-e)$$
 $P(+a|-b,-e)$

$$P(-b \mid -e)$$
 $P(-b)$

$$P(-e)$$
 $P(-e)$

Joint Distribution

Burglary Earthquake

Alarm

JohnCalls

MaryCalls

Node is INDEPENDENT of non-descendants, given assignments to its parents

$$P(+j, +m, +a, -b, -e)$$

= $P(+j | +a)$

$$P(+m \mid +a)$$

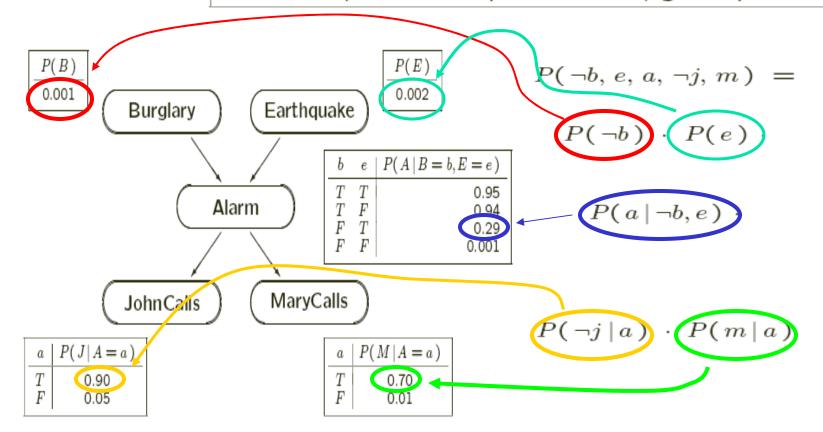
Recovering Joint

$$P(\neg b, e, a, \neg j, m) = P(\neg b) P(e|\neg b) P(a|e, \neg b) P(\neg j|a, e, \neg b) P(m|\neg j, a, e, \neg b)$$

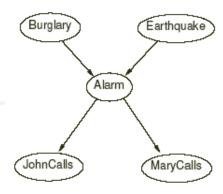
$$P(\neg b) P(e) P(a|e, \neg b) P(\neg j|a) P(m|a)$$

$$0.99 \times 0.02 \times 0.29 \times 0.1 \times 0.70$$

Node independent of predecessors, given parents



Meaning of Belief Net



- A BN represents
 - joint distribution
 - condition independence statements
- P(+j, +m, +a, -b, -e) = P(-b) P(-e) P(+a|-b, -e) P(+j | +a) P(+m |+a) = $0.999 \times 0.998 \times 0.001 \times 0.90 \times 0.70 = 0.00062$
- In gen'l, $P(X_1, X_2, ..., X_m) = \prod_{i=1}^{n} P(X_i | X_{i+1}, ..., X_m)$
- Independence means

$$P(X_i | X_{i+1}, ..., X_m) = P(X_i | Parents(X_i))$$

Node independent of predecessors, given parents

• So...
$$P(X_1, X_2, ..., X_m) = \prod_i P(X_i \mid Parents(X_i))$$

Comments

- BN used 10 entries
 - ... can recover full joint (25 entries)
 - Given structure,
 other 2⁵ 10 entries are REDUNDANT
- ⇒ Can compute

P(+burglary | +johnCalls, -maryCalls) : Get joint, then marginalize, conditionalize, ... *better ways.* . .

P(B)

Burglary

JohnCalls

Alarm

Note: Given structure, ANY CPT is consistent.

 ∄ redundancies in BN. . .

P(E)

0.002

 $e \mid P(A \mid B = b, E = e)$

 $a \mid P(M \mid A = a)$

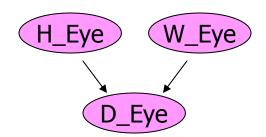
0.94

Earthquake

MaryCalls

"V"-Connections

- What color are my wife's eyes?
- Would it help to know MY eye color?
 NO! H_Eye and W_Eye are independent!
- We have a DAUGHTER, who has BROWN eyes Now do you want to know my eye_color?



h	W	P(D= bl h , w)
bl	bl	1.0
bl	br	0.5
br	Ы	0.5
br	br	0.25

H_Eye and W_Eye became dependent!

What color is W?

Prior is P(W = br) = 0.8?

But I know H! Should I tell you?

Don't bother; it doesn't matter

$$P(W = br | H = bl) = 0.8$$

$$P(W = br | H= br) = 0.8$$

HW

I also know D = br. Now do you care?

Yes, yes!!! Tell me H!

$$P(W = br \mid H = bl, D = br) = 0.50$$

$$P(W = br \mid H = br, D = br) = 0.22$$

d-separation Conditions

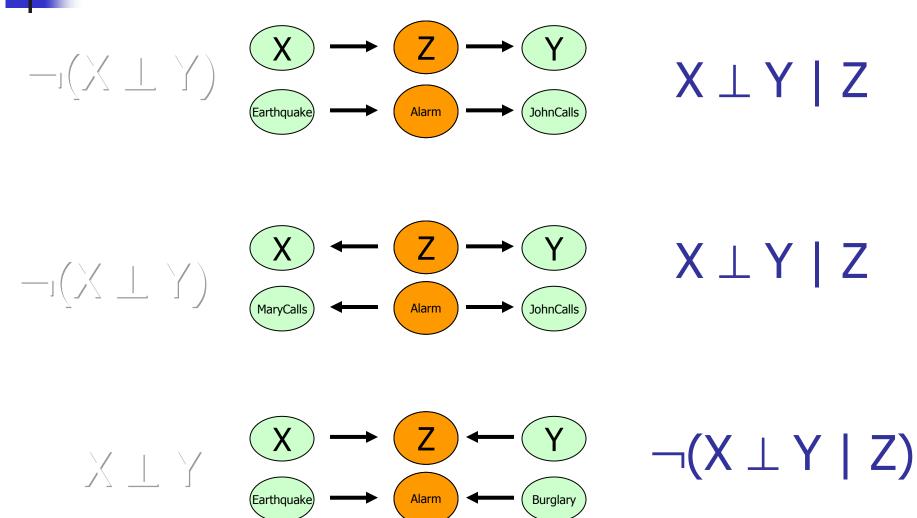
$$\neg (X \perp Y) \qquad \stackrel{X}{\longrightarrow} \qquad \stackrel{Z}{\longrightarrow} \qquad \stackrel{Y}{\longrightarrow} \qquad \qquad \downarrow \text{JohnCalls}$$
Earthquake

$$\neg (X \perp Y) \qquad X \leftarrow Z \rightarrow Y$$

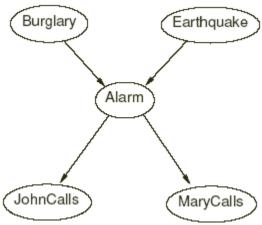
$$\land Alarm \rightarrow OhnCalls$$

$$X \perp Y$$
 $X \longrightarrow Z \longrightarrow Y$
 $Alarm \longrightarrow Burglary$

d-separation Conditions



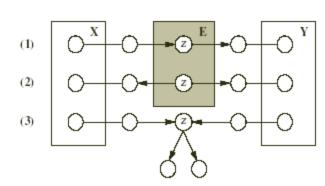
d-separation



- Burglary and JohnCalls are conditionally independent given Alarm
- JohnCalls and MaryCalls are conditionally independent given Alarm
- Burglary and Earthquake are independent given no other information
- But ...
 - Burglary and Earthquake are dependent given Alarm
 - Ie, Earthquake may "explain away" Alarm ... decreasing prob of Burglary

Conditional Independence

- Node X is independent of its non-descendants given assignment to immediate parents parents(X)
- General question: "X ⊥ Y | E"
 - Are nodes X independent of nodes Y, given assignments to (evidence) nodes E?
- Answer: If every undirected path from X to Y is d-separated by E, then X ⊥ Y | E
- d-separated if every path from X to Y is blocked by E
 - . . . if \exists node Z on path s.t.
 - 1. $Z \in E$, and Z has 1 out-link (on path)
 - Z \in E, and Z has 2 out-link, or
 - Z has 2 in-links, $Z \notin E$, no child of Z in E



Conditional Dependence

- Node X is independent of its non-descendants given assignment to immediate parents parents(X)
- General question: "¬(X ⊥ Y | E) "
 - Are nodes X dependent of nodes Y, given assignments to (evidence) nodes E?
- Answer: ¬(X ⊥ Y | E) if any undirected path from X to Y is active given E
- iff...
 - whenever node Z on path has 2 in-links, $Z \in E$ or some child of Z in E
 - 2. no other node Z is in E

Example of Active Path

"*flow"* if

any path from X to Y is active wrt **E**

Any flow from *Radio* to *Gas* given ...

1.
$$\mathbf{E} = \{\}$$
?

No: $P(R \mid G) = P(R)$

Starts ∉ **E**, and Starts has 2 in-links

2. **E** = Starts ?

YES!!
$$P(R \mid G, S) \neq P(R \mid S)$$

Starts ∈ **E**, and Starts has 2 in-links

3. $\mathbf{E} = \text{Moves}$?

YES!!
$$P(R \mid G, M) \neq P(R \mid M)$$

Moves ∈ **E**, Moves child-of Starts, and Starts has 2 in-links (on path)

4. **E** = SparkPlug ?

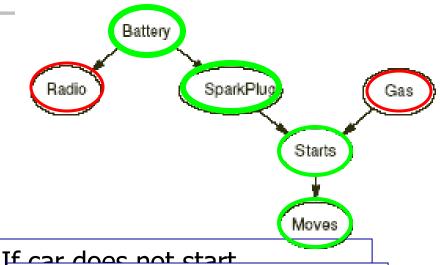
NO:
$$P(R \mid G, Sp) = P(R \mid Sp)$$

SparkPlug ∈ **E**, and SparkPlug has 1 out-link

5. **E** = Battery ?

NO:
$$P(R \mid G, B) = P(R \mid B)$$

Battery ∈ **E**, and Battery has 2 out-links



If car does not MOVE, expect radio to NOT work.

Unless you see it is out of gas!

Example of d-separation

d-separated if every path from X to Y is blocked by E

Is Radio d-separated from Gas given . . .

```
1. \mathbf{E} = \{\}?
```

YES: $P(R \mid G) = P(R)$

Starts ∉ E, and Starts has 2 in-links

2. **E** = Starts ?

NO!! $P(R \mid G, S) \neq P(R \mid S)$

Starts ∈ **E**, and Starts has 2 in-links

3. E = Moves?

NO!! $P(R \mid G, M) \neq P(R \mid M)$

Moves ∈ E, Moves child-of Starts, and Starts has 2 in-links (on path)

4. **E** = SparkPlug?

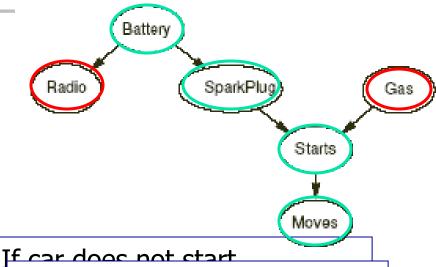
YES: $P(R \mid G, Sp) = P(R \mid Sp)$

SparkPlug ∈ **E**, and SparkPlug has 1 out-link

5. **E** = Battery ?

YES: $P(R \mid G, B) = P(R \mid B)$

Battery ∈ **E**, and Battery has 2 out-links

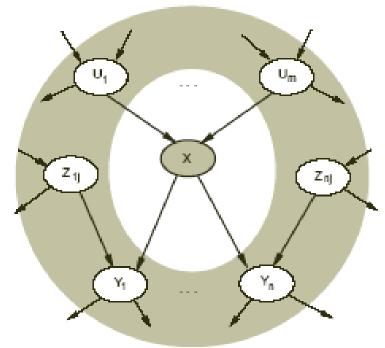


If car does not start
If car does not start
expect radio to NOT work.
Unless you see it is out of gas!

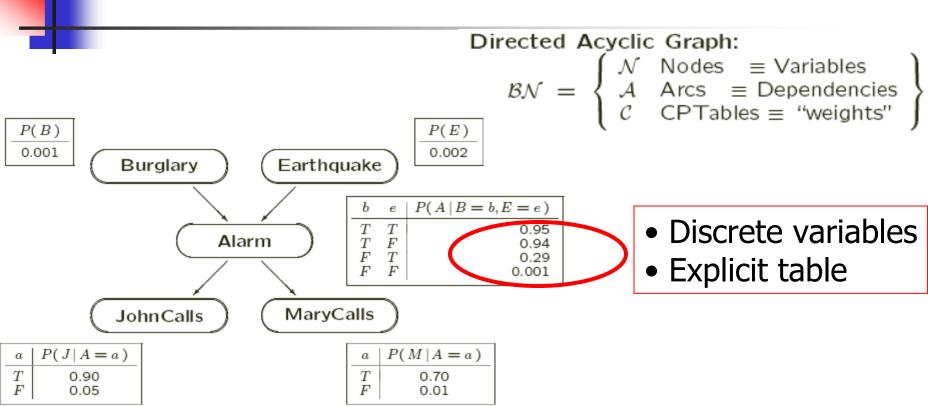
Markov Blanket

Each node is conditionally independent of all others given its *Markov blanket:*

- parents
- children
- children's parents



Example Bayesian Net



- Nodes: one for each random variable
- Arcs: one for each direct influence between two r.v.s
- **CPT**: each node stores a conditional probability table

P(Node | Parents(Node))

to quantify effects of "parents" on child

Simple forms of CPTable

 In gen'l: CPTable is function mapping values of parents to distribution over child

$$f: \left[\prod_{U \in Parents(X)} Dom(U)\right] \times Dom(X) \mapsto [0.1]$$

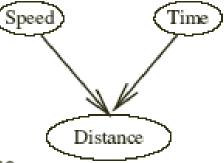
(Actually, f': $\prod_{U \in Parents(X)} Dom(U) \mapsto dist \ over \ X$)

Cold	Flu	Malaria	P(Fever C,F,M)	$P(\neg \texttt{Fever} \mid \texttt{C,F,M})$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	0.02
T	F	F	0.4	0.6
T	F	T	0.94	0.06
T	T	F	0.88	0.12
T	T	T	0.988	0.012

- Standard: Include $\prod_{U \in Parents(X)} |Dom(U)|$ rows, each with |Dom(X)| 1 entries
- But... can be structure within CPTable:
 Deterministic, Noisy-Or, (Decision Tree), ...

