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Utility-Based Agents

= MEU Principle:
Agent should act to maximize expected utility

= Choose action A~ = argmaxA{ EU(A‘O)}

that maximizes

expected utility of state after A,
given prior observations O:

EUCA|O) =

= 25 P(S'|A,0) U(S)

=252sP(S | O0)P(S | SA)US)

= 2525[aP(O|S)P(S)] P(S"|SA)UG)

= Given simple assumptions, this is best possible action!

(Average of utility, not o@, not )

= Good decision, bad outcome. 2



i Decision Network

= Chance Nodes: S, O, S’
= Bayesian net = decision diagram w/ only chance nodes
= Specify: P(S),P(O|S),P(S"|S, A)
=« Here: S = Current State O = Observation
S’ = Resulting State

= Decision Nodes: A
= represents decision/action to make.
= Specify: set of possible actions a € Dom(A)
= Utility Node(s): U
= represents utility of each value-set of its parent
chance variables
= Specify: set of U(s") for each s" € Dom(S’)



Perform a Medical Treatment?

d| P(d) U
T = 1) = H
2 PR=r|T=1)UR=r)
— — r| ur)
EU(T:O): @ @ ‘ T %
> PR=r|[T=0)UR=r) ¢t | ity
1 .001
PR=1|T=1)= T
24 PR=1,D=d|T=1) 1 1] o
=24PR=1|D=d,T=1)PD=d)
(D=0) +PR=1|D=1,T=1)PD = 1)

x 0.2) = 0.0028

PR=0|T=1)=1-PR=1|T=1) = 0.9972
Similarly:

« PR=1|T=0)=0.1908

« PR=0|T=0)=0.8092



‘L Medical Treatment (con't)

d t |P(+r|d,t)
0 O .001
0 1 .001
T 1 O .950
d | P(d) 1 1 .010
0]0.8 \
1(0.2 r | u(r)
® @ @ [
1 |-1000
P(RIT) U(R)
T 0 1 0 1 EU(T)
0] .8092 .1908 |O —-1000 —-190.85
1|.9972 .0028 |0 —1000 ¢ C;;?EE



Evaluating a Decision Network

A

9

1. Set evidence variables E;, E,
Update distribution over current state S

2. For each possible action a of decision node A
(a) Set decision node A to a
(b) For each parent { S" } of utility node U:
Calculate posterior probability of S
Here, just P(S" | E;, E;, A=a)
(c) Calculate expected utility for action a:
EUA | Ey, B, ) =25 P(S"| Ey, By @) U(S)
3. Choose action a“ = arg max, { EU(a | ... ) }
with highest expected utility

6



i Decision Net: Test/Buy a Car

J/f”

T1: Do Test 17 P T2 Do Test 27 B: Buy 17

(R1: Test 1 Result ) - R Test 2 Result )

NN

(CC: Condition )
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P(V=1)

o

i Belief Nets [~ =

0.10

0.45

0.82
Hepatitis
0.04

o o = = )]
o = o =

u DAG StI’UCtUI‘G (1) 2: h | ee=11h)

1 0.98

= Each node = Variable v " oo

= Vvdepends (only) on its parents
+ conditional prob:  A(v;| parent;,= (0,1,...) )

n Vs INDEPENDENT of non-descendants,
given assignments to its parents

= Given H =1,
= A has no influence on J
= J has no influence on B
= etc.



Factoid: Chain Rule

» P(A,B,C) = P(A | B,O)®(B,C)
= P(A | B,OCP(BIC) PO

= In general:
P(X;, X5, oo X ) =
P(Xl | X2/ " IX ) P(XZI . le ) —
P(x1 | X5y oo XY POy | Xy oee ;X0 ) P(Xs, ..
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Joint Distribution

Node is INDEPENDENT of non-descendants,

given assignments to its parents

P( +j, +m, +a, -b, -e ) JLMBE A |
= P(=j+=+m,=+a, b, =e) P(+ | +a)
M L{BE} A
PmMt+a,—b—e) -P(+m | +a)
Pat—b,—e) P(+a|-b,-e)
B1lE
PE-b-—-e) * P(-b)
P(-e) - P(-e) 4



Joint Distribution

Node is INDEPENDENT of non-descendants,
given assignments to its parents

P( +jl +m, +aq, -bl -€ )

= P(+j | +a)
P(+m | +a)
P(+al -b, -e)

P(-b)

P(-€ )

Burglary

2
=
8
=
2
o

12



Recovering Joint

P(—b, e, a, -7, m) =
P({—-b) P(e|—-b) Pl(a|e,—b) P(—jl|la,e,—b) P{(m|—j,a,e, —b)

P(—b) P(e) P(ale,=b) P(—jla) P(m|a)
0.09 x 0.02 x 0.29 x 0.1 x 0.70

MNode independent of predecessors, given parents

b e P(A|B=hE=e)
( A ) T T 095
arm IF 0l | (P(a|—b,e)
//’ \\ F F mh

a | P(J|A=a)

( JohnCaiis ) ( MHWCH"S)
a | P(M|A=a)

T 0.90
F 0.05

| Cor) -

F 0.01
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i Meaning of Belief Net

A BN represents
= joint distribution

= condition independence statements

" P( +jl +m, +aq, -bl -€ )
= P(-b ) P(-e ) P(+al|-b, -e) P( +j | +a) P(+m [+a)
= 0.999 x 0.998 x 0.001 x 0.90 x 0.70 = 0.00062

« Ingen'l, POX, Xy, - . X ) = 1L POG [Xiss, -+ o X )
= Independence means
PXi [Xis1s - -+ X5 ) = P(X | Parents(X)) )
Node independent of predecessors, given parents

a S0... POX;,X,, ... X ) =]1P0X | Parents(X) )

14



N/

P(B) P(E)
| COI I lI I lents — ( Burglary) (Earthquake) e

= BN used 10 entries LN

o e R R N =
o RN I

Q JohnCalls J ( MaryCalls)
... can recover full joint (25 entries) = AL

= Given structure, i
other 2> — 10 entries are REDUNDANT
— Can compute

P( +burglary | +johnCalls, -maryCalls ) :
Get joint, then marginalize, conditionalize, ...
T better ways. . .

= Note: Given structure, ANY CPT is consistent.
A redundancies in BN. . .

15




“V"-Connections

= What color are my wife's eyes?

= Would it help to know MY eye color?
NO! H _Eye and W_Eye are independent!

= We have a DAUGHTER, who has BROWN eyes
Now do you want to know my eye_color?

h w |P(D=Dbl | h,w)
bl |br 0.5
br | bl 0.5

br | br 0.25

= H Eye and W_Eye became dependent!

16



What color is W? |

/Prmr is P(W =br) =0.87
q
But I know H!
Should I tell you?
Don't bother; it doesn’t matter

P(W = br | H= bl) = 0.8
P(W = br | H= br) = 0.8

I also know D = br. Now do you care? %
J—

Yes, yes!!l Tell me H!
P(W = br | H= bl, D=br) = 0.50

P(W = br | H= br, D=br) = 0.22 .
S~ -




i d-separation Conditions

X1y ®—@=®
e — ()=

X0 = (D=

X0 = (D=




i d-separation Conditions

O —@—
XLY|Z
- @—c ‘

O—@—® x1Y|Z
(e +— @) — e

=@ _(x1Y]|2
e — @—=

19



.
i ag-separation =

= Burglary and JohnCalls are

conditionally independent given Alarm
= JohnCalls and MaryCalls are

conditionally independent given Alarm
= Burglary and Earthquake are

independent given no other information

s But...

