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Abstract
An “active learning system” will sequentially de-
cide which unlabeled instance to label, with the
goal of efficiently gathering the information nec-
essary to produce a good classifier. Some such sys-
tems greedily select the next instance based only
on properties of that instance and the few currently
labeled points — e.g., selecting the one closest to
the current classification boundary. Unfortunately,
these approaches ignore the valuable information
contained in the other unlabeled instances, which
can help identify a good classifier much faster. For
the previous approaches that do exploit this unla-
beled data, this information is mostly used in a con-
servative way. One common property of the ap-
proaches in the literature is that the active learner
sticks to one single query selection criterion in the
whole process. We propose a system, MM+M,
that selects the query instance that is able to pro-
vide the maximum conditional mutual information
about the labels of the unlabeled instances, given
the labeled data, in an optimistic way. This ap-
proach implicitly exploits the discriminative parti-
tion information contained in the unlabeled data.
Instead of using one selection criterion, MM+M
also employs a simple on-line method that changes
its selection rule when it encounters an “unexpected
label”. Our empirical results demonstrate that this
new approach works effectively.

1 Introduction
There are many situations where unlabeled instances are
plentiful and cheap, but it is expensive to label these in-
stances. For example, consider the challenge of learning a
classifier that can determine which webpages contain job ads.
One can easily grab literally billions of webpages at essen-
tially no cost. However, to produce an effective training set,
we first need labels for a sufficient number of these pages;
unfortunately, this typically requires paying a person to pro-
duce each such label. It is therefore useful to find a small set
of pages that (when labeled) will produce a high quality clas-
sifier. An “active learning” system will sequentially select
the most informative pages to label from a pool of unlabeled

pages, then produce a classifier from these labeled pages. An
active learner is good if it produces the best classifier from a
small number of labeled pages.

This paper presents an effective active learner, “MM+M”,
based on two ideas: (1) In general, select the query instance
that provides the maximum conditional mutual information
about the labels of the unlabeled instances, given the labeled
data. There is a subtlety here that we resolve by using an
“optimistic guess” about the query’s label. (2) It can be help-
ful to allow the selection criterion to depend on the outcomes
of previous selections. In our case, if this optimistic guess is
wrong for the selected query, MM+M uses a different strategy
to identify the next query, then returns to use the maximum
information strategy for the next selection.1

Section 2 presents related works, to help position, and
motivate, our approach. Section 3 then introduces our spe-
cific MM+M approach, and Section 4 presents experimental
results based on our implementation of these ideas. The web-
page http://www.cs.ualberta.ca/˜greiner/
RESEARCH/OptimisticActiveLearning provides
more information about our approach, and the experiments.

2 Related Work
Many previous researchers have addressed this “active learn-
ing” task in various different ways. Some of their sys-
tems use a very simple heuristic to determine which instance
to label next: select the most uncertain instance, based on
the classifier produced using the current set of labeled in-
stances. Freund et al. [1997] employed a committee of clas-
sifiers and choose the instance on which the committee mem-
bers disagree. Lewis and Gale [1994] used a probabilistic
classifier, over binary classes; here this most-uncertain ap-
proach would select the instance whose conditional proba-
bility P ( yi = 1 |xi ) is closest to 0.5. The same princi-
ple is also used in active learning with support vector ma-
chines [Tong and Koller, 2000; Schohn and Cohn, 2000;
Campbell et al., 2000], where it suggests choosing the in-
stance closest to the classification boundary. Tong and
Koller [2000] analyzed this active learning as a version space
reduction process, while Schohn and Cohn [2000] used a

1The name “MM+M” is short for “MCMI[min]+MU”. The first
point corresponds to “MCMI”, the subtlety to “[min]” and the second
point to “+MU”.



heuristic search view. Our MM+M algorithm incorporates
this approach as one of its components. While this “most
uncertain” approach often works well, we provide empirical
results that the complete MM+M system typically works bet-
ter.