Deterministic Node

 Given value of parent(s), specify unique value for child (logical, functional)



$$P(\text{Distance} | \text{Rate, Time}) = \begin{cases} 1.0 & \text{if Distance} = \text{Rate} \cdot \text{Time} \\ 0.0 & \text{otherwise} \end{cases}$$

As if each row has just one 1, rest 0s:

Rate	Time	P(Dist=0 R,T)	P(Dist=1 R,T)	P(Dist=2 R,T)
0	1	1.0	0.0	0.0
1	0	1.0	0.0	0.0
1	1	1.0	1.0	0.0
1	2	0.0	0.0	1.0
2	1	0.0	0.0	1.0
:		:		

- Noisy-OR CPTable
- Each cause is independent of the others
- All possible causes are listed

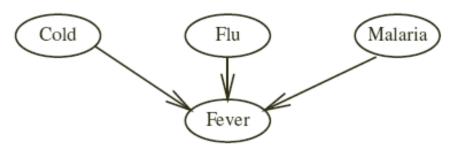
Want: No Fever if none of Cold, Flu or Malaria

$$P(\neg Fev \mid \neg Col, \neg Flu, \neg Mal) = 1.0$$

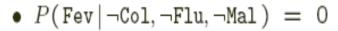
+ Whatever inhibits cold from causing fever is independent of

whatever inhibits flu from causing fever

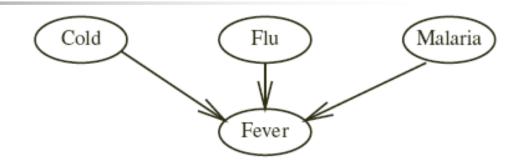
 $P(\neg Fev \mid Cold, Flu) \approx P(\neg Fev \mid Cold) P(\neg Fev \mid Flu)$



Noisy-OR "CPTable" (2)



$$\begin{array}{ll} P(\,\neg {\tt Fev}\,|\,{\tt Col}\,) & \approx & q_{col} = {\tt 0.6} \\ P(\,\neg {\tt Fev}\,|\,{\tt Flu}\,) & \approx & q_{flu} = {\tt 0.2} \\ P(\,\neg {\tt Fev}\,|\,{\tt Mal}\,) & \approx & q_{mal} = {\tt 0.1} \end{array}$$



Independent inhibiters:

$$P(\neg \text{Fev} | \text{Col}, \text{Flu}) \approx P(\neg \text{Fev} | \text{Col}) \times P(\neg \text{Fev} | \text{Flu})$$

$$P(\neg \text{Fever} \mid \pm_i d_i) = \prod_{i:+d_i} q_i$$

Cold	Flu	Malaria	$P(\neg Fever c,f,m)$	P(Fever c,f,m)
F	F	F	1.0	0.0
F	F	T	0.1	0.9
F	T	F	0.2	0.8
F	T	T	$0.02 = 0.2 \times 0.1$	0.98
T	F	F	0.6	0.4
T	F	T	$0.06 = 0.6 \times 0.1$	0.94
T	T	F	$0.12 = 0.6 \times 0.2$	0.88
T	T	Т	$0.012 = 0.6 \times 0.2 \times 0.1$	0.988

С

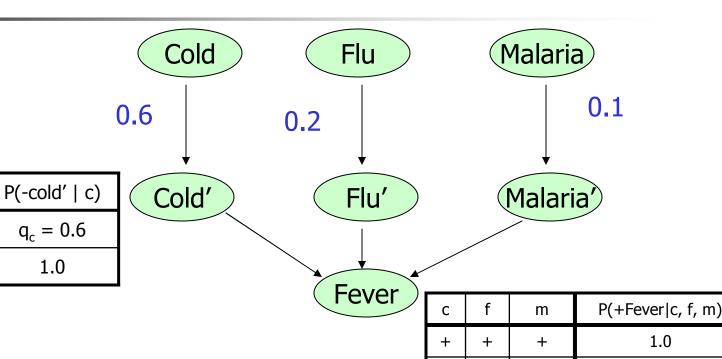
+

P(+cold' | c)

 $1-q_c = 0.4$

0.0

Noisy-Or ... expanded



1.0 1.0 1.0 0.0

1.0

1.0

1.0

+

+

+

+

+

+

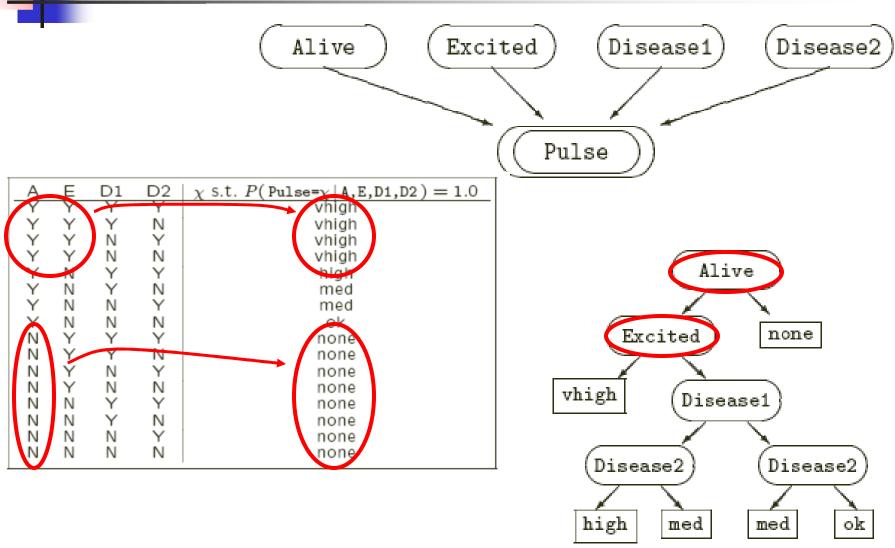
Noisy-Or (Gen'l)

• Fever if Cold, Flu or Malaria

```
Want \begin{cases} P(\texttt{Fev} | \neg \texttt{Col}, \neg \texttt{Flu}, \neg \texttt{Mal}) = 0 \\ P(\neg \texttt{Fev} | \texttt{Col}) \approx q_{col} = 0.6 \\ P(\neg \texttt{Fev} | \texttt{Flu}) \approx q_{flu} = 0.2 \\ P(\neg \texttt{Fev} | \texttt{Mal}) \approx q_{mal} = 0.1 \end{cases}
         CPCS Network:
      • Modeling disease/symptom for internal medicine
   • Using Noisy-Or & Noisy-Max
    • 448 nodes, 906 links
• Required 8,254 values (not 13,931,430)!
                                                                                                                effect
                      - inhibiting factors independent
```

Note Only k parameters, not 2^k

DecisionTree CPTable



Hybrid (discrete+continuous) Networks

Subsidy

Discrete: Subsidy?, Buys?

Continuous: Harvest, Cost

Option 1: Discretization

but possibly large errors, large CPTs

Option 2: Finitely parameterized canonical families Problematic cases to consider. . .

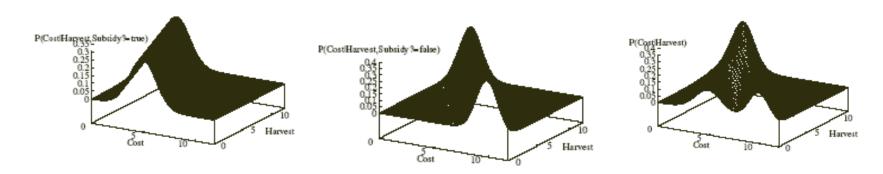
- Continuous variable, discrete+continuous parents
 Cost
- Discrete variable, continuous parents Buys?

Harvest

Cost

If everything is Gaussian...

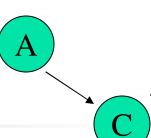
- All nodes continuous w/ LG dist'ns
 - ⇒ full joint is a multivariate Gaussian



- Discrete+continuous LG network
- ⇒ conditional Gaussian network

multivariate Gaussian over all continuous variables for each combination of discrete variable values

Linear Gaussian Model A



- $P(x_i | pa_i) \sim N(x_i | b_i + \sum_{j \in pa_i} w_{ij} x_j, v_i)$
- So...
 - $P(x_A) \sim \mathcal{N}(x_A \mid b_A, v_A)$
 - $P(x_B) \sim \mathcal{N}(x_B \mid b_B, v_B)$
 - $P(x_C | x_A, x_B) \sim \mathcal{N}(x_C | b_C + w_{AC} x_A + w_{BC} x_B, v_C)$... eg, $\mathbb{N}(x_C | 2.9 + 1.3 x_A + -21 x_B, 0.5)$
- In $p(\mathbf{x}) = \sum_{i} \ln p(x_i|pa_i) =$

$$-\sum_{i} \frac{1}{2v_{i}} \left(x_{i} - \sum_{j \in pa_{i}} w_{ij} x_{i} - b_{i} \right)^{2} + const.$$

Continuous Child Variables

- For each "continuous" child E,
 - with continuous parents C
 - with discrete parents D
- Need conditional density function

$$P(E = e \mid C = c, D = d) = P_{D=d}(E = e \mid C = c)$$

for each assignment to discrete parents D=d

Common: linear Gaussian model

$$P(\text{Cost} = c | \text{Harvest} = h, \text{Subsidy?} = \text{true})$$

$$= \mathcal{N}[a_t h + b_t, \sigma_t](c)$$

$$= \frac{1}{\sigma_t \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2\right)$$

$$P(\text{Cost} = c | \text{Harvest} = h, \text{Subsidy?} = \text{false})$$

$$= \mathcal{N}[a_f h + b_f, \sigma_f](c)$$

Need parameters:

Cost

Buys?

$$\sigma_t$$
 a_t b_t σ_f a_f b_f

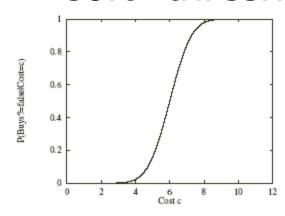
Subsidy.

37

Harvest

Discrete variable w/ Continuous Parents

■ Probability of Buys? given Cost ≈? "soft" threshold:



Probit distribution uses integral of Gaussian:

$$\Phi(x) = \int_{-\infty}^{x} \mathcal{N}[0, 1](x) dx$$

$$P(\text{Buys?} = \text{true} | \text{Cost} = c) = \Phi\left(\frac{\mu - c}{\sigma}\right)$$

≈ hard threshold, whose location is subject to noise

Outline

- Motivation
- What is a Belief Net?
 - Example
 - Inference
 - Semantics
 - Relation to other Models
 - Rules, Neural Nets, Markov Nets, Clusters
- Learning a Belief Net
- My Research

Belief Nets vs Rules

- Both have "Locality"
 Specific clusters (rules / connected nodes)
- Often same nodes (rep'ning Propositions) but
 BN: Cause ⇒ Effect

"Hep \Rightarrow Jaundice" $P(J \mid H)$

Rule: Effect \Rightarrow Cause "Jaundice \Rightarrow Hep"

WHY?: Easier for people to reason **CAUSALLY** even if use is **DIAGNOSTIC**

- BN provide OPTIMAL way to deal with
 - + *Uncertainty*
 - + Vagueness (var not given, or only dist)
 - + Error

...Signals meeting Symbols ...

BN permits different "direction"s of inference

Belief Nets vs Neural Nets

Both have "graph structure" but

BN: Nodes have SEMANTICs

Combination Rules: Sound Probability

NN: Nodes: arbitrary

Combination Rules: Arbitrary

- So harder to
 - Initialize NN
 - Explain NN

(But perhaps easier to learn NN from examples only?)

- BNs can deal with
 - Partial Information
 - Different "direction"s of inference

Belief Nets vs Markov Nets

Each uses "graph structure"

to FACTOR a distribution ... explicitly specify dependencies, implicitly independencies...