= Burglary and Earthquake are dependent given Alarm

« Ie, Earthquake may “explain away” Alarm

... decreasing prob of Burglary
20



Conditional Independence

ode X is independent of its non-descendants
given assignment to immediate parents parents(X)

General question: "X LY | E”

= Are nodes X independent of nodes Y,
given assignments to (evidence) nodes E?

Answer: If every undirected path from X to Y
is d-separated by E, then X LY | E

d-separated if every path from X to Y is blocked by E

. .. if 3 node Z on path s.t. _
. Z e E,and Z has 1 out-link (on path) v | O 0010
. Z e E, and Z has 2 out-link, or 2 | OO0

585

3. Zhas 2in-links, Z¢ E, nochildof ZInE O_T




#Conditional Dependence

ode X is independent of its non-descendants

given assignment to immediate parents
parents(X)
= General question: "-( X_.Y | E)”

= Are nodes X dependent of nodes Y,
given assignments to (evidence) nodes E?

= Answer: -(X_.Y | E)if
any undirected path from Xto Y
IS active given E

s iff...

1. whenever node Z on path has 2 in-links,
Z cE or some childof Zin E

>. no other node Zis in E

22



Example of Active Path

Battary

“flow”if _ _ A "
any path from X to Y is active wrt E S @
Any flow from Radlio to Gas given ... y
1.E={}? | Starts “‘;J
No: P(R|G) = P(R) i
Starts ¢ E, and Starts has 2 in-links f;,;;“)
2' E = Starts ? f rar Anoac nnt ckart T

YES!! P(R|G,S) # P(R|S) If car does not MOVE,
Starts € E, and Starts has 2 in-links expect radio to NOT work.

3. E = Moves ? — Unless you see it is out of gas!
YESP(R | G, M) % P(R| M)

Moves € E, Moves child-of Starts, and Starts has 2 in-links (on path)
4. E = SparkPlug ?
NO: P(R|G,Sp) = P(R| Sp)
SparkPlug € E, and SparkPlug has 1 out-link
5. E = Battery ?
NO: P(R| G, B) = P(R| B)
Battery € E, and Battery has 2 out-links 23
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Example of g~separation

d-separated if S rf{‘
every path from X to Y is blocked by E

Is Radio d~separated from Gas given . . .

1. E = {} ? Etarts )
YES: P(R|G) = P(R) e
Starts ¢ E, and Starts has 2 in-links ‘f’,'ﬂ;;‘/}
2. E = Starts ? p—
Il P(R|G,S) = P(R|S) e nee et e
NO p ¢ If car does not MOVE,

Starts € E, and Starts has 2 in-links :
3. E = Moves ? expect radio to NOT work.

NO!' P(R | G, M) # P(R| M) —1 Unless you see it is out of gas!

Moves € E, Moves child-of Starts, and Starts has 2 in-links (on path)
4. E = SparkPlug ?
YES: PR |G, S5p) = P(R| Sp)
SparkPlug € E, and SparkPlug has 1 out-link
5. E = Battery ?
YES: PR | G, B) = P(R| B)
Battery € E, and Battery has 2 out-links 24




i Markov Blanket

Each node is
conditionally independent of all others

given its Markov blanket:
= parents
= children
= children's parents

25



Example Bayesian Net

Directed Acvclic Graph:

N Nodes = Variables
BN = A Arcs = Dependencies

C CPTables = “weights"

P(B) P(E)
0007 ( Burglary ) (Earthquake) i
\ / b e |P(A|B=bhE=c¢) : :
( Alarm ) % g g:gi > ® DISCrete Va rla b|eS
F T 0.29 . .
N 0.001 e Explicit table
Q JohnCalls ) ( MaryCalls )
a|P(J|A=a) a |P(M|A=a)
T 0.90 T 0.70
F ‘ 0.05 F ‘ 0.01

= Nodes: one for each random variable

= Arcs: one for each direct influence between two r.v.s

= CPT: each node stores a conditional probability table
P( Node | Parents(Node) )

to quantify effects of “parents” on child

SKip




i Simple forms of CPTable

= In gen'l: CPTable is function mapping
values of parents to distribution over child

f:|: H Dom(U)

UeParents(X)

x Dom(X) — [0.1]

t r, 7 P v Cold Flu Malaria F(Fever C,F,H} P[ —Fever C,F,H}
(Actually, f H Dom(U) — dist over X) = = = . o
UeParents(X) F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02
T F F 0.4 0.6
T F T 0.94 0. 06
T T F 0.88 0.12
T T T 0.988 0.012

= Standard: Include 1 parentspolDOm(U)| rows,
each with |[Dom(X)| - 1 entries

= But... can be structure within CPTable:
Deterministic, Noisy-Or, (Decision Tree), ...

27



‘L Deterministic Node

= Given value of parent(s),
specify unique value for child

(logical, functional)

14

1.0 if Distance — Rate - Time

P(Distance |Rate, Time ) = { 00 otherwise

As if each row has just one 1, rest Os:

Rate Time | P(Dist=0|R,T) P(Dist=1|R,T) P(Dist=2|R,T)

T N o
el A =
L R - R
oo o
el gl R
oo oo

(==
oo OO0

28



i Noisy-OR CPTable

= Each cause is independent of the others
= All possible causes are listed
Want: No Fever if none of Cold, Flu or Malaria
P( —=Fev | = Col, = Flu, =Mal ) = 1.0
+ Whatever inhibits cold from causing fever
IS independent of

whatever inhibits flu from causing fever
P(—=Fev | Cold, Flu ) = P(—=Fev | Cold ) P(—=Fev | Flu )

29



‘L Noisy-OR “"CPTable” (2)

e P(Fev|-Col,—Flu,-Mal) = 0

P(—Fev|Col) =~ ¢uz=06
.P(—'FEET|F1’I.1) Ao qﬁu:DE
P(—Fev|Mal) = @pug=0.1

¢ Independent inhibiters:
P(—Fev|Col, Flu) = P(-Fev|Col )xP(—Fev|Flu)

P(—Fever| +;d;) = H i
ii4-d,

Cold Flu Malaria | P(—Fever|c,f,m) P(Fever|c,f,m)
F 1.0 0.0
F F T 0.1 0.9
F 0.2 0.8
F @ @ 0.02 =02 x 0.1 0.98
T 0.6 0.4
T F T 0.06 =0.6 x0.1 0.94
T T F 0.12 = 0.6 x 0.2 0.88
T T T 0.012=06 x0.2x0.1 | 0.988

30



Noisy-Or ... expanded

Cood) CRuD (Malari)

L

P(+cold" | ¢) | P(-cold’ | c) - @ -

1-qc = 0.4 q. = 0.6 \
+ | + +

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

31



Noisy-Or (Gen'l)

e Fever if Cold, Flu or Malaria
P(Fev|—-Col,—Flu,—Mal) = 0O

P(—Fev|Col) == qeq =0.6
P(—Fev|Flu) = gqfu=0.2
I(—IFEU'| Mal) = guna=0.1

" parameters)

Assumes: — each cause h

(Leak node, to handle ALT~
— inhibiting factors independent

Note€Only k parameters, not 2*

effect

o)

32



‘L DecisionTree CPTable

Disease?

(} Pul=se E)

hd 'l
hd M
hd N
! 'l
M Al
N N
M M
hd Y
v
hd M
hd N
N Y
M Al
N N
N N

2X 242X GHLE2LE2LE2<XE A

L. E,D1,D2) = 1.0

none
none
none
none
none
none

none

Diseasel

inHHHEHF' l‘!!ii!iipi
ed med ok

high m

33



HYbI‘id (discrete+continuous) Networks

= Discrete: Subsidy?, Buys?