These “most uncertain” approaches decide which instance
to select based only on how that instance relates to the cur-
rent classifier(s), which in turn is based on only a few labeled
instances; notice in particular this selection does not depend
on the remaining unlabeled instances. As the goal is produc-
ing a classifier that has a good generalization performance, it
makes sense to use (at least) the marginal distribution P (x )
over this unlabeled data. This motivates a second class of ap-
proaches, which use this unlabeled data. Cohn et al. [1996]
and Zhang and Chen [2002] employed the unlabeled data
by using the prior density P (x ) as weights. Roy and Mc-
Callum [2001] selected instances to optimize expected gen-
eralization error over the unlabeled data. Others also used
the clustering distribution of the unlabeled instances: Xu et
al. [2003] proposed a representative sampling approach that
selected the cluster centers of the instances lying within the
margin of the support vector machine. Nguyen and Smeul-
ders [2004] presented a mathematical model that explicitly
combines clustering and active learning together. McCallum
and Nigam [1998] used an EM approach to integrate the in-
formation from unlabeled data, while Muslea et al. [2002]
combined active learning with semi-supervised learning.

Our MM+M uses an “optimistic” information theoretic
way to use the unlabeled instances: seek the instance whose
optimistic label (i.e., the “best” of its possible labels) leads
to the maximum mutual information about the labels of the
remaining unlabeled instances. This approach implicitly ex-
ploits the clustering information contained in the unlabeled
data, in an optimistic way.

While this optimistic heuristic typically works, it is oc-
casionally misled. When this happens, MM+M employs
a different rule to select the next instance to label. This
means our selection process is not as myopic as the other ap-
proaches, as it is based on the outcome of the previous in-
stance. Our empirical results show that this component is
critical to MM+M’s success.

3 The MM+M Active Learner
We let x denote the input features of an in-
stance, y ∈ {1, ..., K} denote the class label,
L = {(x1, y1), . . . , (xn, yn)} denote the set of labeled
instances and U denote the index set for the unlabeled
data {x1, ...,xm}. Here, XU refers to the set of unlabeled
instances.

Our approach uses probabilistic classifiers that compute the
posterior distribution of the class label y, conditioned on the
input x; our MM+M implementation uses logistic regression.

3.1 Using Mutual Information
As the goal of active learning is to learn the best classifier
with the least number of labeled instances, it may make sense
to select the instance whose label provides the most informa-
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Figure 1: Problem with Optimizing (1)

tion; i.e., the one we currently know least about:

argmax
i∈U

H( Yi |xi, L ) . (1)

where

H( Yi |xi, L ) = −
∑

yi

P ( yi |xi, L ) logP ( yi |xi, L )

represents the conditional entropy of the unknown label Yi

wrt the instance xi given the labeled data L. For binary
classes, this measure prefers instances whose conditional dis-
tribution P ( y = 1 |x, L ) is closest to 0.5. We refer to this as
the “MU-instance” (for “most uncertain”).

Unfortunately, this MU approach is limited in that its
assessment of an instance involves only the small set of
currently-labeled instances (that produce the classifier used
in this step) but not the distribution of the other unlabeled in-
stances. To see why this is problematic, consider Figure 1.
The MU-instance here will be the one nearest the bisector —
“A”. Notice, however, this label does not provide as much in-
formation about the remaining unlabeled instances as B: As
B is in the midst of a cluster of points, its value will signifi-
cantly increase our confidence in the labels of the neighbors.

Based on this observation, we propose using a mutual in-
formation criterion for instance selection: select the instance
whose label will provide maximum mutual information about
the labels of the remaining unlabeled instances, given the la-
beled data:

argmax
i∈U

{H( YU |XU , L ) − H( YU |XU , L, (xi, yi) )} (2)

As the first term in (2) does not depend on the instance i se-
lected, we can rewrite (2) as:

argmin
i∈U

H( YU |XU , L, (xi, yi) ). (3)

Assuming we use a parametric probabilistic conditional
model P ( y |x, θ ) for the classification task, and use maxi-
mum likelihood for parameter θ estimation, then the labeled
data L + (xi, yi) will produce a classifier parameterized by
θL+(xi,yi). This allows us to approximate criterion (3) as:

argmin
i∈U

∑

u

H( Yu |xu, θL+(xi,yi) ), (4)

since here H( YU |XU , θ ) =
∑

u∈U H( Yu |xu, θ ). There-
fore, maximizing conditional mutual information corre-
sponds minimizing the classification uncertainty, i.e., mini-
mizing entropy, on unlabeled data set. Minimizing entropy on
the unlabeled data has been showed useful in semi-supervised
learning [Grandvalet and Bengio, 2005]. A smaller classi-
fication uncertainty usually indicates a larger classification
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Figure 2: Why should (6) use the Optimistic Assignment?

margin, therefore leading to a better classification perfor-
mance. As this means our criterion is directly related to op-
timizing the classification performance, we can view (4) as
a discriminative information criterion for selecting query in-
stances.