- but subtle differences...
 - ■BNs capture "causality", "hierarchies"
 - •MNs capture "temporality"

Technical: BNs use DIRECTRED arcs

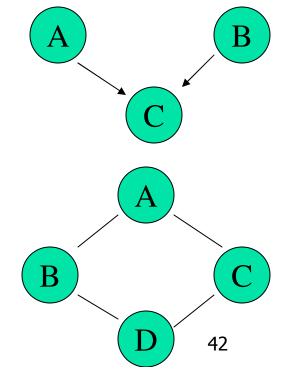
⇒ allow "induced dependencies"

 $I(A, \{\}, B)$ "A independent of B, given $\{\}$ " $\neg I(A, C, B)$ "A dependent on B, given C"

MNs use UNDIRECTED arcs

 \Rightarrow allow other independencies

I(A, BC, D) A independent of D, given B, C I(B, AD, C) B independent of C, given A, D



Belief Nets vs Clusters

- Both "structure" the variables
 - Cluster: Put similar variables in same cluster
 - BN: Put related variables adjacent
- Cluster uses "first order" relationships
 - Put A and B together if A directly correlated with B
- BN can have higher order relationships,
 esp. independencies

W

Н

2nd Order Statistics?

Spse

- 1/2 of kidney donors are Male (1/2 female)
- 1/2 of kidney recipients are Male (1/2 female)
- Transplant is SUCCCESSFUL iff
 Donor and Recipient are SAME gender (M/M or F/F)

Here:

- P(Success | Donor=m) = ½ = P(Success | Donor=f)
 ⇒ Success is independent of Donor Gender
- P(Success | Recip=m) = ½ = P(Success | Recip=f)
 ⇒ Success is independent of Recipient Gender

However:

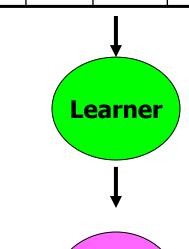
- P(Success | Donor=m, Recip=f) = 0
 P(Success | Donor=m, Recip=m) = 1
- So Success is dependent on Recipient Gender and Donor Gender

Outline

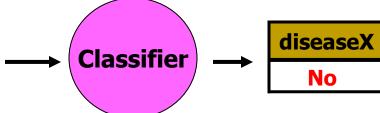
- Motivation
- What is a Belief Net?
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Learning Structure
- My Research

Learning is ... Training a Classifier

Temp.	Press.	Sore Throat	 Colour	diseaseX
35	95	Y	 Pale	No
22	110	N	 Clear	Yes
:	:		:	:
10	87	N	 Pale	No



Temp	Press.	Sore- Throat	 Color
32	90	N	 Pale



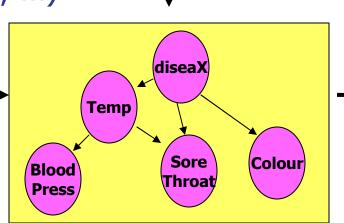
Learning is ... Training a Model

Temp.	Blood Press.	Sore Throat		Colour	diseaseX
35	95	Y		Pale	No
22	110	N		Clear	Yes
:	:			:	:
10	87	N	•••	Pale	No

Learner

Then conditionalize, marginalize to answer *any question*:

Temp	Blood Press.	Sore- Throat	 Color	diseaseX
32	90	N	 Pale	No



Why Learn? Why not just "program it in"?

Appropriate Model ...

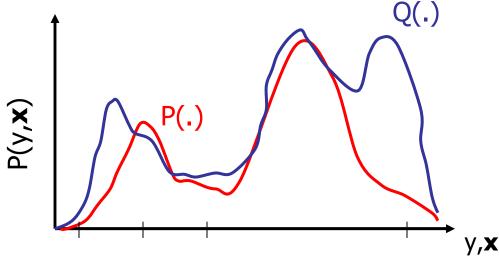
- ... is not known
 Medical diagnosis... Credit risk... Control plant...
- ... is too hard to "engineer"
 Drive a car... Recognize speech...
- ... changes over timePlant evolves...
- user specific
 Adaptive user interface...

Why Learn Bayes Nets?

- Goal#1: Build a classifier
 - What is P(Cancer = + | HA = +, Fev = -, ...) ?
 - Is P(Cancer = + | ...) > P(Cancer = | ...)?
- Goal#2: Build a SET of classifiers
 - What is P(Cancer = + | HA = +, Fev = -, ...) ?
 - What is P(Meningitis = | HA = +, Cold = 3, ...)?
 - What is $P(HospStay = 3 \mid Smoke = 0.1, BNose = -1, ...)$?
- Goal#3: Build a model of the world!
 - . . . all interrelations between all subsets of variables
 - Reveal (in)dependencies, connections, ...
 - "Density Estimation"
 - Note: A completely accurate model will produce correct answers to EVERY P(X | Y) query

Generative vs Discriminative

- Generative Learning:
 - Given (sample of) distribution, P(y,x)
 - Seek model Q(y,x)
 that matches P(y,x)



- Discriminative Learning:
 - Given (sample of) distribution, P(y,x)
 - Seek model Q(y | x)that matches P(y | x)

S	Α	 G	C _P	C_Q
У	У	 m	1	1
n	0	 f	1	0
У	0	 f	0	0
÷	:	÷	:	:

KL-Divergence ... ≈ MaxLikelihood

Seek the BN that minimizes KL-divergence

$$KL(D; BN) = \sum_{x} P_D(x) \ln \frac{P_D(x)}{P_{BN}(x)}$$

- KL-divergence ...
 - always ≥ 0
 - =0 iff distr's "identical"
 - not symmetric
- but... distrib'n not known;
 Only have instances

$$S = \{d_r\}$$

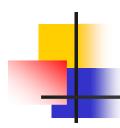
drawn iid from 20

$$\bullet BN^* = \underset{BN}{\operatorname{argmin}} KL(\mathcal{D}; BN)$$

=
$$\underset{BN}{\operatorname{argmax}} \sum_{x} P_{\mathcal{D}}(x) \ln P_{BN}(x)$$
 as $\sum_{x} P_{\mathcal{D}}(x) \ln P_{\mathcal{D}}(x)$ is independent of BN

$$pprox \operatorname{argmax} \frac{1}{|S|} \sum_{d \in S} \ln P_{BN}(d)$$
 as S drawn from D

$$= \underset{BN}{\operatorname{argmax}} \prod_{d \in D} P_{BN}(d) = \underset{BN}{\operatorname{argmax}} P_{BN}(S)$$



Best Distribution

If goal is BN that approximates 2:

Find BN* that maximizes likelihood of data 5

$$\underset{BN}{\operatorname{arg\,min}} KL(D;BN) \approx \underset{BN}{\operatorname{arg\,max}} P_{BN}(S)$$

- Approaches:
 - Frequentist: Maximize Likelihood
 - to address overfitting: BDe, BIC, MDL, ...
 - Bayesian: Maximize a Posteriori
 - **...**

Learning Bayes Nets

Structure

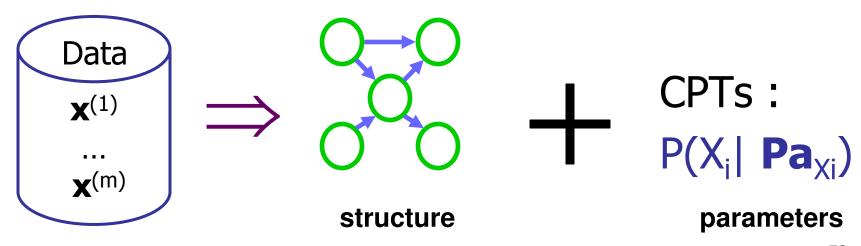
Known Unknown

Data

Complete

Missing

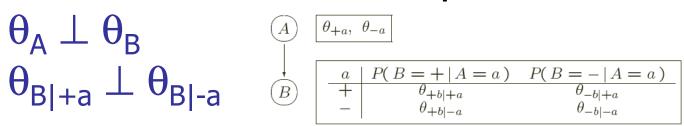
Easy	NP-hard	
Hard EM	Very hard!!	



Typical (Benign) Assumptions

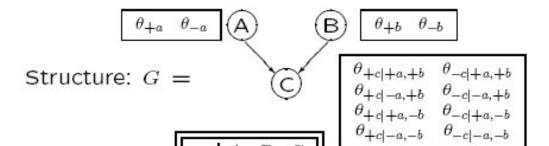
- Variables are discrete
- Each case $C_i \in S$ is complete
- Rows of CPtable are independent

$$egin{aligned} & \theta_{A} \perp \theta_{B} \ & \theta_{B|+a} \perp \theta_{B|-a} \end{aligned}$$



- 4. Prior $p(\Theta_{\gamma} \mid \mathcal{G})$ is uniform
 - $\theta_{Bl+a} \sim \text{Beta}(1,1)$
- Later: relax Assumptions 1,2,4

Learning the CPTs



Sample $S = \begin{bmatrix} d_1 & 1 & 0 & 1 \\ d_2 & 0 & 1 & 0 \\ d_3 & 0 & 0 & 1 \end{bmatrix}$

Given

- Fixed structure G
- over discrete variables X_i
- Complete instances \$
- $\widehat{\theta}$ = "empirical frequencies"
- Eg:

$$\theta_{+a} = 2 / (2+2) = 0.5$$

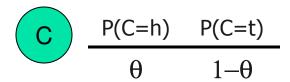
$$\theta_{-b} = 3 / (3+1) = 0.75$$

•
$$\theta_{+c|+a,-b} = 2 / (2+0) = 1.0$$

WHY????

One-Node Bayesian Net

• P(Heads) = θ , P(Tails) = $1-\theta$



- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution
- Set \mathcal{S} of α_H Heads and α_T Tails

$$P(S \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Maximum Likelihood Estimation

- **Data:** Observed set S of α_H Heads and α_T Tails
- Hypothesis Space: Binomial distributions
- Learning θ is an optimization problem
 - What's the objective function?
- **MLE**: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \arg \max_{\theta} P(S | \theta)$$

$$= \arg \max_{\theta} \ln P(S | \theta)$$

Simple "Learning" Algorithm

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathbf{S} | \theta)$$

$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• Set derivative to zero: $\frac{d}{d\theta} \ln P(|\mathcal{S}||\theta) = 0$

$$\frac{\partial}{\partial \theta} \ln[\theta^h (1 - \theta)^t] = \frac{\partial}{\partial \theta} [h \ln \theta + t \ln (1 - \theta)^t] = \frac{h}{\theta} + \frac{-t}{(1 - \theta)}$$

$$\frac{h}{\theta} + \frac{-t}{(1-\theta)} = 0 \Rightarrow \theta = \frac{h}{t+h}$$
 so just average!!!

If 7 heads, 3 tails, set $\hat{\theta} = 0.7$

Factoid wrt Belief Network

Recall that...

For a COMPLETE instance, x = (x₁, ..., x_n)
 P(x) = product of CPtable values

 (one from each variable)

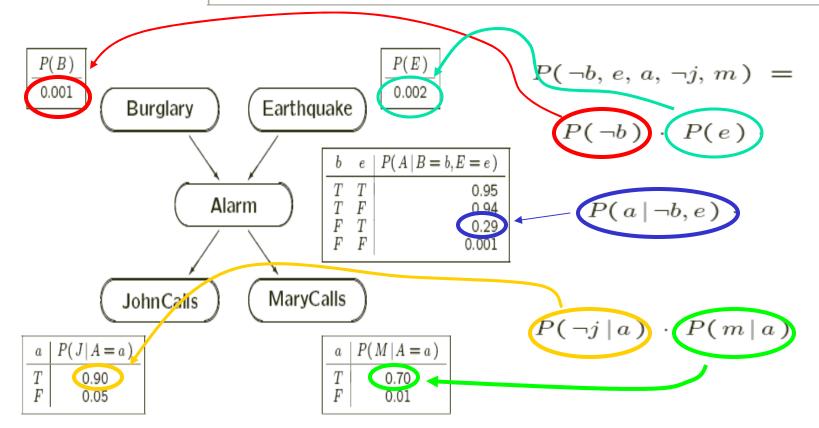
Probability of Complete Instance

$$P(\neg b, e, a, \neg j, m) = P(\neg b) P(e|\neg b) P(a|e, \neg b) P(\neg j|a, e, \neg b) P(m|\neg j, a, e, \neg b)$$

$$P(\neg b) P(e) P(a|e, \neg b) P(\neg j|a) P(m|a)$$

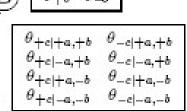
$$0.99 \times 0.02 \times 0.29 \times 0.1 \times 0.70$$

Node independent of predecessors, given parents



Likelihood of the Data (Frequentist)

Given: Structure:
$$G = (C)$$



•
$$P(d_1) = P_{\Theta}(+a, -b, +c)$$
 Sample $S = P_{\Theta}(+a) P_{\Theta}(-b) P_{\Theta}(+c \mid +a, -b)$
 $= \theta_{+a} \theta_{-b} \theta_{+c \mid +a, -b}$

Sample
$$S = \begin{pmatrix} A & B & C \\ d_1 & 1 & 0 & 1 \\ d_2 & 0 & 1 & 0 \\ d_3 & 0 & 0 & 1 \\ d_4 & 1 & 0 & 1 \end{pmatrix}$$

•
$$P(d_2) = P_{\Theta}(-a, +b, -c)$$

= $P_{\Theta}(-a) P_{\Theta}(+b) P_{\Theta}(-c \mid -a, +b)$
= $\theta_{-a} \theta_{+b} \theta_{-c \mid -a, +b}$