Continuous: Harvest, Cost

Option 1: Discretization
but possibly large errors, large CPTs
Option 2: Finitely parameterized canonical families

Problematic cases to consider. . .

= Continuous variable, discrete+continuous parents
Cost

= Discrete variable, continuous parents
Buys? Skip

34



‘.L If everything is Gaussian...

= All nodes continuous w/ LG dist'ns
— full joint is a multivariate Gaussian

s Discrete+continuous LG network
— conditional Gaussian network

multivariate Gaussian over all continuous variables

for each combination of discrete variable values
35



‘L Linear Gaussian Model ‘\ /‘
©

o POXi | pay ) ~ NOX; | by + 2icpa i Wi X Vi)
= 50...
= P(Xp) ~ N(Xa | Das V)
= P(xg) ~ N(Xg | bg, Vg)
s P(Xc | XarXg ) ~ N( Xc | be + WpeXa + Wge X, Ve)
...eg, N( xc| 2.9 + 1.3x, + -21 x5, 0.5)

= In p(x) =2 In p(x|pa;) =
_ Zzi(xi _Z. W, X, —bl.)z + const.
i Vi JE P4;

36



Continuous Child Variables

= Or each “continuous” child E,
= With continuous parents C
= With discrete parents D

= Need conditional density function
PE=e|C=cD=d)=P,4E=e|C=c)
for each assignment to discrete parents D=d
= Common: linear Gaussian model

f( Harvest, Subsidy? ) = “dist over Cost”

P( Cost = c|Harvest=h, Subsidy?=true)

= Nlath + b, o¢](c)

1 1 (c— (ath + b))\ 2 Need parameters:
= v 2 () o 2 b
P(Cost = c|Harvest=h, Subsidy?=false) O-f af bf

— _,-'\-'F[{I.fh + b, o¢](c) 37



Discrete variable w/
Continuous Parents

= Probability of Buys? given Cost
~? soft” threshold:

= Probit distribution uses integral of Gaussian:
a

o(z) = / N[0, 1](z) da

_— ':'-";:'

P(Buys?=true|Cost=c) = & '[EJ

¥

~ hard threshold, whose location is subject to noise
38



i Outline

= Motivation

= What is a Belief Net?
=« Example

= Inference

\ = Semantics

= Relation to other Models
= Rules, Neural Nets, Markov Nets, Clusters

= Learning a Belief Net

= My Research
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Belief Nets vs Rules

= Both have "Locality”

Specific clusters érules / connected nodes)
= Often same nodes (rep’'ning Propositions) but

BN: Cause = Effect
“Hep = Jaundice” PJIH)

Rule: Effect — Cause
“Jaundice = Hep”

WHY?: Easier for people to reason CAUSALLY
even if use is DIAGNOSTIC

= BN provide OPTIMAL way to deal with

+ Uncertainty
+ Vagueness (var not given, or only dist)

+ Error ...Signals meeting Symbols ...

= BN permits different “direction”s of inference "



i Belief Nets vs Neural Nets

= Both have “graph structure” but

BN: Nodes have SEMANTICs
Combination Rules: Sound Probability

NN: Nodes: arbitrary
Combination Rules: Arbitrary
= SO harder to
« Initialize NNV
« Explain NV
(But perhaps easier to learn NN from examples only?)

= BNs can deal with
s Partial Information
s Different "direction’s of inference

41



~ Belief Nets vs Markov Nets

= Each uses “graph structure’

to FACTOR a distribution
... explicitly specify dependencies, implicitly independencies...

but subtle differences...

"BNs capture “causality”, “hierarchies”
*MNs capture “temporality”

Technical: BNs use DIRECTRED arcs (A)
— allow “induced dependencies” \ /
I(A {}, B “A independent of B, given {}” @
- I (A, C, B) “A dependent on B, given C”
MNs use UNDIRECTED arcs @
—  allow other independencies / \

I(A, BC, D) A independent of D, given B, C

I(B, AD, C) B independent of C, given A, D S @ /



* Belief Nets vs Clusters

oth “structure” the variables
» Cluster: Put similar variables in same cluster
= BN: Put related variables adjacent
= Cluster uses “first order” relationships
= Put A and B together if A directly correlated with B

= BN can have higher order relationships,
esp. independencies @

o |
>

43
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2"d Order Statistics?

= SpSe
= > of kidney are Male (V2 female)
= 4> of kidney are Male (2 female)
« Transplant is SUCCCESSFUL iff

Donor and Recipient are SAME gender (M/M or F/F)
s Here:

= P( Success | Donor=m) = 2 = P( Success | Donor=f)
= IS indepen ent of
= P( Success | Recip=m) = 2 = P( Success | Recip=f)
= IS independent of
= However:

5 Pg Success | Donor=m, Recip=f) = 0
P( Success | Donor=m, Recip=m) =1

= SO IS dependent on

and
44



Outline

= Motivation
= What is a Belief Net?

= Learning a Belief Net
« Goal?
= Learning Parameters — Complete Data
= Learning Parameters — Incomplete Data
= Learning Structure

~

= My Research
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* Learning is ... Training a Classifier

35 95 Y Pale No
22 110 N Clear
10 87 N Pale No

=

32 19 | N | .. | Pale No
46




* Learning is ... Training a Model
[roe [ ot [ [ - [ comr [ dnse

35 95 Y Pale No
22 110 N Clear Yes
10 87 N Pale N.O
Then conditionalize, marginalize
to answer any question:
P( +d | temp=30, BP= 100, ...)
—

32

a0 N ... | Pale No

/'\

RN

P(j/bh)

0.03395

0.0095

0.0003

0.1805

- o o o o —

0.01455

0.038

0.00045

- - IS o [N

0.722




Why Learn?
Why not just “program it in™?

Appropriate Model ...

... IS hot known
Medical diagnosis... Credit risk... Control plant...

... IS too hard to “engineer”
Drive a car... Recognize speech...

.. changes over time
Plant evolves...

.. user specific
Adaptive user interface...

48



i Why Learn Bayes Nets?

= Goal#1: Build a classifier
= Whatis P(Cancer =+ |HA=+,Fev=—, ...)?
= IsP(Cancer=+]..) >P(Cancer= - | ...)?

= Goal#2: Build a SET of classifiers
= Whatis P(Cancer =+ |HA=+,Fev=— ..)?
= What is P(Meningitis = - | HA =+, Cold =3, ... ) ?
= What is P(HospStay = 3 | Smoke = 0.1, BNose = -1, ... ) ?

\ = Goal#3: Build a model of the world!

= ... all interrelations between all subsets of variables
= Reveal (in)dependencies, connections, ...
= Density Estimation”

= Note: A completely accurate model will produce correct answers
to EVERY P(X | Y ) query

49



i Generative vs Discriminative

= Generative Learning:
= Given (sample of)
distribution, P(y,x)

= Seek model Q(y,x)
that matches P(y,x)

P(y,x)

= Discriminative Learning:

= Given (sample of)
distribution, P(y,x)

= Seek model Q(y | x)
that matches P(y | x)

Q(.)

< o< |»n

1O [0 I | >

50



KL-Divergence ... = MaxLikelihood

Seek the BN that minimizes KL-divergence

P, (x)
P,y (x)

KL( D; BN ) =) P,(x)In

= KL-divergence ...

. always >0 e BN* = argmin KL(D; BN)
- EN
« =0 iff distr’s “identical” S P () In Po(x)
. : = argmax Y Pp(z) InPgy(z) S 2y Pp(X)In Pp(x
not rs.yn}metrlc BN XI: b(z) o (2) is independent of BN
= but... distrib’'n 2 not known; |
Only have instances ~ argmax mz In Pgy(d) as S drawn from D
S={d} BY 9] 4es
drawn iid from 2 = argmax H Pgn(d) = argmax Ppn(S)
BN P BN

51



i Best Distribution

= If goal is
BN that approximates 2:

Find BNV that maximizes likelihood of data S

argmin KL( D; BN ) = argmax P,, (S)
BN

BN

= Approaches:

« Frequentist: Maximize Likelihood
= to address overfitting: BDe, BIC, MDL, ...