Unfortunately, (4) can not be used directly since yi (the
true value of xi) is unknown. One obvious approach to
resolve this problem is to use the apparently most-likely
value of yi based on the conditional model θL trained on the
labeled data L — i.e., use

y∗

i = argmax
y

P ( y |xi, θL ) .

Alternatively, Roy and McCallum [2001] chose to take the
expectation wrt Yi

argmin
i

∑

y

P ( y |xi, θL ) H( Yu |xu, θL+(xi,y) ) . (5)

(We will later refer to this as the “MCMI[avg]-instance”.) This
corresponds to the “SELF-CONF” approach in [Baram et al.,
2004]. Notice both of these approaches use the P ( y |xi, θL )
information determined by the labeled data; unfortunately, in
the typical active learning situations where there are very few
labeled instances L, the labeled data might lead to a bad clas-
sifier, therefore the P ( y |xi, θL ) will not be helpful. This
concern is verified in our empirical study.

We propose instead using an “optimistic” strategy, which
takes the y value that minimizes the entropy term. Using this
optimistic strategy, our MCMI[min] approach would compute
(4) as

argmin
i∈U

f( i )

where
f( i ) = min

y

∑

u

H( Yu |xu, θL+(xi,y) ). (6)

Notice this measure will give each candidate xi instance its
best possible score, over the set of y labels. For instance, if
the classifier is seeking a linear separator, and if there is a
setting y for which the classifier based on L + (xi, y) nicely
separates the unlabeled data with a wide margin, then (6) will
give the score associated with this large margin. We will re-
fer to this optimal i∗ = argmini∈U f( i ) as the “MCMI[min]
instance”.

This differs from Roy and McCallum [2001], which
chooses y in a supervised way, as our approach can be viewed
as choosing y in an unsupervised way. This approach is moti-
vated by the “clustering assumption” [Sindhwani et al., 2005]
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Figure 3: The MCMI[min] criterion can guess wrong. (Lines 1
and 2 are not shown, to avoid cluttering the image.)

used in many unsupervised and semi-supervised learning al-
gorithms: instances separated by a wide margin usually be-
long to different classes. This means minimizing classifi-
cation uncertainty is usually consistent with the underlying
clustering partitions.

Example: To make this concrete, consider Figure 2, where
each 	 and ⊕ is a labeled instance, and the ◦’s are unla-
beled. Assigning A the label 	 would mean the data is
not linearly separable, which would add a great deal of un-
certainty to the remaining unlabeled instances; hence the
value of H( Yu |xu, θL+(A,	) ) for each unlabeled instance
xu would be high. By contrast, the ⊕ label would not change
the support vectors, meaning H( Yu |xu, θL+(A,⊕) ) would
be essentially unchanged; i.e., H( Yu |xu, θL+(A,⊕) ) ≈
H( Yu |xu, θL ). Hence MCMI[min] would use the “more in-
formative” ⊕ label, if it decides to use A. Now consider B,
and observe both ⊕ and 	 are consistent with some linear
separator. Notice, however, that while the 	 label will well
specify the label of the points below immediately below it,
the ⊕ label will not. This is why MCMI[min] will use the 	
label for B.

This assignment clearly depends on the other unlabeled in-
stances; e.g., if those 3 instances were just above B, then
mutatis mutandis, MCMI[min] would use the ⊕ label. Hence,
the min part of MCMI[min] is exploiting relevant nuances of
the P (x ) density over the instances themselves, as it seeks
the labels with the largest separation margin.

Given the choice between A versus B, our MCMI[min] cri-
terion will prefer B, as neither (A,⊕) nor (A,	) will sig-
nificantly increase the information about the labels for the
instances (beyond the information from the other current la-
bels), while B could be very informative — especially if its
label is 	.

3.2 On-Line Adjustment
Potential Problem: There is a potential problem with this
approach: at the beginning, when we only have a few la-
beled data, there may be many consistent parameter settings
(read “classifiers”); here, any method, including ours, may
well “guess” wrong. To illustrate this, consider seeking a lin-
ear separator within the data shown in Figure 3. Which point
should be selected next?