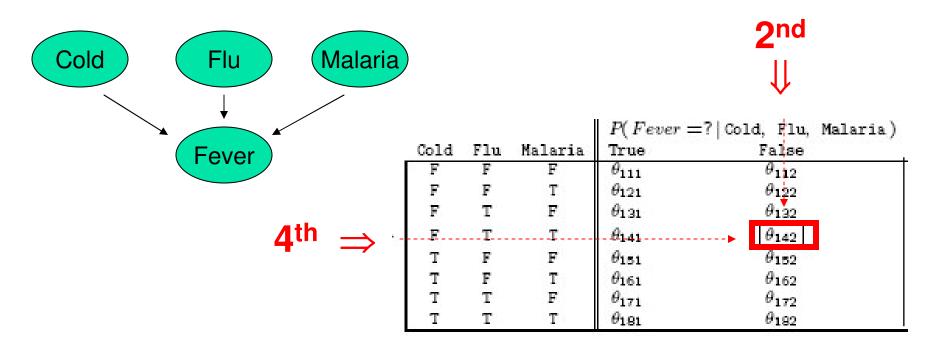
•
$$P(S \mid \Theta) = \Theta_{+a}^{2} \Theta_{-a}^{2} \Theta_{+b}^{1} \Theta_{-b}^{3} \Theta_{+c|+a,+b}^{0} \Theta_{+c|+a,-b}^{0} \cdots$$

$$= \Theta_{+a}^{N} + a \Theta_{-a}^{N} - a \Theta_{+b}^{N} + b \Theta_{-b}^{N} - b \Theta_{+c|+a,+b}^{N} + c|+a,+b} \Theta_{+c|+a,-b}^{N} + c|+a,-b} \cdots$$

$$= \prod_{ijk} \theta_{ijk} N^{ijk}$$

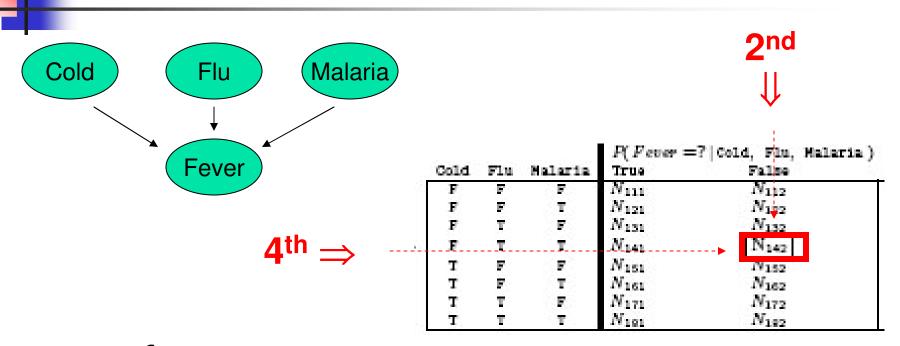
4

Example of Parameter θ_{ijk}



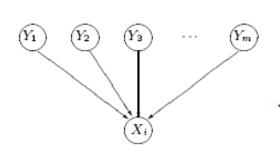
- $\bullet_{ijk} = P(X_i = v_{ik} \mid Pa_i = pa_{ij})$
 - variable#1 -- here, "Fever"
 - 4th value of parents [Cold=F, Flu=T, Malaria=T]

Example of Parameter N_{ijk}



- N_{iik} refers to ...
 - variable#1 -- here, "Fever"
 - 4th value of parents [Cold=F, Flu=T, Malaria=T]
 - 2nd value of Fever-node -- here, "Fever = FALSE"
- N_{ijk} is number of data-tuples
 where variable#i = its kth value
 & parents(variable#i) = jth value

Example of N_{ijk} , Θ_{ijk}



			2000	$P(X_i =$	$= ? Y_1,$	\ldots, Y_m)
	Y_1	Y_2	 Y_m	v_{i1} · · ·	v_{ik}	$\cdots v_{ir_i}$
	u_{11}	u_{21}	 u_{m1}	θ_{111}	θ_{11k}	$ heta_{11r_i}$
	u_{11}	u_{21}	 u_{m2}	θ_{121}	θ_{12k}	θ_{12r_i}
	:					
$h \rightarrow$	$u_{1\ell}$	$u_{2\ell'}$	 $u_{m\ell''}$		θ_{ijk}	
	:		 :			
	u_{1r_1}	u_{2r_2}	 u_{mr_m}	θ_{1q_i1}	θ_{1q_ik}	$ heta_{1q_ir_i}$

- CPtable: $\theta_{ijk} = \hat{P}(X_i = v_{ik} | Pa_i = pa_{ij})$
- ...based on "Buckets"

 \bullet N_{ijk} is number of data-tuples where variable#i = its k^{th} value and parents(variable#i) = j^{th} value

Task#1: Fixed Structure, Complete Tuples

• What are the ML values for Θ , given iid data $S = \{ c_r \}, ...$

$$P(S | \Theta) = \prod_{c \in S} P(c | \Theta) = \prod_{c \in D} \prod_{[X_i = x_{ik}, Pa_i = pa_{ij}] \in c} \Theta_{ijk} = \prod_{ij} \Theta_{ijk} = \prod_{ij} \Theta_{ijk} = \prod_{ij} \Theta_{ijk} = \prod_{ij} \Theta_{ijk}$$

- - = $argmax_{\Theta} \{ log P(S | \Theta) \}$
 - $= \operatorname{argmax}_{\Theta} \left\{ \sum_{ij} \sum_{k} N_{ijk} \log \Theta_{ijk} \right\}$

 $\forall ij \sum_{k} \Theta_{ijk} = 1$

4

MLE Values

- $\Theta^{(ML)} = \operatorname{argmax}_{\Theta} \left\{ \sum_{ij} \sum_{k} N_{ijk} \log \Theta_{ijk} \right\}$ $\forall ij \sum_{k} \Theta_{ijk} = 1$
- Notice θ_{ij} is independent of θ_{rs} when $i \neq r$ or $j \neq s$... \Rightarrow can solve each $\sum_k N_{ijk} \log \theta_{ijk}$ individually!
- For each $\sum_{k} N_{ijk} \log \theta_{ijk}$... as $\sum_{k} \theta_{ijk} = 1$, optimum is

$$\theta_{ijk} = \frac{N_{ijk}}{\sum_{k'} N_{ijk'}} = \frac{\#(X_i = v_{i,k} \& \mathbf{Pa}_i = \mathbf{pa}_{i,j})}{\#(\mathbf{Pa}_i = \mathbf{pa}_{i,j})}$$

- Observed Frequency Estimates!
- Undefined if $\sum_{k} N_{ijk} = 0 \dots \#(\mathbf{Pa}_i = \mathbf{pa}_{i,j}) = 0$

4

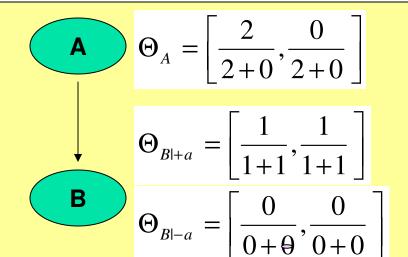
Algorithm

ComputeMLE(graph G, data S): return MLE parameters $[\theta_{ijk}]$

- Initialize N_{ijk} ← 0
- Walk thru data \$\infty\$
 - Whenever see [X_i=v_{ik}, Pa_i=pa_{ij}],
 N_{ijk} += 1
- Return parameters: $\left|\theta_{ijk}\right| = \overline{\Sigma}$

$$\theta_{ijk} = \frac{N_{ijk}}{\sum_{r} N_{ijr}}$$

Example



Buckets

$$N_{+a} = \emptyset$$

$$N_{-a} = 0$$

$$N_{+a} = 0$$
 $N_{-a} = 0$
 $N_{+b|+a} = 0$

$$N_{-b|+a} = \emptyset$$

$$N_{+bl-a} = 0$$

•
$$N_{-b|-a} = 0$$
• $N_{-b|-a} = 0$

A	В
+	+
+	

Problems with MLE

- 0/0 issues
- Do you really believe 0% if 0/0+2?
- Which is better?

```
3 heads, 2 tails
```

3/(3+2)= 0.6 $\theta =$

30 heads, 20 tails

 $\theta = 30/(30+20)$ = 0.6

■ 3E23 heads, 2E23 tails θ = 3E23/(3E3+2E23) = 0.6

What if you already know SOMETHING about the variable...

≈ 50/50 ...

Bayesian Learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

posterior

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Bayesian Learning

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

posterior

 $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

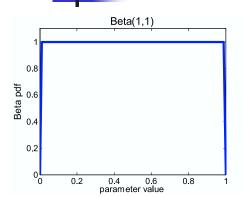
likelihood prior

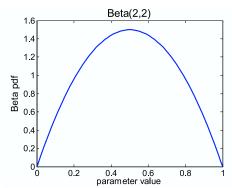
Likelihood function is simply Binomial:

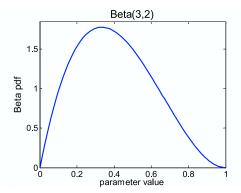
$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

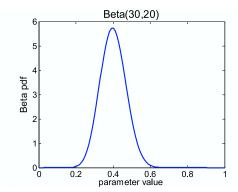
- What about prior?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Closed-form representation of posterior (more details soon)
 - For Binomial, conjugate prior is Beta distribution

Beta Prior Distribution – $P(\theta)$





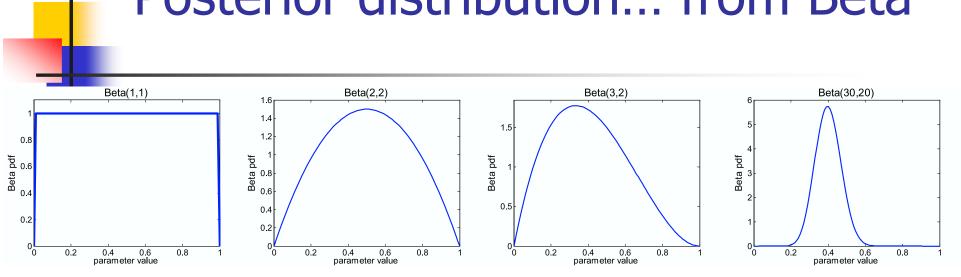




• Prior:
$$P(\theta) = \frac{\theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T - 1}}{B(\alpha_H, \alpha_T)} \sim Beta(\alpha_H, \alpha_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 \theta)^{m_T}$
- Given X ~ Beta(a, b) :
 - Mean: a/(a + b)
 - Unimodal if a,b>1... here mode: (a-1) / (a+b-2)
 - Variance: a × b / [(a+b)² (a+b-1)]

Posterior distribution... from Beta



$$P(\theta \mid \mathcal{D}) \propto P(\theta) P(\mathcal{D} \mid \theta)$$
 Eikelihood $P(D \mid \theta)$

$$= \Theta^{\alpha_H - 1} (1 - \Theta)^{\alpha_T - 1} \times \Theta^{m_H} (1 - \Theta)^{m_T}$$

$$= \Theta^{\alpha_H + m_H - 1} (1 - \Theta)^{\alpha_T + m_T - 1}$$

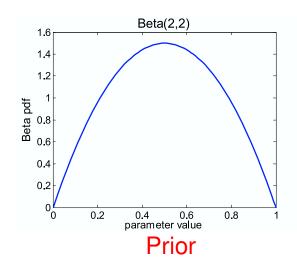
$$\sim \text{Beta}(\alpha_H + m_H, \alpha_T + m_T)$$

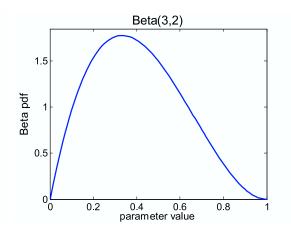
Same form! Conjugate!