« Bayesian: Maximize a Posteriori

N
52



‘_h Learning Bayes Nets

Data

Structure
Known Unknown
Complete |  Easy NP-hard

Missing Hard ... EM | Very hard!!

CPTs :
— % _I_ P(Xi| Pay:)

structure parameters
53




i Typical (Benign) Assumptions

1.

2.

3.

4.

Variables are discrete
Each case ¢, € § is complete

Rows of CPtable are independent

GA J_ GB QF Ota; 0-a

a | MB=+|A=a) P(B=-|A=a)

eB|+aJ-eB|-a (B) f\ Otol+a Otl+a

045—a 0_p|—a

Prior p(®, | ¢) is uniform
= 6g., ~ Beta(1,1)

Later: relax Assumptions 1,2,4

54



i Learning the CPTs

Bya B_a Byo O

N
—

\1
-

@

(>

Structure: ¢ = \€:>/ O4eltatd P ctats
O1g-atb O_c—a+b

Ot ota—b P_cita—b

By e—a—b Fcj—a-b
A B C
- dil1 0O 1
s Given SAMPIES = (=10 2, 3
= Fixed structure ¢ SR

= over discrete variables X;
« Complete instances §

= O = “empirical frequencies”
s E

g.
. 6,22/ (242) = 0.5 WHY?22?

« 0,=3/(3+1)=0.75

= e+c|+a,—b =2/(2+0)=1.0
55



i One-Node Bayesian Net

= P(Heads) = 6, P(Tails) = 1-6

@ P(C=h) P(C=t)

0 1-6

= Flips are i.i.d.:
=« Independent events

= Identically distributed according to
Binomial distribution

s Set S of o, Heads and o Tails

P(S16)=06" (1-6)"
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Maximum Likelihood Estimation

= Data: Observed set S of
oy Heads and o Tails

= Hypothesis Space: Binomial distributions

= Learning 6 is an optimization problem
= What's the objective function?

= MLE: Choose 6 that maximizes
the probability of observed data:

0 = arg max P(s|6)
= argm@ax InP(S|6)



i Simple “Learning” Algorithm

= argmax InP(s]|0)

= arg m@ax INO“H (1 — 6)°T
= Set derivative to zero: d% InP(S8|0) =0

0 h g h —t
ﬁln[é’ (1— H)]—a [AInB@+¢In(1— 6’)]—9 (1-06)
h —t h
| =0= 0=——
6 (1-6) t+h

If 7 heads, 3 tails, set QA = 0.7




i Factoid wrt Belief Network

Recall that...
= For a COMPLETE instance, x = (X4, ..., X;,)

P(x) = product of CPtable values
(one from each variable)
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Probability of Complete Instance

P(—b, e, a, -7, m) =
P({—-b) P(e|—-b) Pl(a|e,—b) P(—jl|la,e,—b) P{(m|—j,a,e, —b)

FP(—-b) P(e) Pla|e,—b) P(—j|la) P({m|a)
0.99 x 0.02 x 0.29 x 0.1 = 0.70

MNode independent of predecessors, given parents

( Burglary ) (Earthquake)

N/
(o)

/N
( JohnCaiis ) ( MaryCalls )
P(J|A=a) 2 | P(M|A=a)

> I GO ),

F 0.01

2(—b, e, a, —j, M) =

P(A|B=bE=c¢)
0.95
/ P(al|—-b,e)
0.001

e | e
LT
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Likelihood of the Data (Frequentist)
8+a 6-a |(A) {(B) [ o4+ o

\- r/ 2 i
Given: Structure: & = a teltatt Focidatb
*P(51©) =TI P(d] ©) il
tel—a,-8  _el—a,_b
C
P(d,) = (+a —b, +C) Sample § = %:
=P(+ ) Po(-b) Pg(+C|+a,—b) 0
=0,, 94 e+c|+a b
* P(d,) = Pg(-a, +b, —C)
= Po(-a) Pe( +b) Pg(-C [ -a, +b)
e—a e+b e-c|-a,+b
‘P$§1©)=0,.°20_,20, ®_ﬁj§’+bo @zw“a,_bz
+a e-aN_a e+bN+b e-bN_b e+C|+a,+b +C|+a,-b +el+asb .-

= [ Tij 05Nk 61



‘.L Example of Parameter 6,

and
CORGYRCD f

| /
\ H Fever =7| Cold, Flu, Malaria )
. Cold Flu Halaria || True FEJEE-E'
F F F 111 H110
F F T 91 -[']132
F T F B [
4th — - Eo T ... s L gy - [
T F F B1m1 H1ma
T F T f161 162
T T F B 8172
T T T Jm fa0

] euk P(X o Vlk ‘ Pa pal] )
= variable#1 -- here, “Fever"

= 4 value of parents — [ Cold=F, Flu=T,
Malaria=T ] 62



‘.L Example of Parameter N;;,
N T
~.

F{ Fever =7 |Cold, Flu, Malaria )
cold Flu Malariz § Truoa Falsg
Y1y MLz

F F F

F F T Wz lﬁll.:l#:

F T F My N

4th e SR S T___J- Mopap . > fMea]

T F F Ny ivED

T F T sy ez

T T F W W7z

T T T T i1z

= Ny refers to ...
= variable#1 -- here, “Fever"
= 4™ value of parents — [ Cold=F, Flu=T, Malaria=T ]
= 2" value of Fever-node -- here, “Fever = FALSE”

= N; is number of data-tuples

where variable#i = its kth value

& parents(variable#i) = jt value o



Example of Ny, Oy

B3 =2 00 Vs

Y1 Ys Ym Uil Uik Vir,
U1l U2 Um1 || F111 B11k B11r,
U1l UM Um2 || 121 B12k B12r,

Uyp  Uop Ugy v Bk
Ulr, UDr, Umr, 01 g1 01 gk Elgh
e CPtable: gijk = F"( X;!; :'L=;;;¢|P£1;!; :pﬂg;j)

e ...based on "Buckets"

Y Yo Ym Ui Uik Uip,
U1 U2y Um1 || V111 N1k Niin
U1l U21 um2 || N121 Niop Nioy,
th i AT
0 — | wie  uop Ugp o Niik
Uy, UDp, Umr, N lpl N 1ok N Loury

where

and

e Ny is number of data-tuples

variable#£i = its k' value
parents(variable#i) = ;' value




Task#1:
i Fixed Structure, Complete Tuples

= What are the ML values for 0O,
giveniiddata S={c }, ..

pcSioy=]lrc® =[] [l ©.=

ce § ceD [X,=xy ,Pa;=pa; lec

N N..
ijk — ijk
[Te..”™ = T [1 e
ij k

ijk

s OMY) = argmax, {P(S | ©® )}

= argmax, { log P(S | ® Vij 2 O = 1
= argmaxXg { Z@ Ni 109 Oy) s




MLE Values

=OMY = argmaxg { X; &, Nj, log ;)

vij 2y Oy = 1

= Notice 6;; is independ
— can solve each 2 N

entof 6., wheni=#r or j=s..
i 109 0, i individually!

= For each >, Ny log 6 ... as >, 6, =1, optimum is

N,

ZN

#(X =v,, & Pa, =pa, )
#(Pa, =pa, ;)

= Observed Frequency Estimates !