Recall that MCMI[min] will seek the instance that could
lead to the most certainty over the remaining unlabeled in-
stances. If A is labeled 	, then the resulting set of 3 labeled



MM+M( U : indices of unlabeled instances; L: labeled instances )
Repeat

For each i ∈ U , compute
y(i) := argminy

∑
u

H(Yu |xu, θL+(xi,y) )
f( i ) :=

∑
u

H(Yu |xu, θL+(xi,y(i)) )
% ie, score based on this minimum y(i) value

Let i∗ := argmini f( i )
% instance with optimal MCMI[min] score

Purchase true label wi∗ for xi∗

Remove i∗ from U ; add (xi∗ , wi∗) to L.
If wi∗ 6= y(i∗), then

Let i∗ := argmaxi∈U H(Yi |xi, L )
Purchase true label wi∗ for xi∗

Remove i∗ from U ; add (xi∗ , wi∗) to L.
until bored.

End MM+M
Figure 4: The MM+M Algorithm

instances would suggest a vertical dividing line (“Line 1”);
in fact, it is easy to see that this leads to the largest mar-
gin, which means the highest MCMI[min] score. Our algo-
rithm will therefore select instance A, anticipating this 	 la-
bel. Now imagine the (unknown) true class dividing line is
Line 3, which means our MCMI[min] approach was misled
— that is, the optimistic prediction of A’s label was different
from its true label.

At this point, given these 3 labeled instances, MCMI[min]
would next select C, anticipating that it would be labeled 	,
consistent with a horizontal separating line (Line 2), Unfortu-
nately, this too is wrong: C’s label is ⊕, meaning MCMI[min]
again guessed wrong. This example suggests it might be help-
ful to consider a different selection strategy after MCMI[min]
has been misled.

Approach: Fortunately, our algorithm can easily detect this
“guessed wrong” situation in the immediate next step, by sim-
ply comparing the actual label for A with its optimistically
predicted label. When they disagree, we propose switching
from MCMI[min] to another criterion; here we choose MU.
This is done in our MM+M algorithm, shown in Figure 4.2
If MM+M guesses correctly (i.e., if the label returned for the
selected instance is the one producing the minimum entropy),
then MM+M continues to use the MCMI[min] approach —
i.e., if it is “converging” to the correct separator, it should
keep going. Otherwise, it will select a single MU-instance, to
help it locate a more appropriate “split” in the space, before
returning to the MCMI[min] criterion.

For our example, once MM+M has seen that it was wrong
about A (i.e., A was labeled ⊕ rather than the anticipated 	),
MM+M will then select a MU-instance — i.e., an instance
near the current boundary (Line 2) — which means it will
select B. When B is labeled	, we can come closer to the true
separator, Line 3. Notice this means we will be confident that
C’s label is ⊕, which means we will no longer need to query
this instance. In this case, the information produced by the
MU-instance is more relevant than the MCMI[min]-instance.

2This requires O(|U |2) time to make each selection: first iterat-
ing over each i ∈ U , then for each such i, iterating over each u ∈ U
when computing the f( i ) score. For larger datasets, would could
use sampling, for both loops.

Section 4 provides empirical evidence that this approach
works well.

3.3 Approximating Logistic Regression
Recall our system uses logistic regression, which in general
takes a set of labeled instances L = {(xi, yi)}, and seeking
the parameters Θ that best fit the logistic function3

P ( y |x ) = σ(−y xT Θ)
∆
=

1

1 + exp(−y xT Θ)
.

(We use the obvious variant for multiclass classifica-
tion [Schein and Ungar, 2005].) We use a regularized version,
seeking the Θ that minimizes4

`(Θ) =
∑

i

log(1 + exp(−yxT Θ)) +
λ

2
‖Θ‖2 . (7)

There are a number of iterative algorithms for this compu-
tation [Minka, 2003]; we use Newton’s method: Θnew :=
Θold −H−1

L gL where

gL =
∑

(x,y)∈L

(1 − σ(−yxT Θ)) y x + λΘ

is the gradient based on the labeled dataset L and

HL = −
∑

(x,y)∈L

σ(ΘT
Lx) (1 − σ(ΘT

Lx))xxT − λI

is the Hessian. If there are n instances of d dimensions,
this requires O(n d2) time per iteration. To compute each
MCMI[min] instance, our MM+M algorithm (Figure 4) will
have to compute parameters |U | × K times, as this requires
computing ΘL+(xi,y) for each i ∈ U and each of the K
classes Yi.