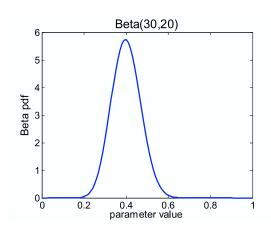
Posterior Distribution

- Prior: $\theta \sim \text{Beta}(\alpha_H, \alpha_T)$
- Data S: m_H heads, m_T tails
- Posterior distribution:

$$\theta \mid S \sim \text{Beta}(m_H + \alpha_H, m_T + \alpha_T)$$



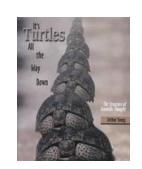


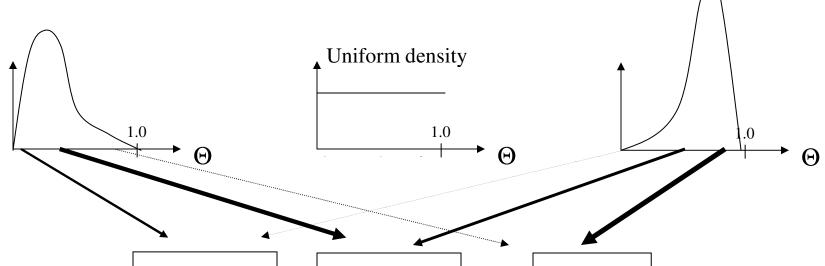


+ observe 1 head

+ observe 27 more heads; 18 tails

Two (related) Distributions: Parameter, Instances

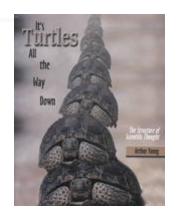


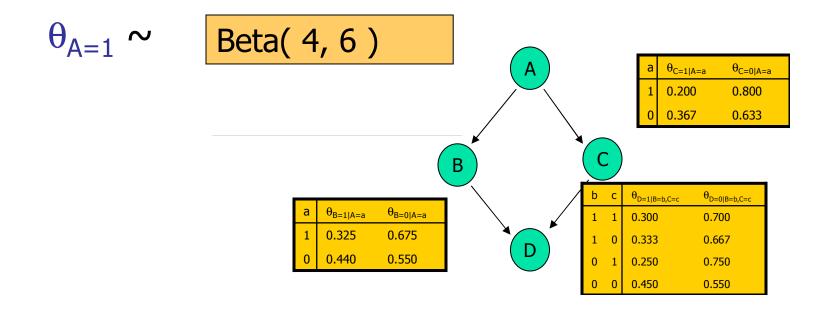


$\Theta = 0.1$
T
T
T
T
H
T
•
•

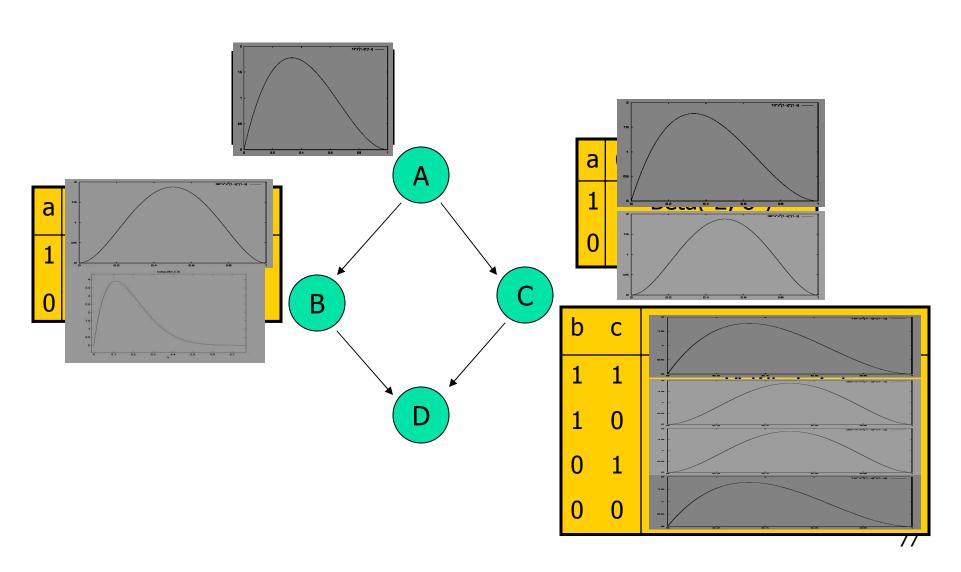
Distribution over Parameter

- What is "real" value of $\theta_{A=1}$?
- If ...
 - uncertainty in expert opinion
 - limited training data only a distribution!





Distribution over Parameters



Beta Distribution

Model row-parameter

$$\theta_{B|a=1} = \langle \theta_{b=0|a=1}, \theta_{b=1|a=1} \rangle$$

as Beta distribution

• $\theta_{B|A=1} = \langle \theta_{B=0|A=1}, \theta_{B=1|A=1} \rangle \sim \text{Beta(1,1)}$ kinda like seeing 2 instances with $\langle A=1 \rangle$:

A	В	С	D
1	0	0	1
1	1	1	1
0	0	1	1
:	:	•	•

Beta Distribution, II

$$\bullet_{\mathsf{B}|\mathsf{A}=1} = \langle \theta_{\mathsf{B}=0|\mathsf{A}=1}, \; \theta_{\mathsf{B}=1|\mathsf{A}=1} \rangle \sim \mathsf{Beta}(1,1)$$

Now... observe data S:

$$\begin{cases}
A & B & C & E \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots
\end{cases}$$

$$2 "(A=1, B=1)"s$$

$$4 "(A=1, B=0)"s$$

Beta Distribution, III

$$\bullet_{\mathsf{B}|\mathsf{A}=1} = \langle \theta_{\mathsf{B}=0|\mathsf{A}=1}, \; \theta_{\mathsf{B}=1|\mathsf{A}=1} \rangle \sim \mathsf{Beta}(1,1)$$

$$\Rightarrow E[\theta_{B=1|A=1}] = \hat{\theta}_{+b|+a} = \frac{1}{1+1} = 0.5$$

Then observe data

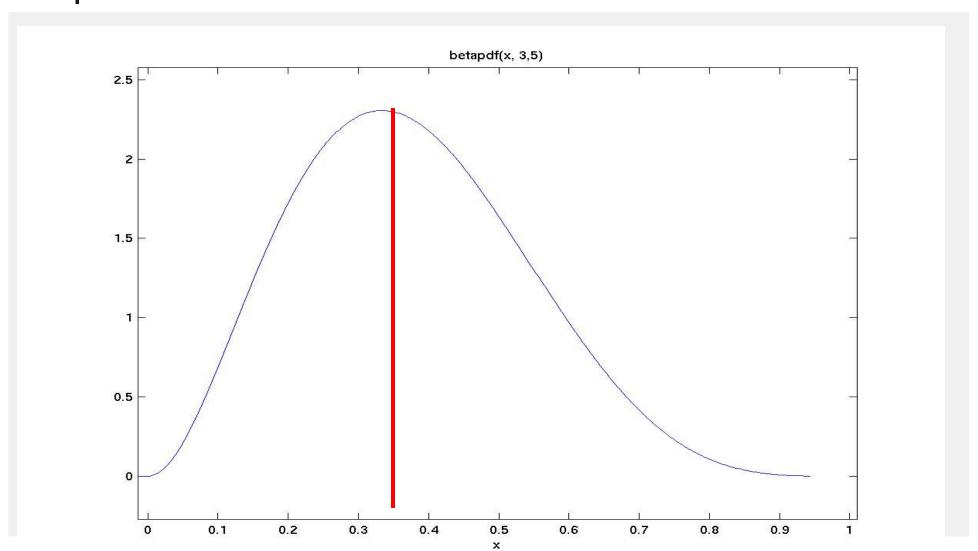
New distribution is

A	В	С	E
1	1	0	1
1	1	1	1
1	0	1	0
1	0	1	0
1	0	0	0
1	0	0	1
0	0	0	1
	:	:	:
	•	•	:

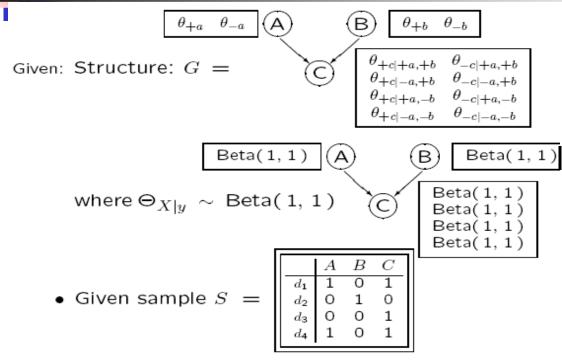
$$\theta'_{B|A=1} \sim Beta(1+2, 1+4) = Beta(3, 5)$$

$$\Rightarrow E[\theta_{B=1|A=1} \mid S] = \hat{\theta}_{+b|+a} \mid S = \frac{3}{3+5} = 0.375$$

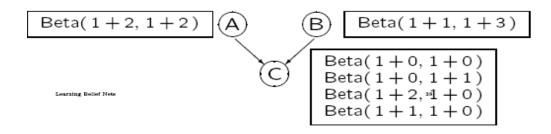
$\theta_{B|+a} \sim Beta(3,5)$ Distribution



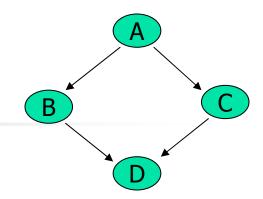
Posterior Distribution of ⊕



Posterior distribution is...



Posterior Distribution



- Initially: P(X_i | pa_{ij}) ... $\theta_{ij} \sim Dir(\alpha_{ij1}, ..., \alpha_{iir})$
- Data S includes N_{iik} examples including [$X_i = V_{ik'}$ $Pa_i = pa_{ii}$]
- Posterior $\theta_{ii} | S \sim Dir(\alpha_{ii1} + N_{ii1}, ..., \alpha_{ijr} + N_{ijr})$
- Expected value

$$E[\theta_{ijk}] = \frac{\alpha_{ijk} + N_{ijk}}{\sum_{r} \alpha_{ijr} + N_{ijr}}$$

■ Compare to Frequentist: $|\hat{\theta}_{ijk}| = \frac{N_{ijk}}{\sum_{ijk}}$

$$\hat{\theta}_{ijk} = \frac{N_{ijk}}{\sum_{r} N_{ijr}}$$

Algorithm

ComputePosterior(graph G, data S, priors $[\alpha_{ijk}]$): return posterior parameters $[N_{ijk}]$

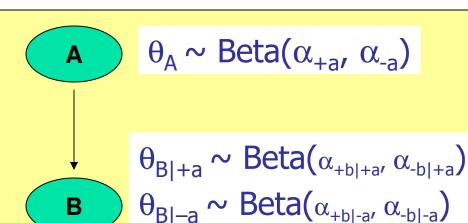
- Initialize $N_{ijk} \leftarrow \alpha_{ijk}$
- Walk thru data \$
 - Whenever see [X_i=v_{ik}, Pa_i=pa_{ij}],
 N_{ijk} += 1
- Set parameters:

$$\theta_{ij} \mid S \sim Dir(N_{ij1}, ..., N_{ijr})$$

If want expected value:

$$E[\theta_{ijk}] = \frac{N_{ijk}}{\sum_{r} N_{ijr}}$$

Example



Buckets

$$N_{+a} := \alpha_{+a}$$

$$N_{-a} := \alpha_{-a}$$

•
$$N_{+b|+a} := \alpha_{+b|+a}$$

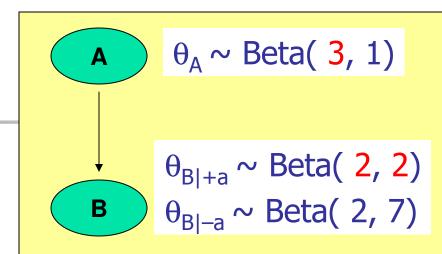
$$N_{-b|+a} := \alpha_{-b|+a}$$

$$N_{+b|-a} := \alpha_{+b|-a}$$

$$N_{-b|-a} := \alpha_{-b|-a}$$

A	В
+	+
+	

Example



Buckets

$$N_{+a} := X'$$

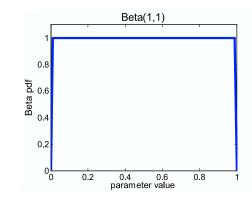
$$N_{+b|+a} := 1^{2}$$

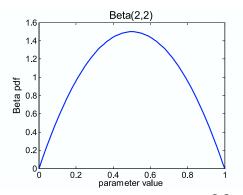
$$N_{-b|+a} := 1$$

$$N_{+b|-a} := 2$$

$$N_{-b|-a} := 7$$

A	В
+	+
+	





Example

If you want POINT estimates...

$$N_{+a} := 1$$

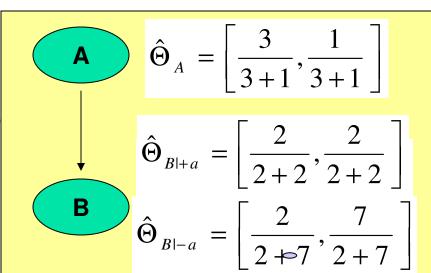
$$N_{-a} := 1$$

$$N_{+b|+a} := 1^2$$

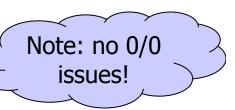
$$N_{-b|+a} := Y$$

$$N_{+bl-a} := 2$$

$$N_{-bl-a} := 7$$



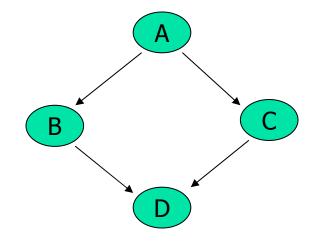
A	В
+	+
+	



Answer to a Query...

Response to query

$$P_{\Theta}(C=c \mid E=e)$$



is function of parameters Θ

• Eg...

$$P_{\Theta}(A=1|B=1,C=1) = \frac{\theta_{A=1} \theta_{B=1|A=1} \theta_{C=1|A=1}}{\sum_{a} \theta_{A=a} \theta_{B=1|A=a} \theta_{C=1|A=a}}$$

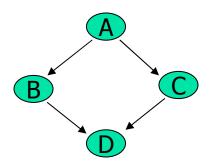
What is $P_{\Theta}(C=c \mid E=e)$?

- $\mathbf{P}_{\Theta}(\mathbf{C}=\mathbf{c}\mid \mathbf{E}=\mathbf{e})$ depends on $\mathbf{\Theta}$
- As Θ is r.v., so is response $q(\Theta) = P_{\Theta}(C=c \mid E=e)$
- Properties of q(⊕)
 - within [0,1]
 - Mean

$$E[q(\Theta)] = \int_{\Theta} q(\Theta) P(\Theta) d\Theta$$

How to compute

$$E[P_{\Theta}(C=c \mid E=e)]$$
?