= Undefined if X,

Ny =0 ... #(Pa; = pa;;)=0
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i Algorithm

ComputeMLE( graph @, data S):
return MLE parameters [0,

= Walk thru data S

= Whenever see [ Xi=v,, Pa=pa;],
Ny += 1

= Return parameters: ™+~ §
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i Examp|e .®A:{2io’230}

o
| 1+171+1

o 0}
“ 1 0+8°0+0
= Buckets 2 Sl

>

Z
&

I

Q
>
™

N, =0 N >
, =0 v+ AL
= Nibj+a 0 1 + | -

= Npa =0

" N+b|—a =0
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i Problems with MLE

= 0/0 issues

= Do you really believe 0% if 0/ 0+2 ?
= Which is better?

= 3 heads, 2 tails 6= 3/(3+2)
= 30 heads, 20 tails 0= 30/(30+20)
= 3E23 heads, 2E23 tails ©= 3E23/(3E3+2E23)

= 0.6
= 0.6

= 0.6

= What if you already know SOMETHING
about the variable... . =

~ 50/50 ...
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i Bayesian Learning

= Use Bayes rule: |
likelihood — P1OF
P(D | 6)P(6)

P | D) = 6

/

posterior

= Or equivalently:

PO | D) x P(D|6)P(6)
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i Bayesian Learning

P(eT D) P(DT| H)P(TH)

posterior likelihood — prjor

“
.
.
.
.
.
.
.*
.

P(D|6)=0"H(1—0)"T

= What about prior?
= Represent expert knowledge
= Simple posterior form
= Conjugate priors:
= Closed-form representation of posterior
(more details soon)

» For Binomial, conjugate prior is Beta distribution
71



Beta pdf

i Beta Prior Distribution — P(0)

Beta(1,1) | 6 | Beta(2,2) | | Beta(3,2) | . _ Beta(30,20)

Beta pdf
Beta pdf
Beta pdf

_ QaH—l 1 — 91T — 1
m Prior: P9 = ( ) ~ Beta(agy, aT)
B(ay,ar)

= Likelihood function: P(D|6)=0mH(1—0)™T
= Given X ~ Beta(a, b) :
« Mean: a/(a+ b)

=« Unimodal if a,b>1... here mode: (a-1) / (a+b-2)
= Variance: a x b/ [(a+b)? (a+b-1)]
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‘L Posterior distribution... from Beta

Beta(1,1) . Beta(2,2) Beta(3,2) ] Beta(30,20) |

Prior P(0) Likelihood P(D|0)

P(O|D) x P(8) P(D|6)

=@ 1(1 - ©) T @™i(1 - ©)"D
— @ozH-I—mH—l(l B e)aT—I—mT—l

~ Beta(a ,+ my, ar+mr)

Same form! Conjugate! |




‘L Posterior Distribution
= Prior: 6 ~ Beta(oy, o)
= Data §: my heads, m tails

s Posterior distribution:
0|S ~Beta( my + o, M+ o)

16 Beta(2,2) | | Beta(3,2) 5 Beta(30,20)
14+
15| i
1.2¢
4,
s 1r s S,
o
s 08 s 83
5] 5]
@ o6t @ Ll
0.4t 05
1t
0.2r
0 : : : : 0 L : : : 0O 0.2 0‘.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 parameter value
parameter value parameter value
Prior
+ observe 1 head + observe

27 more heads:
18 tails /4



Two (related) Distributions:
i Parameter, Instances

, Uniform density

&
[
@

0.5 ®

0.8

oo g g g g

cemm= ==

ceemmm= oz |
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Distribution over Parameter

|II

= What is “rea
m If ..
= uncertainty in expert opinion
=« limited training data
only a distribution!

value of o,_, ?

Op-1 ~ |Beta( 4, 6)

al Bc-1ja=a Bc-0ja=a
1| 0.200 0.800
0| 0.367 0.633

n‘

Op-1j=b,c=c Op=0i=b,c=c
a| Op1ja=a  Op-oja-a 1| 0.300 0.700
1 0.325 0.675 0| 0.333 0.667
0| 0.440 0.550 1| 0.250 0.750
0| 0.450 0.550




* Distribution over Parameters

o O = = | T




* Beta Distribution

= Model row-parameter

eB|a=1 = < eb=0|a=1 / eb=1|a=1>
as Beta distribution

= eB|A=1 = (Bg=gja=1+ Op=1ja=1) ~ Beta( 1, 1)
kinda like seeing 2 instances with (A=1 ):

1 with (4=1, B=0)
1 with (A=1, B=1)




* Beta Distribution, II

- eB|A=1 = (Og=0ja=1+ Og=1ja=1) *’ Beta( 1, 1)

—

—~

B0y gl =0, = 111 =05

= Now... observe data S :

6 \\(/4=J)"

/

~

Lo “a=1 B=1)"%

4 “A=1,B=0)"
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i Beta Distribution, III

- eB|A=1 = Op=oja=1+ Op=1ja=1) ™ Beta( 1,1 )

— —_
E[0p 0] =6, = I_IH =05
= Then observe data 9
s 2 (A=1, B=1)
n 4 (/4_] 5—0)
n New distribution is BN
0'ga=1 ~ Beta(1+2, 1+4) = Beta(3, 5 )

=~ E[0, ., |S] = +b|+a|S =__=0.375

3+5
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‘L O+ ~ Beta(3,5) Distribution

etapdfi(x, 3,5)
|




‘L Posterior Distribution of ®

Ota H_a @ @ O4n O_p

Given: Structure: G = @ 'g+r+n.+b g—c+n.+a
— | —a,+b —c|—a.+hb

Otcta, b O clta b
9—'—[‘ —i1, —h '9—:' —i1,—H

where © x|, ~ Beta(1, 1)

Betal(
|A B C
4|1 0 1
e Given sample 5 = d |0 1 0
|0 0 1
d|1 0 1

N

Beta(1,1) @ @

Beta(1.1)

\- / Betal(
&

1. 1)
’/_> Beta( 1, 1)
1,1)
1, 1)

Posterior distribution is. ..

Beta{1+2.1+2)

@ @ Beta(14+1.14+3)

\'—>/ Beta(14+0,140)
C Beta(140,141

)
Beta(1 42,4 4+ 0)
Beta(14+1,140)
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i Posterior Distribution / o

/
o InltlaIIy P( X ‘ palj) \

0. ND/r(oc,Jl, ey O
- Data § includes
N; examples including [ Xi=v,, Pa;=pa;]

= Posterior
05 1S ~ Dir( oy + Ny, ...y 0y + Niyo)

= Expected value 4N,
E18y 1= Z a, +N,

N,
= Compare to Frequentist: 6, = 5 ¥

|]r
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i Algorithm

ComputePosterior( graph ¢, data S, priors [0ty ] ):
return posterior parameters [N |

= Initialize Ny < oy
= Walk thru data §

= Whenever see [ Xi=v,, Pa=pa;],
Ny += 1

= Set parameters:
0, |S ~ Dir( Nijy, ..., Nig)

= If want expected value: E[0. 1= it
" N,
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‘L Example

= Buckets
= Ny =0,
s N, =0,
= N+b|+a = Oypl+a
= Nopjta 1= Obpj+a
" N+b| a += U4p|-a
= Nopa 1= Op)a

. 0, ~ Beta(a,,, o)

\ eB|+a ~ BEta(“+b|+ar OC-b|+a)

eB|—a ~ BEta(“+b|-ar OC-b|-a)

A B
+ | +
+ —_—
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‘L Example

= Buckets
a N, =1
s N, =1
® Nipj4a:= I
s Npjya := 1
= Nipg i= 2
s Ny =7

pdf

Beta

. 0, ~ Beta( 3, 1)

\ GB|+a hd BEta( 2, 2)
Op, ~ Beta( 2, 7)

A B
+ | +
+ —_—

Beta(1,1) 16 Beta(2,2)

pdf

Beta
o o
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‘.L Example

If you want POINT estimates...