In order to save computational cost, we use a simple way
to approximate these parameters: Assuming we have a good
estimate of ΘL, based on the gL and HL, we can then ap-
proximate the values of ΘL+(xi,yi), by starting with that ΘL

value and performing just one update iteration, based on the
new values of gL+(xi,yi) and HL+(xi,yi):

ΘL+(xi,yi) := ΘL −H−1
L+(xi,yi)

gL+(xi,yi)

Moreover, there are easy ways to approximate
H−1

L+(xi,yi)
gL+(xi,yi) based on H−1

L gL.

4 Experiments
To investigate the empirical performance of our MM+M al-
gorithm, we conducted a set of experiments on many UCI
datasets [UCI, 2006], comparing MM+M with several other
active learning algorithms. The four primary algorithms we
considered are:

1. MCMI[min]+MU: current MM+M algorithm
2. MCMI[min]: always use the MCMI[min]-instance

3Of course, we include x0 = 1 within each xi to avoid the need
to explicitly separate out the constant bias term.

4In our experiments, we used λ = 0.01 in binary classes, and
λ = 1 for others.
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Figure 5: Comparing active learners on various UCI datasets

3. MCMI[avg]: differs from MCMI[min] by averaging over
the y values (5) rather than taking the minimum (6)
(note, this is same as the SELF-CONF in [Baram et al.,
2004])

4. MU: “most uncertain”; based on (1)
We consider the following 17 UCI datasets (we show

the name, followed by its number of classes, num-
ber of instances and the number of attributes): AUS-
TRALIAN(2;690;14), BREAST(2;286;9); CLEVE(2;303;13);
CRX(2;690;15), DIABETES(2;768;8), FLARE(2;1389;13),
GERMAN(2;1000;20), GLASS2(2;163;9), HEART(2;270;13),
HEPATITIS(2;155;20), MOFN(2;10;300), PIMA(2;768;8),
VOTE(2;435;15),5 IRIS(3;150;4), LYMPHOGRAPHY(4;148;
18) and VEHICLE(4;846;18). Note each of the last 3 datasets
has strictly more than 2 classes.

For each dataset, we ran 30 trials. For each trial, we first
randomly selected 1/3 of the instances from each class to
serve as the test data. From the remaining 2/3, we randomly
picked k labeled instances from each class to form the ini-
tial labeled set L, where k = 2 for binary-class databases,
and k = 1 for multiclass databases,6 and left the remaining

5As suggested in [Holte, 1993], we remove the“Physician-free-
freeze” variable from the VOTE data, as it alone leads to 99% accu-
racy.

6Active learning is harder for small starting Ls, and our start-
ing size is smaller than many other projects; e.g., Schein and Un-
gar [2005] began with at least 20 instances, and Nguyen and Smeul-
ders [2004] with 10 instances.

instances as the unlabeled pool. Each of the active learners
then sequentially selects 100 instances7 from the unlabeled
pool to add to the labeled set. Every time a new instance
is labeled, that active learner then retrains a new classifier
on the increased labeled set and evaluates its performance
on the test set. In general, let acci( D, A[m] ) be the accu-
racy of the classifier learned after the A active learner has
added m labels to the D database, on the ith run, and let
acc( D, A[m] ) be the average of this accuracy values, over
the 30 runs, i = 1..30.

Our MM+M (“MCMI[min]+MU”) wins on most datasets.
Figure 5 shows these averaged acc( D, A[m] ) results for
4 datasets. The PIMA graph shows that MM+M can do
well even when MU does relatively poorly. The fact that
MCMI[min], which did not include the “MU-correction”, does
comparably to MM+M shows that MM+M did not need this
correction here. Now consider BREAST, and notice that
MCMI[min] was the worst performer here, while MM+M
was able to match MU’s performance — i.e., here the MU-
correction was essential. (We observed here that MM+M
used this MU-correction as often as possible — i.e., for essen-
tially every other query.) That is, when MCMI[min] is work-
ing well, MM+M can capitalize on it; but when MCMI[min] is
misled, MM+M can then fall back on the alternative MU ap-
proach. In the third database, VEHICLE, we see that MM+M
in fact does better than both MU and MCMI[min]. (This
dataset also shows that MM+M system can perform well even

7We used fewer for the 3 smallest databases.