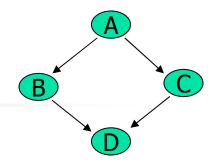


$$\mathbf{q}(\Theta) = P_{\Theta}(A=1|B=1,C=1) = \frac{\theta_{A=1} \theta_{B=1|A=1} \theta_{C=1|A=1}}{\sum_{a} \theta_{A=a} \theta_{B=1|A=a} \theta_{C=1|A=a}}$$

- Draw R samples (⊕(i)) from P((⊕))
 - $\Theta_A \sim \text{Be}(3,7), \ \Theta_{B|+a} \sim \text{Be}(1,4), \ ...$
 - $\Theta_A^{(1)} = [0.29, 0.71]; \ \Theta_{B|+a}^{(1)} = [0.18, 0.82]; \dots$ $q(\Theta^{(1)}) = 0.57$
 - $\Theta_A^{(2)} = [0.32, 0.68]; \ \Theta_{B|+a}^{(2)} = [0.23, 0.77]; \dots$ $q(\Theta^{(2)}) = 0.61$
 - **...**
- Let $q^{(R)} = 1/R \sum_i q(\Theta^{(i)})$
- As $R \rightarrow \infty$, $q^{(R)} \rightarrow E[q]$

But ... easier approach:

Predictive Distribution



If q(θ) is UNCONDITIONAL query,

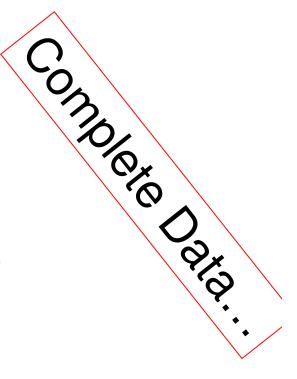
$$q(\Theta) = P_{\Theta}(+a, +b, -c) = \Theta_{+a} \Theta_{+b|+a} \Theta_{-c|+a}$$

$$\widehat{q} = E[q(\Theta)] = q(E_{\Theta}[\Theta]) = q(\widehat{\Theta})!$$

- BN^② = [\mathcal{G} , Θ ^②] with Θ ^③ = $\left\{\frac{N_{ijk}+1}{\sum_{k}(N_{ijk}+1)}\right\}$ Compute E[q(θ)] by using just BN^②! \Rightarrow get Model-Averaging for free!
- More complicated for Conditional Queries!

Summary: Parameter Learning

- MLE:
 - score decomposes according to CPTs
 - optimize each CPT separately
- Bayesian parameter learning:
 - motivation for Bayesian approach
 - Bayesian prediction
 - conjugate priors, equivalent sample size
 - → Bayesian learning ⇒ smoothing
- Bayesian learning for BN parameters
 - Global parameter independence
 - Decomposition of prediction according to CPTs
 - Decomposition within a CPT
 - Predictive distribution model averaging, for free!



Outline

- Motivation
- What is a Belief Net?
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Learning Structure
- Possible applications of BNs

-

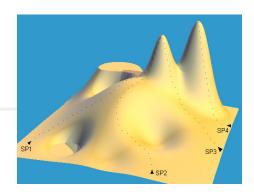
#2: Known structure, Missing data

- To find good Θ , need to compute $P(\Theta, \mathcal{D} \mid \mathcal{G})$
- Easy if ...

$$S = \left\{ \begin{array}{cccc} c_1 \colon & \langle & & \cdots & c_{1N} \rangle \\ c_2 \colon & \langle c_{21} & \cdots & & \rangle \\ \vdots & \langle \colon & c_{ij} & \vdots \rangle \\ c_m \colon & \langle c_{m1} & \cdots & c_{mN} \rangle \end{array} \right\} \quad \text{incomplete}$$

- What if S is incomplete
 - Some $c_{ij} = *$
 - "Hidden variables" (X_{K} never seen: $C_{iK} = * \forall i$)
- Here:
 - Given fixed structure
 - Missing (Completely) At Random:
 Omission not correlated with value, etc.
- Approaches:
 - Gradient Ascent, EM, Gibbs sampling, ...

Gradient Ascent



- Want to maximize likelihood
 - $\theta^{(MLE)} = \operatorname{argmax}_{\theta} L(\theta : S)$
- Unfortunately...
 - L(θ : S) is nasty, non-linear, multimodal fn
 - So...
- Gradient-Ascent
 - ... 1st-order Taylor series

$$f_{\mathrm{obj}}(\theta^{\text{-}}) \approx f_{\mathrm{obj}}(\theta^{0}) + (\theta - \theta^{0})^{T} \nabla f_{\mathrm{obj}}(\theta^{0})$$

Need derivative!

```
Procedure Gradient-Ascent ( \theta^1, // Initial starting point f_{\text{obj}}, // Function to be optimized \delta // Convergence threshold ) 1 \quad t \leftarrow 1 2 do 3 \quad \theta^{t+1} \leftarrow \theta^t + |\nabla f_{\text{obj}}(\theta^t)| 4 t \leftarrow t+1 while \|\theta^t - \theta^{t-1}\| > \delta 6 return (\theta^t)
```

Gradient Ascent [APN]

```
View: P_{\Theta}(S) = P(S | \Theta, G) as fn of \Theta
 \frac{\partial \ln P_{\Theta}(S)}{\partial \theta_{ijk}} = \sum_{\ell=1}^{m} \frac{\partial \ln P_{\Theta}(c_{\ell})}{\partial \theta_{ijk}} = \sum_{\ell=1}^{m} \frac{\partial P_{\Theta}(c_{\ell})/\partial \theta_{ijk}}{P_{\Theta}(c_{\ell})}
     \frac{\partial P_{\Theta}(c_{\ell})/\partial \theta_{ijk}}{P_{\Theta}(c_{\ell})} = \frac{P_{\Theta}(c_{\ell} | v_{ik}, pa_{ij})P_{\Theta}(pa_{ij})}{P_{\Theta}(c_{\ell})} = \frac{P_{\Theta}(v_{ik}, pa_{ij} | c_{\ell})}{\theta_{ijk}}
```

```
Alg: fn Basic-APN( BN = \langle G, \Theta \rangle, \mathcal{D} ): (modified) CPtables
     inputs: BN, a Belief net with CPT entries
                   ①, a set of data cases
  repeat until \Delta\Theta \approx 0
                                                           Note: Computed P(v_{ik}, pa_{ii} | c_r) to deal with c_r
     \Lambda\Theta \leftarrow 0
                                                                         ⇒ can "piggyback" computation
    for each c_r \in \mathcal{D}
        Set evidence in BN to c<sub>r</sub>
        For each X<sub>i</sub> w/ value v<sub>ik</sub>, parents w/ j<sup>th</sup> value pa<sub>ii</sub>
        \Delta\Theta_{ijk} += P( v_{ik}, pa_{ij} | c_r ) / \theta_{ijk}
      \Theta += \alpha \Delta \Theta

    ⊕ ← project    ⊕ onto constraint region

return(⊕)
```


Issues with Gradient Ascent

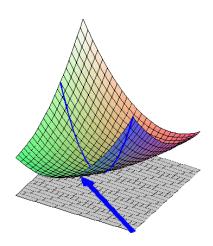
Constraints

- $\Theta_{ijk} \in [0,1]$
- But ... Θ_{ijk} += $\alpha \Delta \Theta_{ijk}$ could violate
- Use $\Theta_{ijk} = \exp(\lambda_{ijk}) / \sum_{r} \exp(\lambda_{ijr})$
- Find best λ_{ijk} ... unconstrained ...

Lots of Tricks for efficient ascent

- Line Search
- Conjugate Gradient
- **...**

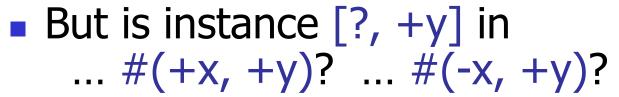
Take Cmput551, or optimization



Expectation Maximization (EM)

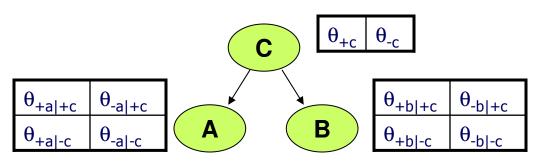
- EM is designed to find most likely θ, given incomplete data!
- Recall simple Maximization needs counts:

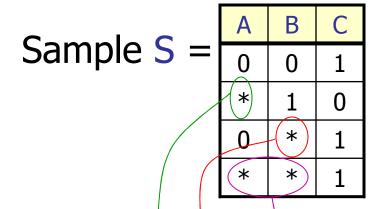
$$\#(+x, +y), ...$$

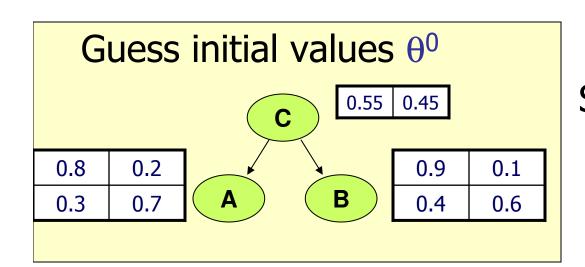


- Why not put it in BOTH... fractionally ?
 - What is weight of #(+x, +y)?
 - $P_{\theta}(+x + y)$, based on current value of θ

EM Approach – E Step





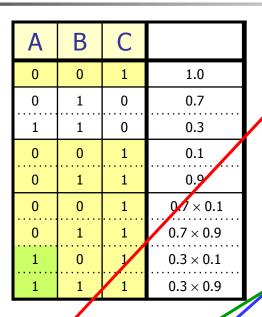


Set S(0) =
$$\begin{vmatrix} A & B & C \\ 0 & 0 & 1 & 1.0 \\ 0 & 1 & 0 & 0.7 \\ 1 & 1 & 0 & 0.3 \\ 0 & 0 & 1 & 0.1 \\ 0 & 1 & 1 & 0.9 \\ \hline 0 & 0 & 1 & 0.7 \times 0.1 \\ 0 & 1 & 1 & 0.7 \times 0.9 \\ 1 & 0 & 1 & 0.3 \times 0.1 \\ 1 & 1 & 1 & 0.3 \times 0.9 \end{vmatrix}$$

EM Approach – M Step

•Use fractional data:

$$S^{(0)} =$$



ĺ			1		$\theta_{+b +c}$	$\theta_{-b +c}$
•	$\theta_{+a +c}$	$\theta_{-a +c}$	A	В	$\theta_{+b -c}$	θ _{-b -c}
`	$\theta_{+a -c}$	$\theta_{-a -c}$				
'						
			/ /			
		///				

•New estimates:

$$\hat{\theta}_{+a|+c}^{(1)} = \frac{\#(+a,+c)}{\#(+c)} = \frac{(0.3 \times 0.1) + (0.3 \times 0.9)}{1 + 0.1 + 0.9 + (0.7 \times 0.1) + (0.7 \times 0.9) + (0.3 \times 0.1) + (0.3 \times 0.9)} = 0.1$$

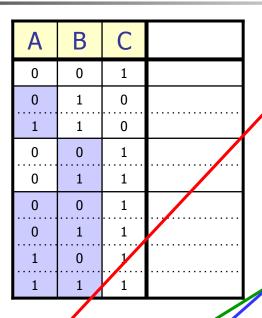
$$\theta_{+b|+c}^{(1)} = \frac{\#(+b,+c)}{\#(+c)} = \frac{0.1 + (0.7 \times 0.9) + (0.3 \times 0.9)}{3} = 0.33$$

$$\hat{\theta}_{+c}^{(1)} = \frac{\#(+c)}{\#(\{\})} = \frac{1.0 + (1.0) + (1.0)}{4} = 0.75$$

EM Approach – M Step

Use fractional data:

$$S^{(0)} =$$



ı			1	/	X _	$\theta_{+b +c}$	$\theta_{-b +c}$
1	$\theta_{+a +c}$	$\theta_{-a +c}$	A		B	$\theta_{+b -c}$	θ _{-b -c}
•	$\theta_{+a -c}$	θ _{-a -c}	A			<u> </u>	· · · · · ·
ļ		•					
			/ /				
		//					

•New estimates:

$$\hat{\theta}_{+a|+c}^{(1)} = \frac{\#(+a,+c)}{\#(+c)} = \frac{(0.3 \times 0.1) + (0.3 \times 0.9)}{1 + 0.1 + 0.9 + (0.7 \times 0.1) + (0.7 \times 0.9) + (0.3 \times 0.1) + (0.3 \times 0.9)} = 0.1$$

$$\theta_{+b|+c}^{(1)} = \frac{\#(+b)}{\#(+c)} - \frac{\text{Then}}{\mathbb{E}}$$

E-step: re-estimate distributions over the missing values based on these new $\theta^{(1)}$ values

$$\hat{\theta}_{+c}^{(1)} = \frac{\#(+c)}{\#(\{\})} =$$

M-step: compute new $\theta^{(2)}$ values, using statistics based on these new distribution

EM Steps

E step:

- Given parameters $\theta^{(t)}$
- find probability of each missing value
 - ... so get $E_{\theta(t)}[N_{ijk}]$

M step:

- Given completed (fractional) data
 - based on $E_{\theta(t)}[N_{ijk}]$
- find max-likely parameters $\theta^{(t+1)}$

EM Approach

- Assign $\Theta^{(0)} = \{\theta_{ijk}^{(0)}\}$ randomly.
- Iteratively, $k = 0, \dots$

E step: Compute EXPECTED value of N_{ijk} , given $\langle \mathsf{G}, \Theta^k \rangle$

$$\widehat{N}_{ijk} = E_{P(x \mid S, \Theta^k, G)}(N_{ijk}) = \sum_{c_{\ell} \in S} P(x_i^k, pa_i^j \mid c_{\ell}, \Theta^k, S)$$

M step: Update values of Θ^{k+1} , based on \hat{N}_{ijk}

$$\theta_{ijk}^{k+1} = \frac{\hat{N}_{ijk} + 0}{\sum_{k=1}^{r_i} (\hat{N}_{ijk} + 0)}$$

... until $\| \Theta^{k+1} - \Theta^k \| \approx 0$.