= Buckets
= Nia
= N_,

" N+b|+a - =

Ca) o

~ [ 3
34173 +1

1

|

A 2 2
®Bl+a: ’
‘ | 24+2 242
oA [ 2 7
®B|—a: ’

27 247
(-
-
A B
+ | +

In general, should initialize N, to o, ... called "pseudo-counts”

Note: no 0/0
issues!
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i Answer to a Query...

= Response to query / \
Po( C=C | E=e ) \ /
is function of parameters ®
= EQ...
R,(A=11B=LC=1) = A—le—llA—lec —11A=I

Z 0 1 Opiiaca Ocmiac
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‘_L What is Po( C=c | E=e ) ?

s Po( C=c | E=e ) dependson ©®
= AS ® IS r.v., SO IS response
q(®) = Pg( C=c | E=e )
= Properties of q(®)
= Within [0,1]
= Mean

[ q(0) ] = |  a(0) P(O) do

89



How to compute / N

E[ P,(C=c | E=e )] ? \ ®

CI(@)) — P(A=1|B:1,C:1) — OA=10B=1|A=10C =11A=1
) Za 9A=a eB=1|A=a eC:1| A=a
= Draw R samples 60 from P(®)
M ®A ~ Be(3 7), ®B|+a ~ Be(]_ 4)’

» 0,(0=10.29, 0.71]; ®B|+a(1> = [0.18, 0.82]; ...
q(®1)) = 0.57

= 0,9 =1[0.32, 0.68]; @ ., =[0.23, 0.77]; ...
q(e(?)) = 0.61

s Let qR=1/R> q(BW) But

... easier approach:

s ASR —o, q® — E[q]
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| Predictive Distribution ~ #®_
©
e

« If q(6) is UNCONDITIONAL query,
q(®) — P®(+a, +b, _C) — ®+a ®+b|+a ®—c|+a

§=FE[q©)] = q(Bel®]) = ¢(©) !

;T\TE gk + 1

« BN? = [@, ©°] with 02 = {s( 5D
Compute E[ g(0) ] by using just BN? !
— get Model-Averaging for free!

= More complicated for Conditional Queries!
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iSummary: Parameter Learning

= MLE:
= Score decomposes according to CPTs
= optimize each CPT separately

= Bayesian parameter learning:

= motivation for Bayesian approach
= Bayesian prediction

= Bayesian learning for BN parameters
= Global parameter independence

= Predictive distribution — model averaging, for free!
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Outline

= Motivation
= What is a Belief Net?

= Learning a Belief Net
= Goal?
~_ " _earning Parameters — Complete Data

= Learning Structure

= Possible applications of BNs

= Learning Parameters — Incomplete Data

SKip
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‘L #2: Known structure, Missing data

= To find good ®, need to compute P(®, 2 | ¢)

= Easyif .. ( ‘1 E f’lNi \ incomplete
. Cco . c21
g — » compliete
: ' Ej E
(¢ e 1)
L Cm - (‘C-'--m.l Cee f-'-m-f\'r> y

= What if S is incomplete
= Somec; = *
= "Hidden variables” (X, never seen: ¢, = * V i)

= Here:
= Given fixed structure
= Missing (Completely) At Random:

Omission not correlated with value, etc.

= Approaches:
= Gradient Ascent, EM, Gibbs sampling, ...



‘L Gradient Ascent

= Want to maximize likelihood

= OMLE) = argmax, L(6 : S)

= Unfortunately...
= L(6 :S) is nasty, non-linear, multimodal fn

= SO...

s Gradient-Ascent

= ... 1st-order Taylor series

Fabil67) 22 fopi (%) + (0 — %)V fons

Need derivative!

] ”
v R -
SP1 ¥
N

-

Procedure Gradient-Ascent |

o' /) Initial starting point
fabj, /' / Function to be optimized
a Convergence threshold

do
9t+1‘— Qt_l_ vfﬁbj{gt)
te— t417"

while |8 — 8" >4

return (8"

JJ




Gradient Ascent [APN]

View: Pg(S)=P(S|©, G) as fn of ©

s 1Tt

i’j|ﬂp(§}(9) . Zl‘j|ﬂp(§].(f{) . Zl’jP@(Cf)X(jQUL

aa—ijk —1 C}Qijk —1 P@( Cy )
IPs(cp)/00;j _ Po( ¢ | vi, pay; ) Po( pa;; _ Po(vir,pay; | cr)
Pe(ce) Po(cr) Oijr

Alg: fn Basic-APN( BN = ( G, ® ), 9 ): (modified) CPtables
inputs: BN, a Belief net with CPT entries
9P, a set of data cases
repeat until A® ~ 0

Note: Computed P( vy pa; | ¢, ) to deal with c,

A® <0 = can “piggyback” computation

foreach c. € 9
Set evidence in BN to c,
For each X; w/ value v,,, parents w/ j* value pa;
ABy += P(vy,Pay | ¢ ) / By
O += 0 A0
® <+ project ® onto constraint region
return(®)
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Issues with Gradient Ascent

= Constraints
= Oy € [0,1]
" Zr ®ijr =1
= But... ® += o A®,, could violate
= Use Oy = exp( Ay ) / 2 exp(Ay )
= Find best A ... unconstrained ...

s Lots of Tricks for efficient ascent
= Line Search
= Conjugate Gradient

A
NQ ..‘

&@s'm .\
L

Take Cmput551, or optimization
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i Expectation Maximization (EM)

= EM is designed to find most likely 0,
given incomplete data !

= Recall simple Maximization needs counts:
#(+X, 1Y), ...
= But is instance [?, +y] in ® Ox
L H(EX FY)? L #H(-X, HY)? Oy
= Why not put it in BOTH... fractionally ?
= What is weight of #(+x, +y)?
= P,( +x | +y), based on current value of 6
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i EM Approach — E Step

@ 0, | 0.
O.aj+c | O-aj+c \‘ O4bj+c | O-pjc
6+a|-c e-a| C @ 6+b|-c e-b|-c
Guess initial values 6°
@ 0.55 | 0.45
0.8 0.2 \4 0.9 0.1
03 | 07 @ 0.4 | 06

A|lB|C
Sample S =[5 To 1
910
0 H{¥)] 1
* 1 ®]1
\
A|B|C
pl01] 10
Set S(0) = l ...... of. 07
0 0.3
0 ® 1 0.1
e 1/ ....... o
0.0 1| 07x01
0 1 1 0.7 x0.9
S8 B IR Bt
................... o Bodeied




EM Approach — M Step

eUse fractional data:

S(O) — O

olo] >
—~ |o ) OO
Ol—hn
) ©
. (9]
L))
)
&
@
(e]
)
£
S
&

[ury

#(+a,+c 0.3x0.1)+(0.3x0.9
eNew estimates: ‘ ( ( )+( )

1+0.1+40.9+(0.7x0.1)+ (0.7x0.9)+ (0.3x0.1) + (0.3x0. 9)
#(+ +c) 0.1+ (0.7x0. 9)+(O 3x0.9)

=0.33
#(+c)

#(+c) _L0+1.0+10) _
#{D) 4 '
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i EM Approach — M Step

A|lB|C
eUse fractional data: |—{—>{ - —T z+b|+c Z-b|+c
0 1 0 +bl-c -b|-c
S0 = [.2.].0.
0 1
0 0
e

# / 0.3%0.1)+(0.3%0.9
eNew estimates: ‘ (ratc (0.3x0.1)+(0.3x0.9)

/é//1+0 1+0.9+(0.7x0.1)+(0.7%x0.9) + (0.3x0.1) + (0.3x 0. 9)
#(4F- Then
% #(+c m E-step: re-estimate distributions over the missing values
based on these new 6(!) values

# (+¢) _ = M-step: compute new 6(2) values, using statistics based
#({ 1 on these new distribution
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= Given parameters 6
= find probability of each missing value
= ... SO get Eg[ Ny |
= M step:

=« Given completed (fractional) data
= based on Eg[ Ny |
= find max-likely parameters 6(t+1)
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‘L EM Approach

o Assign ©(0) = {Q,Ejok)} randomly.

e [teratively, £ =0,...