Table 1: Comparing MM+M to other Active Learners. (See text for descriptions of notation.)
database vs MU vs MCMI[min] vs MCMI[avg] vs RANDOM vs MU-SVM

AUSTRALIAN∗ 58 / 0 (+) 1 / 0 (0) 24 / 0 (+) 11 / 14 (-) 16 / 0 (+)
BREAST∗ 0 / 0 (-) 94 / 0 (+) 56 / 0 (+) 88 / 0 (+) 0 / 53 (-)
CLEVE∗ 56 / 0 (+) 10 / 0 (+) 32 / 0 (+) 26 / 0 (+) 77 / 0 (+)
CORRAL 5 / 14 (0) 44 / 2 (+) 1 / 0 (0) 13 / 0 (+) 0 / 23 (-)
CRX 80 / 0 (+) 0 / 5 (-) 26 / 0 (+) 2 / 8 (-) 13 / 0 (+)
DIABETES∗ 87 / 0 (+) 0 / 1 (0) 87 / 1 (+) 11 / 12 (+) 73 / 8 (+)
FLARE∗ 53 / 0 (+) 41 / 0 (+) 55 / 0 (+) 27 / 2 (+) 59 / 1 (+)
GERMAN∗ 42 / 0 (+) 18 / 0 (+) 77 / 0 (+) 0 / 0 (+) 91 / 0 (+)
GLASS2∗ 38 / 0 (+) 4 / 0 (+) 24 / 0 (+) 8 / 0 (+) 17 / 0 (+)
HEART∗ 30 / 0 (+) 19 / 0 (+) 20 / 0 (+) 0 / 0 (+) 29 / 0 (+)
HEPATITIS∗ 7 / 0 (+) 0 / 0 (0) 6 / 0 (+) 0 / 0 (0) 50 / 0 (+)
MOFN 0 / 33 (-) 93 / 0 (+) 67 / 0 (+) 31 / 6 (0) 0 / 37 (0)
PIMA∗ 85 / 2 (+) 2 / 0 (+) 84 / 2 (+) 0 / 0 (0) 36 / 13 (+)
VOTE 0 / 27 (-) 97 / 0 (+) 0 / 0 (-) 2 / 0 (+) 0 / 16 (-)
IRIS 68 / 1 (+) 17 / 0 (+) 13 / 23 (0) 38 / 1 (+) – / – ()
VEHICLE∗ 56 / 0 (+) 84 / 0 (+) 38 / 0 (+) 0 / 19 (-) – / – ()
LYMPHOGRAPHY 0 / 4 (0) 0 / 1 (-) 0 / 30 (-) 0 / 2 (-) – / – ()

TOTAL W/L/T 12 / 3 / 2 10 / 1 / 6 13 / 2 / 2 7 / 2 / 8 10 / 4 / 0
Signed Rank Test 12 / 3 / 2 12 / 2 / 3 13 / 1 / 3 10 / 3 / 4 9 / 4 / 1

when there are more than 2 classes.) In all of these examples
(and many others), we see that MM+M — a composition of
MCMI[min] and MU — typically does at least as well as either
of these two approaches individually, and often better.

Even though the MCMI[avg] approach (of averaging over
the possible y values) is intuitive, the PIMA graph shows
that it can work worse than the (at first counter-intuitive)
MCMI[min] system. But not always: MCMI[avg] is better than
MCMI[min] for BREAST.

Our MM+M did not always win: The final graph shows
that MU is best for the VOTE database. We see, however, that
MM+M is still close.