• Return Θ^k

- 1. This is ML computation; MAP is similar
 - "O" $\rightarrow \alpha_{ijk}$
 - 2. Finds local optimum
 - 4. Views each tuple with k "*"s as $O(2^k)$ partial-tuples 3. Used for HMM

4

Facts about EM ...

- Always converges
- Always improve likelihood
 - L($\theta^{(t+1)} : S$) > L($\theta^{(t)} : S$)
 - ... except at stationary points...
- For CPtable for Belief net:
 - Need to perform general BN inference
 - Use Click-tree or ClusterGraph
 ... just needs one pass
 (as N_{iik} depends on node+parents)

Gibbs Sampling

ullet Let $S^{(0)}$ be COMPLETED version of S, randomly filling-in each missing c_{ii}

Let
$$d_{ij}^{(0)}=c_{ij}$$
 If $c_{ij}=*$, then $d_{ij}^{(0)}=\mathrm{Random}[\mathrm{\ Domaln}(X_i)\]$

- For k = 0..
 - Compute $\Theta^{(k)}$ from $S^{(k)}$ [frequencies]
 - Form $S^{(k+1)}$ by...
 - $* d_{ij}^{k+1} = c_{ij}$
 - * If $c_{ij}=*$ then

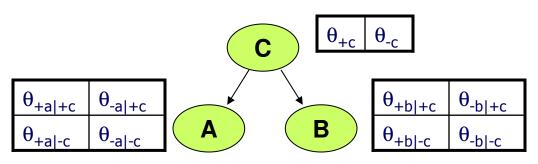
Let d_{ij}^{k+1} be random value for X_i , based on current distr Θ^k over $Z-X_i$

• Return average of these $\Theta^{(k)}$'s

Note: As $\Theta^{(k)}$ based on COMPLETE DATA $S^{(k)}$ $\Rightarrow \Theta^{(k)}$ can be computed efficiently!

"Multiple Imputation"

Gibbs Sampling – Example



New

$$S^{(1)} =$$

Flip 0.3-coin:

Flip 0.9-coin:

Flip 0.8-coin:

Flip 0.9-coin:

Α	В	С
0	0	1
0	1	0
0	1	1
1	1	1

Guess initial values θ ⁰					
	0.55 0.45				
0.8	0.2			0.9	0.1
0.3	0.7	A	B	0.4	0.6

Then

- Use $S^{(1)}$ to get new $\theta^{(2)}$ parameters
- Form new $S^{(2)}$ by drawing new values from $\Theta^{(2)}$

-

Gibbs Sampling (con't)

- Algorithm: Repeat
 - Given COMPLETE data $S^{(i)}$, compute new ML values for $\{\theta_{iik}^{(i+1)}\}$
 - Using NEW parameters, impute (new) missing values S(i+1)
- Q: What to return?

AVERAGE over separated ⊕(i)'s

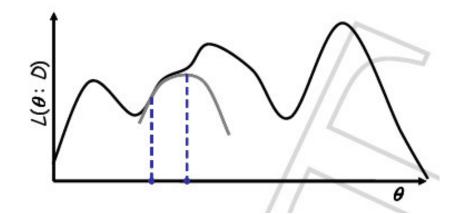
- eg, $\Theta^{(500)}$, $\Theta^{(600)}$, $\Theta^{(700)}$, ...
- Q: When to stop?

When distribution over $\Theta^{(i)}$ s have converged

- Comparison: Gibbs vs EM
 - + EM "splits" each instance
 ...into 2^k parts if k *'s
 - EM knows when it is done, and what to return

General Issues

- All alg's are heuristic...
 - Starting values θ
 - Stopping criteria
 - Escaping local maxima



So far, trying to optimize likelihood.
 Could try to optimize APPROXIMATION to likelihood...

Summary of Approaches

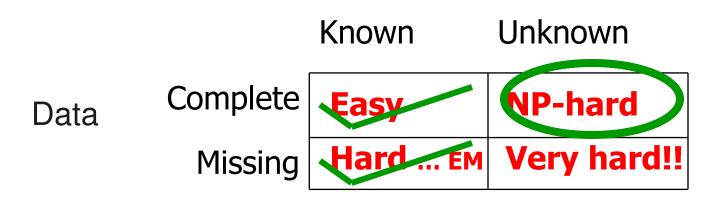
- Gradient Ascent
- EM-based (many variants)
- Gibbs sampling
 - Multiple imputation
- Gaussian approximation
- _ Bound-and-Collapse

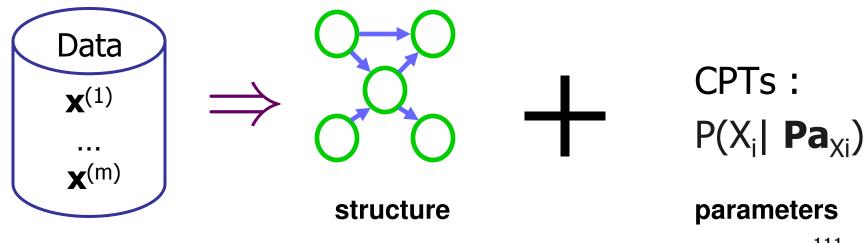
Outline

- Motivation
- What is a Belief Net?
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Learning Structure
- My Research

Learning Bayes Nets

Structure





Learning the structure of a BN

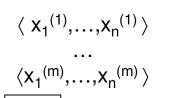
Data

Learn structure

and

parameters

- BN encodes conditional independencies
- Test conditional independencies in data
- $\langle x_1^{(m)},...,x_n^{(m)} \rangle$ Find an I-map (?P-map?)

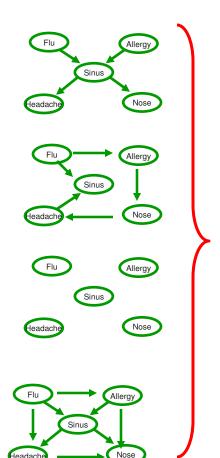


Score-based approach

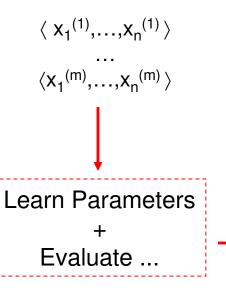
- Finding structure + parameters is density estimation
- Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.

Score-based Approach

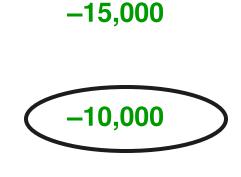
Possible DAG structures (gazillions)



Data



Score of each Structure



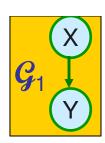
-10,500

-20,000

Just use MLE parameters

- So... seek the structure G that achieves highest likelihood, given its MLE parameters Θ^*_{G}
- Score(\mathcal{G} , \mathcal{S}) = log L($\langle \mathcal{G}, \theta^*_{\mathcal{G}} \rangle : \mathcal{S}$)

Comparing Models



- Score(\mathcal{G}_0 , S) = $\sum_{m} \log \theta^*_{x[m]} + \log \theta^*_{y[m]}$
- Score(\mathcal{G}_1 , S) = $\sum_{m} \log \theta^*_{x[m]} + \log \theta^*_{y[m] \mid x[m]}$
- $\begin{aligned} & \quad \textbf{Score}(\boldsymbol{\mathcal{G}}_{1}, \boldsymbol{\mathcal{S}}) \textbf{Score}(\boldsymbol{\mathcal{G}}_{0}, \boldsymbol{\mathcal{S}}) \\ & = \sum_{x,y} \textbf{M}[x,y] \log \theta^{*}_{y[m]} \sum_{y} \textbf{M}[y] \log \theta^{*}_{y[m]} \\ & = \textbf{M} \sum_{x,y} \textbf{p}^{*}(x,y) \log[\textbf{p}^{*}(y|x) / \textbf{p}(y)] \\ & = \textbf{M} \textbf{I}_{\textbf{p}^{*}}(\textbf{X}, \textbf{Y}) \end{aligned}$
- $I_{D^*}(X,Y)$ = mutual information between X and Y in P^*
- ... higher mutual info \Rightarrow stronger $X \rightarrow Y$ dependency

Information-theoretic interpretation of maximum likelihood

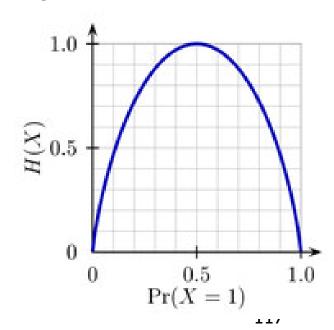
Sinus

• Given structure \mathcal{G} , parameters $\theta_{\mathcal{G}}$, log likelihood of data \mathfrak{D} :

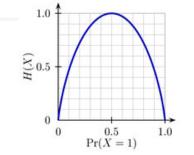
$$\begin{split} \log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) &= \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_{i}} \right] \right) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_{i}} \right] \right) \\ &= \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \#(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = u) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \frac{\#(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = u)}{m} \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}, \mathbf{u}} \hat{P}(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = \mathbf{u}) \log P\left(X_{i} = x_{i} \mid \mathbf{Pa}_{X_{i}} = \mathbf{u}\right)$$

Entropy

- Entropy of V = [p(V = 1), p(V = 0)]: $H(V) = -\sum_{v_i} P(V = v_i) \log_2 P(V = v_i)$ $\equiv \#$ of bits needed to obtain full info ...average surprise of result of one "trial" of V
- Entropy \approx measure of uncertainty



Entropy & Conditional Entropy



- Entropy of Distribution
 - $H(X) = -\sum_i P(x_i) \log P(x_i)$
 - "How `surprising' variable is"
 - Entropy = 0 when know everything... eg P(+x)=1.0
- Conditional Entropy H(X | U) ...
 - $H(X|U) = -\sum_{\mathbf{u}} P(\mathbf{u}) \sum_{\mathbf{i}} P(x_{\mathbf{i}}|\mathbf{u}) \log P(x_{\mathbf{i}}|\mathbf{u})$
 - How much uncertainty is left in X, after observing U

$$H(X_i | \mathbf{Pa}_{X_i}) = -\sum_{x_i, \mathbf{u}} \hat{P}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{u}) \log P\left(X_i = x_i^{(j)} | \mathbf{Pa}_{X_i} = \mathbf{u}\right)$$

Information-theoretic interpretation of maximum likelihood ... 2

• Given structure \mathcal{G} , parameters $\theta_{\mathcal{G}}$, log likelihood of data \mathcal{S} is...

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{x_{i}, \mathbf{u}} \widehat{P}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}} = \mathbf{u}) \log \widehat{P}(x_{i} \mid \mathbf{Pa}_{x_{i}, \mathcal{G}} = \mathbf{u})$$

$$= m \sum_{i} -\widehat{H}(X_{i} | \mathbf{Pa}_{x_{i}, \mathcal{G}})$$

$$= -m \sum_{i} \widehat{H}(X_{i} | \mathbf{Pa}_{x_{i}, \mathcal{G}})$$

So $\log P(\mathcal{D} | \theta, \mathcal{G})$ is LARGEST when each $H(X_i | Pa_{X_i,\mathcal{G}})$ is SMALL... ...ie, when parents of X_i are very INFORMATIVE about X_i !