E step: Compute EXPECTED value of Njjp,
given (G,©%)

Nijk = Epyis00.6)(Niw) = ) Ao, pal |, ©%,5)
CfES

M step: Update values of ©*+1, based on Ny,

g+t — _ Nipt0
o > k=1 (Nijk +0)
... until |1

e Return ©F




i Facts about EM ...

= Always converges

= Always improve likelihood
s L(OEHD:S)Y>S LD S)
= ... except at stationary points...

s For CPtable for Belief net:

= Need to perform general BN inference

= Use Click-tree or ClusterGraph
... just needs one pass
(as Nj depends on node-+parents)
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i Gibbs Sampling

e Let SO be COMPLETED version of S,
randomly filling-in each missing Cij

Let di)) = ey
If c;; = =, then d;_if:' = Random|[ Domain(X;) ]

e For &k = 0O..
— Compute @) from S%)  [frequencies]
— Form S+1) py. .
* di}"‘l = cyj
* IT ci; = * Then
Let dfjl be random value Tor X;,
based on current distr @F over Z — X;




i Gibbs Sampling — Example

0, | 6. New

o
O.aj+c | O-aj+c O4bj+c | O-pjc

O.1a1c | O-ac o O.1pc | O-bjc B
l ' @ . - a Flip 0.3-coin:
/Flip 0.9-coin:
Guess initial values 6° / Flip 0.8-coin:
Flip 0.9-coin:

/@ 0.55 | 0.45
0.8 0 \4 0.9 0.1

Ay 04 T o6

Then
= Use SO to get new 6(2) parameters
= Form new S(® by drawing new values from 6(%)

R Ol o o]lX>
= = = O]

= ([O(—=]10




i Gibbs Sampling (con't)

= Algorithm: Repeat
= Given COMPLETE data SO, compute new ML values for {6, (+!) }
= Using NEW parameters, impute (new) missing values S(+1)

= Q: What to return?

AVERAGE over separated 00)'s
= €g, @(500), @(600), @(700),
= Q: When to stop?
When distribution over ©()s have converged

= Comparison: Gibbs vs EM
= + EM “splits” each instance
...into 2k parts if k *'s
= — EM knows when it is done, and what to return

107



i General Issues

= All alg’s are heuristic...
= Starting values 6
= Stopping criteria
= Escaping local maxima

L(8: D)

= SO0 far, trying to optimize likelihood.

Could try to optimize APPROXIMATION
to likelihood...
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i Summary of Approaches

s Gradient Ascent
= EM-based (many variants)

= Gibbs sampling
= Multiple imputation
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Outline

= Motivation
= What is a Belief Net?

= Learning a Belief Net
= Goal?
= Learning Parameters — Complete Data

\ = Learning Parameters — Incomplete Data

= Learning Structure

= My Research

SKip
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‘_L Learning Bayes Nets

Data

Structure

Known Unknown

Complete W
Missing WM Very hard!!

CPTs :
:> % _I_ P(X| Pay)

structure parameters
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Learning the structure of a BN

Data = Constraint-based approach
= BN encodes conditional independencies
(xqxM) - Test conditional independencies in data
« Find an I-map (?P-map?)
= Score-based approach

« Finding structure + parameters is
density estimation

= Evaluate model as we evaluated parameters
= Maximum likelihood
= Bayesian
« etc.

A~
2
3
X
DA
3
~

sJaloweled
uB 8JNjoNJ1S UJea

e

0
g

eadachg
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Score-based Approach

Possible DAG structures W Score of each Structure

(gazillions)
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‘L Just use MLE parameters

m MaXg o L((G, Bp) 1§ ) =
maXxq maxg, L( (G, 6p) : S M=
maxg, L((G/[07d) : S )

= S0...
seek the structure @ that achieves

highest likelihood,
given its MLE parameters 6

M Score(C}, S) — |09 L( <C}, e*g> S ) 114



‘L Comparing Models c;o% c;%

D = {X[1Ly[1]), ..., XIMLY[M])}

Score(C}o, S) = Zm Iog e*x[m] T Iog e*Sl[m]
Score(Gy, §) = 2, 109 0y + 109 0y | xmi

Score(¢,, §) — Score(G,, S)

— ijy M[x,y] log G*y[m] — Zy M[y] log e*y[m]
=M 2., P'(xY) logl p'(y1x) / p(y) ]

=M L.(X,Y)

[.(X,Y) = mutual information between X and Y in P’

... higher mutual info = stronger X—Y dependency
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Information-theoretic interpretation

i of maximum likelihood CQ

= Given structure ¢, parameters 6, log likelihood of data

)k
log P(D | 6g,G) = IogP(X =2\ | Pay, =x\) [Pay, )

_ ; i"j P (x; =2 | Pay, =x[Pay))

= iZ#(X :‘.—u)logP gaxzu

0
— 7Pa —
Y o R

=1 Z;,u

P(X — a:Z,PaX — u)

n
— m

’L:l R R

Z p(XZ = x;, PaXZ. :11) |OgP(X7; = x; | PaXi =u

+16



‘_L Entropy

= Entropy of V = [p(V = 1), p(V = 0)] :
H(V) = 'Zvi P(V=v;)log, P(V=yv,)
= # of bits needed to obtain full info

...average surprise of result of one “trial" of V
= Entropy ~ measure of uncertainty

A
1.0 +

H(X)




‘_L Entropy & Conditional Entropy

i

= Entropy of Distribution
« H(X) = - X, P(x)) log P(x)
= "How surprising’ variable is”
=« Entropy = 0 when know everything... eg P(+x)=1.0

= Conditional Entropy H(X | U) ...
= H(X|U) = -2, P(u) 2; P(x;/u) log P(x;|u)
= How much uncertainty is left in X, after observing U

H(X;|Pay,) - Y P(X; =1, Pay =u) IogP(Xi=x§j) | Pay. =u)

I,
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Information-theoretic interpretation of
i maximum likelihood ... 2

= Given structure G, parameters 6,
log likelihood of data § is..

‘Iog P(D|6,G) = m> Y P(azL,Pam ¢ =wlog P(z; | Pa,, g = u)

z -Ez l.].

= mZ—FI(XﬂPaxi’g)
1
= mY (XﬂPamij@ l
)

So log P(D| 0O, ¢) is LARGEST

when each H( X | PaX c) is SMALL..
..ie, when parents of X are very INFORMATIVE about X |
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‘_L Score for Belief Network

x J(X, U) = H(X) = H(X | U)
= H(X | Pay ) = H(X) — I(X, Pay)

Doesn’t involve the structure, &!