Of course, these 4 graphs are only anecdotal. Moreover,
even here we find that different active-learners are best for
some, but not all, of the 100 evaluation points, where each
corresponds to a specific number of additional labeled in-
stances. We present two evaluations to help quantify this
comparison. First, we quantify the quality of the differ-
ent learners by counting the number of times that one al-
gorithm was significantly better than another over the 100
evaluation points, at the p < 0.05 level based on a 2-sided
paired t-test. (We did not not bother with a Bonferroni cor-
rection, as this is just to quickly determine which differences,
at each specific evaluation point, appears significant.) We
used this to compare MM+M with each other active learner
A ∈ { MU, MCMI[min], MCMI[avg] }, over all 17 databases.
The results are shown in Table 1, whose entries are of the
form “#MM+M-wins / #A-wins (s)”, where A is the algo-
rithm associated with the column. (We will explain the paren-
thesized “(s)” value below.) An entry is bold if MM+M was
statistically better at least 5 more times than it was statistically
worse. Each entry in the “TOTAL W/L/T” row shows the
number of datasets where MM+M “dominated” by this “> 5

measure”, when it lost by this same quantity, versus tied. We
also note that, wrt these 4 active learners, our MM+M was the
best active learner for 11 of the 17 databases (in that it was
at least as good as the other 3 approaches, and strictly better
than at least one); we marked each such database with a “∗”.

To describe our second set of evaluations, note that the 100
numbers {acc( D, A[m] )}100

m=1 characterize the performance
of A on D. We therefore ran a Wilcoxon signed rank test to
determine whether these scores were significantly better for
MM+M, or for the “challenger” associated with the column.
This produced the parenthesized value “(s)” in each entry in
Table 1, which is “+” if this signed rank test suggests that
MM+M is statistically better than the alternative algorithm A
at the p < 0.05 level, is “-” if this test suggests that A is
statistically better at p < 0.05, and is “0” otherwise. (Hence,
this test suggests that MM+M was statistically better than MU
on the AUSTRALIAN database, but it was statistically worse
on the BREAST database, and is comparable for CORRAL.)

The numbers at the very bottom of Table 1 are the
totals for this signed rank test; they are in a similar form
as the first evaluation, i.e., the number of datasets where
MM+M was better/worse/tied. Hence, the Wilcoxon
signed rank test shows that MM+M is statistically better
than MU for 12 of the 17 datasets, worse on 3, and tied
in the remaining 2. Notice the results of this Ranked
Sign test is very similar to our other (ad hoc) scoring
measure. We also computed 2-sided t-tests over this
data, and found that it also produced very similar results;
see http://www.cs.ualberta.ca/˜greiner/
RESEARCH/OptimisticActiveLearning .

We also considered two other active learners. The “RAN-
DOM” learner simply selected instances at random. The final
learner, “MU-SVM”, uses a (linear kernel) SVM, and selects



the instance closest to the classification boundary — i.e., this
is a variant of the “most uncertain” selection criterion. (Note
we only consider the 14 binary databases here.) Using the
evaluation measures shown above, the results of our experi-
ments appear in the final two columns of Table 1.

These results confirm that our MM+M algorithm works ef-
fectively — and appears better than the other algorithms con-
sidered here. We note, in particular, that under either test
considered, our MM+M is better than any of the other active
learners, in at least twice as many databases.

5 Conclusion
Future Work: Section 3 motivated why our MM+M algo-
rithm should work, and Section 4 provided evidence that it
does. It would be useful to augment this with a more for-
mal theoretical analysis, one that could precisely character-
ize those domains where MM+M is guaranteed to work ef-
fectively, or better, optimally. This may depend on both the
instance distribution P (x ) as well as the nature of the condi-
tional distribution P ( y |x ), (e.g., linearly separable or not),
and also perhaps on the initially provided labeled instances.
Investigating better on-line adjustment strategies is another
direction.
Contributions: This paper explores the insight that an active
learner should identify instances whose label will help deter-
mine the labels of the other unlabeled instances. This leads to
a novel approach: select the instance that provides the max-
imum conditional mutual information about the labels of the
unlabeled instances, given the labeled data, based on an op-
timistic assumption about the label for each instance — the
“min” in (6). When this optimistic assumption fails for an in-
stance (i.e., when the real label does not match the predicted
optimistic one), our MM+M selects one MU-instance before
reverting back to MCMI-instances.

Our empirical results demonstrate first that our MM+M
works effectively, and second that its effectiveness depends
on its two major design decisions — the counter-intuitive
“min” in (6) and the on-line “MU-correction”.

For more details about the experiments, as well
as other insights about the MM+M algorithm, see
http://www.cs.ualberta.ca/˜greiner/
RESEARCH/OptimisticActiveLearning .
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