Score for Belief Network

■
$$\mathcal{J}(X, U) = H(X) - H(X | U)$$

⇒ $H(X | Pa_{X,\mathcal{G}}) = H(X) - \mathcal{J}(X, Pa_{X,\mathcal{G}})$

Doesn't involve the structure, $\mathfrak{G}!$

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$$

• So use score: $\sum_{i} I(X_{i}, Pa_{X_{i}, g})$

Best Tree Structure

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$$

- Identify tree with set \$\mathcal{F}\$ = { Pa(X) }
 - each Pa(X) is {}, or another variable
- Optimal tree, given data, is

```
\underset{\mathfrak{F}}{\operatorname{argmax}} \operatorname{m} \sum_{i} \operatorname{I}(X_{i}, \operatorname{Pa}(X_{i})) - \operatorname{m} \sum_{i} \operatorname{H}(X_{i})= \operatorname{argmax}_{\mathfrak{F}} \sum_{i} \operatorname{I}(X_{i}, \operatorname{Pa}(X_{i}))
```

- ... as $\sum_i H(X_i)$ does not depend on structure
- So ... want parents 5 s.t.
 - tree structure
 - maximizes $\sum_{i} I(X_{i}, Pa(X_{i}))$

-

Chow-Liu Tree Learning Alg

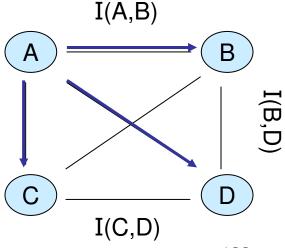
- For each pair of variables X_i, X_i
 - Compute empirical distribution:

$$\hat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

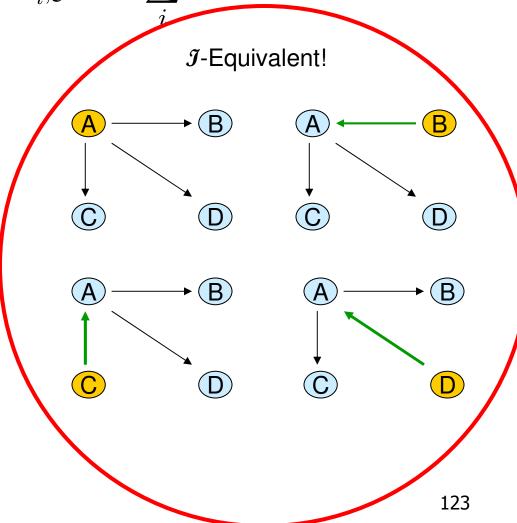
- Define a graph
 - Nodes X₁,...,X_n
 - Edge (i,j) gets weight $\widehat{I}(X_i,X_j)$
- Find Maximal Spanning Tree
- Pick a node for root, dangle...



Chow-Liu Tree Learning Alg ... 2

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$$

- Optimal tree BN
 - ...
 - Compute maximum weight spanning tree
 - Directions in BN:
 - pick any node as root, ...doesn't matter which!
 - breadth-first-search defines directions
- Score Equivalence:
 If *G* and *G* are *J*-equiv,
 then scores are same



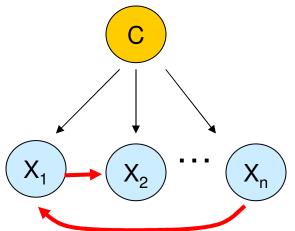
Chow-Liu (CL) Results

If distribution P is tree-structured,
 CL finds CORRECT one

- If distribution P is NOT tree-structured,
 CL finds tree structured Q that
 has min'l KL-divergence argmin_Q KL(P; Q)
- Even though 2^{θ(n log n)} trees,
 CL finds BEST one in poly time O(n² [m + log n])

Using Chow-Liu to Improve NB

- Naïve Bayes model
 - $X_i \perp X_j \mid C$
 - Ignores correlation between features
 - What if $X_1 = X_2$? **Double count...**



- Avoid by conditioning features on one another
- Tree Augmented Naïve bayes (TAN) [Friedman et al. '97]

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$

Maximum likelihood score overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \widehat{H}(X_{i})$$

Adding a parent never decreases score!!!

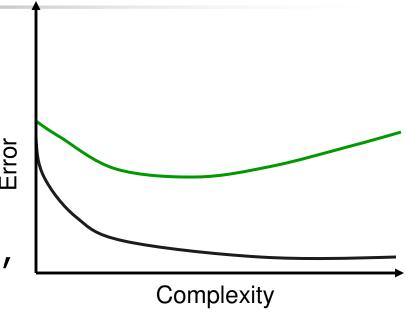
```
■ Facts: H(X \mid Pa_{X,\mathcal{G}}) = H(X) - I(X, Pa_{X,\mathcal{G}})
H(X \mid A) \ge H(X \mid A \cup Y)
I(X_i, Pa_{X_i,\mathcal{G}} \cup Y) \Rightarrow H(X_i) - H(X_i \mid Pa_{X_i,\mathcal{G}} \cup Y)
\ge H(X_i) - H(X_i \mid Pa_{X_i,\mathcal{G}})
= I(X_i, Pa_{X_i,\mathcal{G}})
```

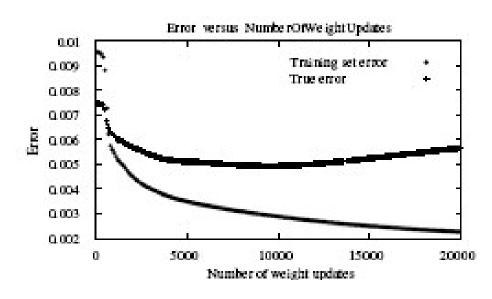
- So score increases as we add edges!
 - Best is COMPLETE Graph
 - ... overfit!

Overfitting

- So far: Find parameters/structure that "fit" the training data
- If too many parameters, will match TRAINING data well, but NOT new instances
- Overfitting!

Regularizing,Bayesian approach, ...





Bayesian Score

- **Prior distributions:**
 - Over structures
 - Over parameters of a structure Goal: Prefer simpler structures... regularization ...
- Posterior over structures given data:

 $P(\mathcal{D}|\mathcal{G}) = \int_{\Theta} P(\mathcal{D} \mid \mathcal{G}, \Theta) P(\Theta|\mathcal{G}) d\Theta$

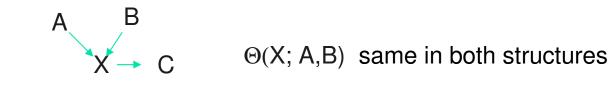
$$\log P(\mathcal{G} \mid D) \approx \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

I owards a decomposable Bayesian score

$$\log P(\mathcal{G} \mid D) \approx \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$
• Local and global parameter independence $\theta_{\mathsf{Y}|+\mathsf{x}} \perp \theta_{\mathsf{X}}$

- Prior satisfies **parameter modularity**:
 - If X_i has same parents in G and G', then parameters have same prior





- Structure prior P(G) satisfies structure modularity
 - Product of terms over families
 - Eg, $P(G) \propto c^{|G|}$ | G | =#edges; c<1
- ... then ... Bayesian score decomposes along families!
 - $\log P(G|D) = \sum_{x} ScoreFam(X | Pa_{x} : D)$

Marginal Probability of Graph

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

Given complete data, independent parameters, ...

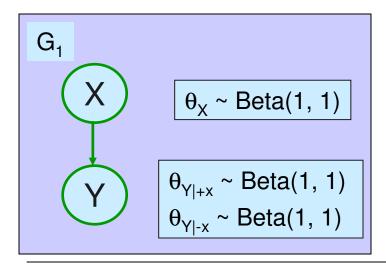
$$P(D|G) = \prod_{i} \prod_{u_i \in ValPa_{X_i}} \frac{\Gamma(\alpha_{X_i|u_i}^G)}{\Gamma(\alpha_{X_i|u_i}^G + M[u_i])} \prod_{x_i^j \in Val(X_i)} \frac{\Gamma(\alpha_{x_i^j|u_i}^G + M[x_i^j, u_i])}{\Gamma(\alpha_{x_i^j|u_i}^G)}$$

4

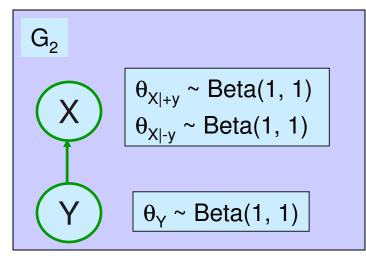
Priors for General Graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
 - Eg, $P(\mathcal{G}) \propto c^{|\mathcal{G}|}$ | $|\mathcal{G}| = \#$ edges; c<1
- What is good prior over all parameters?
 - *K2 prior*: fix $\alpha \in \Re^+$, set $\theta_{Xi|PaXi} \sim Dirichlet(\alpha, ..., \alpha)$
 - Effective sample size, wrt X_i?
 - If 0 parents: $k\times\alpha$
 - If 1 binary parent: 2 $k\times\alpha$
 - If d k-ary parents: k^d k×α
 - So X_i "effective sample size" depends on #parental assignments
 - More parents ⇒ strong prior... doesn't make sense!
 - K2 is "inconsistent"

Priors for Parameters

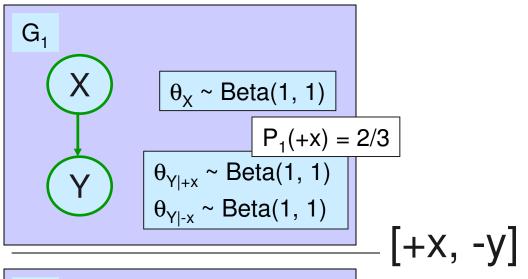


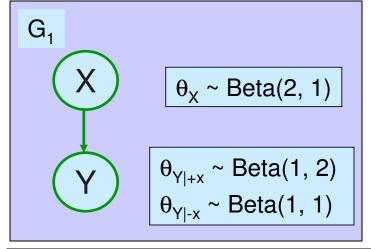
- Does this make sense?
 - EffectiveSampleSize($\theta_{Y|+x}$) = 2
 - But only 1 example ~ "+x" ??

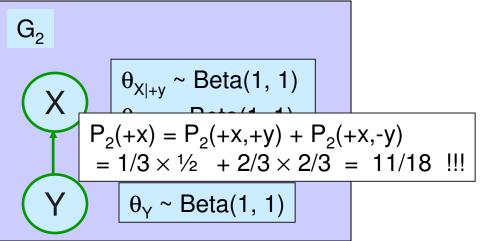


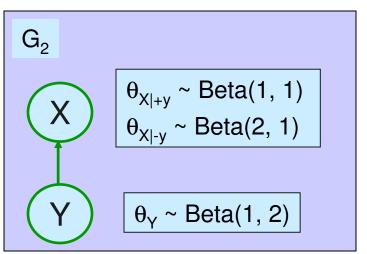
- J-Equivalent structure
- What happens after [+x, -y]?
 - Should be the same!!

Priors for Parameters

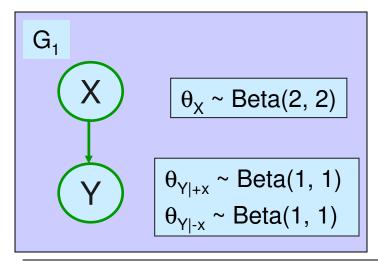




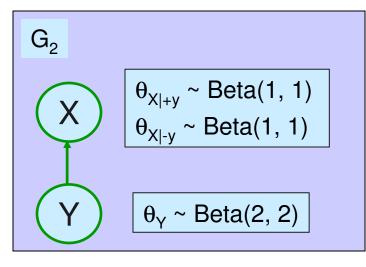




BDe Priors

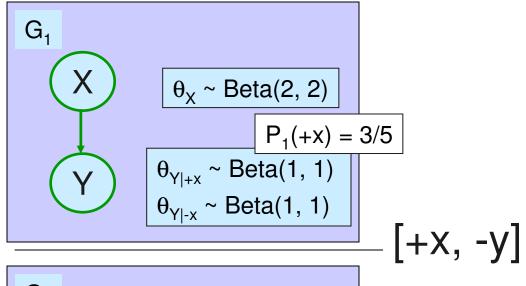


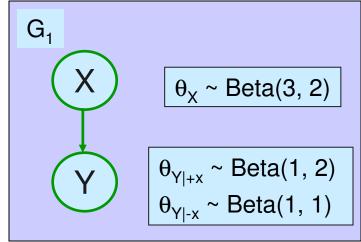
- This makes more sense:
 - EffectiveSampleSize($\theta_{Y|+x}$) = 2
 - Now ≈∃ 2 examples ~ "+x" ??

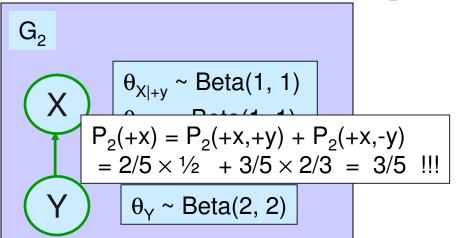


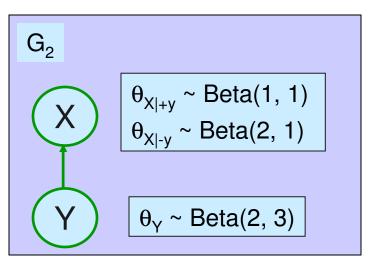
- J-Equivalent structure
- Now what happens after [+x, -y]?

BDe Priors









4

BDe Prior

- View Dirichlet parameters as "fictitious samples"
 - equivalent sample size
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i, Pa_{Xi})
 - Represent with a BN
 - Usually independent (product of marginals)
 - $P(X_i, Pa_{Xi}) = P'(x_i) \prod_{x_j \in Pa[Xi]} P'(x_j)$
 - $P(\theta[x_i \mid Pa_{X_i} = u) = Dir(m'P'(x_i=1, Pa_{X_i} = u), ..., m'P'(x_i=k, Pa_{X_i} = u))$
 - Typically, $P'(X_i) = uniform$

Summary wrt Learning BN Structure

- Decomposable scores
 - Data likelihood
 - Information theoretic interpretation
 - Bayesian
 - → BIC approximation
- Priors
 - Structure and parameter assumptions
 - BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- \neg Nearly best k-treewidth (in O(N^{k-+1}))
- Search techniques
 - Search through orders
 - Search through structures
- Bayesian model averaging