= Log data likelihood

l0g p(D | 9,9) = mZIA(XZ-,PaXZ.,g)J

= So use score: > I(X;, Pay; g)
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‘_L Best Tree Structure

log P(D | 6,G) —mZI(azz,Pax G)— mZH(X)

= Identify tree with set ¥ = { Pa(X) }
= each Pa(X) is {}, or another variable

= Optimal tree, given data, is
argmax, m 2,; I( X, Pa(X;) ) —m 2; H(X))
= argmax; 2, I( X;, Pa(X)) )
= ...as 2 H(X) does not depend on structure

= 50 ... want parents ¥ s.t.

s tree structure
= maximizes > I( X, Pa(X) )
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i Chow-Liu Tree Learning Alg

For each pair of variables X;, X,
=« Compute empirical distribution:

Pz xj) =

COUﬂt(CBi,QBj)

m
=« Compute mutual information:

Define a graph

= Nodes X,,...,X, R

= Edge (ij) gets weight 1 (X, X;)
Find Maximal Spanning Tree
Pick a node for root, dangle...
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‘_L Chow-Liu Tree Learning Alg ... 2

log P(D | 60,G) =m ) I(z;,Pay g)—m ) H(X;)

= Optimal tree BN

=« Compute maximum weight
spanning tree

= Directions in BN:

J-Equivalent!

= pick any node as root, ©
...doesn’t matter which!
= breadth-first-search defines
directions & — @ —
= Score Equivalence: I \ l \
If @ and @’ are J-equiv, © O © )

then scores are same
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‘_L Chow-Liu (CL) Results

= If distribution P is tree-structured,
CL finds CORRECT one

= If distribution P is NOT tree-structured,
CL finds tree structured Q that
has min’l KL-divergence — argming KL(P; Q)

= Even though 2%(nlogn) trees,
CL finds BEST one in poly time O(r¥ /m + log n])
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‘_L Using Chow-Liu to Improve NB

= Naive Bayes model @
= Ignores correlation between features / l \

= What if X; = X, ? Double count... QD\_'@ /@

= Avoid by conditioning features on one another

= [ree Augmented Naive bayes (TAN)
[Friedman et al. '97]

. _ P(xz;,z; | c)
I(X;,X:|C) = P(e,z;, ;) l0g — J
v c,a;mj v P(z; | C)P(mj | c)

All but ONE feature have 2 parents: C, X, 125




i Maximum likelihood score overfits!

[/

= Adding a parent never decreases score!!!
= Facts: H( X | Payg) = H(X) = I(X, Pay c)
H(X|AY=H(X|AUY)
(X Pay,gUY) > H(X) — H( X, | Pay g UY)
> H(X) — H( X | Paye)
= I( X, Pay; ¢)
= S0 score increases as we add edges!
= Best is COMPLETE Graph
= ... overfit !
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‘_L Overfitting

s So far:

Find parameters/structure
that “fit” the training data

= If too many parameters,
will match TRAINING data well,

but NOT new instances

= Overfitting!

= Regularizinc
Bayesian approach;,..
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Bayesian Score

= Prior distributions:
= Over structures
= Over parameters of a structure
Goal: Prefer simpler structures... regularization ...

= Posterior over structures given data:

= P(9) o P(DIG) x P(G)

Posterior

Likelihood

Prior over Graphs

Prior over Parameters

/|

« P(D|Q) = [, P(D | G, ©) P(B|Q) dO

log P(G | D) ~ log P(G)

log P(D | g,

Og

0g)P(0g|G)dog

—



lowards a decomposable
i Bayesian score

0g P(G | D) ~ log P(G)+log | P(D | G,05)P(6g|9)ddg
g

= Local and global parameter independence 6, ., | 0

= Prior satisfies parameter modularity:

« If X. has same parents in G and G’, then parameters have same prior
C

A B A B
X X C ®(X; A,B) same in both structures

= Structure prior P(¢) satisfies structure modularity

= Product of terms over families
= Eg, P(Q) xx clél |GQ|=#edges; c<1

= ... then ... Bayesian score decomposes along families!

=« log P(¢Q|D) = X, ScoreFam( X | Pay : D)
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‘_L Marginal Probability of Graph

0g P(D | G) = log | P(D|G,05)P(0g|9)ddg
g

= Given complete data, independent parameters, ...

e,,) [, +MLxu])
DIG)= U :
ano=|] 11 e, +1\4[u,-]))46£(£) Nt )

i ul-eVa(P@(i )
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i Priors for General Graphs

= For finite datasets, prior is important!

= Prior over structure satisfying prior modularity
= Eg, P(Q) xx clél |GQ|=#edges; c<1

= What is good prior over a// parameters?
= K2 prior. fix oe R*, set By pay; ~ Dirichlet(c, ..., o)
« Effective sample size, wrt X ?
= If O parents: kxot

= If 1 binary parent: 2 kxa
= If d k-ary parents: kd kxa

=« S0 X, "effective sample size”depends on #parental assignments
= More parents = strong prior... doesn’t make sense!

= K2 is “inconsistent”
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i Priors for Parameters

G,

O

0, ~ Beta(1, 1)

Oypex ™ Beta(1, 1)
Oy« ~ Beta(1, 1)

s Does this make sense?
= EffectiveSampleSize(6y,,) = 2
= But only 1 example ~ “+x" ??

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(1, 1)

0, ~ Beta(1, 1)

= J-Equivalent structure

= What happens after [+X, -y] ?
= Should be the same!!
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i Priors for Parameters

G,

(0
O

0, ~ Beta(1, 1)

P, (+x) =

2/3

Oy.x ~ Beta(1, 1)
Oy« ~ Beta(1, 1)

[+X= _y]

G,

9X|+y ~ Beta(1, 1)

M L [ 4 4\

X
Y
_

o

A

Po(+X) = Py(+X,+Y) + Py(+X,-y)
=1/3x % +2/3x2/3 = 11/18 !l

O

0, ~ Beta(1, 1)

G,

O

0, ~ Beta(2, 1)

Oy« ~ Beta(1, 2)
Oy« ~ Beta(1, 1)

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(2, 1)

0, ~ Beta(1, 2)
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i BDe Priors

G,

O

0, ~ Beta(2, 2)

Oypex ™ Beta(1, 1)
Oy« ~ Beta(1, 1)

= This makes more sense:
= EffectiveSampleSize(6y,, ) = 2
= Now =3 2 examples ~ “+x" ??

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(1, 1)

0, ~ Beta(2, 2)

= J-Equivalent structure
= Now what happens after

[+Xl _Y] ?
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i BDe Priors

G,

@ 0, ~ Beta(2, 2)

| P.(+X) = 3/5
@ 0y, ~ Beta(1, 1)
Oyix ~ Beta(1, 1)
[+X, -]

G,
()| =Bt 1

—

P,(+X) = Po(+X,+Y) + P,(+X,-y)
=2/5x1 +3/5%x2/3 = 3/5

O

0, ~ Beta(2, 2)

0, ~ Beta(3, 2)

Oy« ~ Beta(1, 2)
Oy« ~ Beta(1, 1)

Oy, ~ Beta(1, 1)
Oy, ~ Beta(2, 1)

0, ~ Beta(2, 3)
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i BDe Prior

= View Dirichlet parameters as “fictitious samples”
— equivalent sample size

= Pick a fictitious sample size m’

= For each possible family,
define a prior distribution P(X,Pay;)
= Represent with a BN

= Usually independent (product of marginals)
= P(X, Pay ) = P'(X) [ Lcpapxy P'(X)
« P(6[x | Pay, = u) = Dir( mP'(x=1, Pa,, = u), ..., m" P(x=k, Pay, = u) )
= Typically, P'(X)) = uniform
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iSummary wrt Learning BN Structure

= Decomposable scores

= Data likelihood

=« Information theoretic interpretation
= Bayesian

= Priors
» Structure and parameter assumptions
= BDe if and only if score equivalence

= Best tree (Chow-Liu)
= Best TAN
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