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ABSTRACT
Motivation: A DNA-microarray measures the gene expression levels
of tens of thousands of genes for a particular sample, correspon-
ding to some specific experimental condition. Our goal is to learn
a microarray classifier that can distinguish different classes — e.g.,
to predict which patient will respond well to a treatment, based
on the data from his/her microarray. Unfortunately, the large num-
ber of genes and the small number of samples make building such
classifiers very challenging.
Results: This paper proposes a method for learning a microarray
classifier by first reducing the dimensionality of the data matrix using
biclusters, where each bicluster is a subset of genes and a subset
of samples whose expression values have similar patterns. We pro-
pose a novel algorithm for finding biclusters from the microarray data,
based on the best rank-1 matrix approximation, then show how to
use these biclusters to classify novel samples. We demonstrate that
our method works effectively by comparing its prediction accuracy
with that of other classifiers, including one using another bicluster
algorithm.
Contact: {nasimeh, greiner}@cs.ualberta.ca

1 INTRODUCTION
Biologists use DNA-microarrays to measure the gene expression
levels of biological samples, where different samples may corre-
spond to different experimental conditions, different states of a
tissue (e.g., diseased vs healthy), different individuals, etc. Users
analyze such data to understand how expression levels differ in
different conditions, which can help determine which genes are
involved in some disease, suggest biomarkers of a specific disease,
propose targets for drug intervention, and enable the use of microar-
rays as a screening tool. Such results also have very important
applications in pharmaceutical and clinical research (McLachlan
et al., 2004).

This paper focuses on classification: e.g., given a patient’s
microarray gene expression data, predict whether that patient has
cancer or not, or whether that patient will respond to a certain type
of treatment or not? Learning such a classifier is challenging for
several reasons, including the dimsion of the training data: there are
typically very few samples with too many features, often less than a
hundred samples versus more than 50,000 genes.

One approach around this involves reducing the dimensionality of
the data, using perhaps LDA (Somorjai et al., 2003) or SVD (Klu-
ger et al., 2003). We use an alternative, novel way to reduce the
dimensionality, based on first finding the “biclusters” within the
data. Notice this differs from traditional clustering methods, such
as hierarchical and K-means approaches, that seek various sets of
genes that are similar over all samples (or perhaps sets of samples
that are similar over all genes). By contrast, a bicluster is a specified
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Fig. 1. Clustering versus Biclustering

subset of genes that are similar for a specified subset of samples; see
Figure 1.

This has a biological motivation, in that we expect that some con-
dition, active in some patients, will trigger some subset of genes,
which means that that subset of genes will be co-regulated and co-
expressed (that is, correlated) for the patients with that condition.
But only for those patients; we expect those genes to behave essen-
tially independently under other conditions (Madeira and Oliveira,
2004).

We describe below our particular approach, ROBIC, for finding
these correlated genes and patients, based on the component values
of the principle eigenvectors. There are many other techniques that
also use eigenvectors to reduce the dimensionality of a space. These
other approaches, however, work by first projecting the instances
onto the space defined by the eigenvectors associated with largest
eigenvalues; by contrast, our approach explicitly considers the spe-
cific components of some eigenvectors, and uses these real values to
find the (discrete) subset of genes and subset of patients belonging
to each bicluster; see Section 3.1.

We then identify each patient with his/her membership in these
biclusters, in that bit #i is 1 for a patient if this patient belongs
in bicluster #i. Hence, this process reduces the dimensionality, by
mapping each patient-record of say 50,000 real values, to a small
number (say 30) of bits. Our system then uses some learning algo-
rithm (e.g., Naı̈veBayes or linear SVM) to produce a classifier over
these 30-tuples; see Figure 2.

Notice this method is implicitly selecting a subset of genes from
the original space. For example, if biclusters #5 and #7, based
respectively only on genes { g1, g6, g93} and { g1, g20, g21, g45 },
are sufficient to produce the classification, then we are implicitly
asserting that these 7 genes are responsible for the class label. (But
this might not be based on the actual gene expression values for
these genes; see Section 4.2.)

This paper’s two main contributions are. . .
• An algorithm, ROBIC, for finding biclusters from microarray

data, based on the best rank-1 matrix approximation.
• A method, BIC, for using such a biclustering algorithm to learn

a sample classifier.

c© Oxford University Press 2007. 1
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Fig. 2. The BIC “Bicluster Classifier” system first finds the biclusters within
the training data (without class labels) and test data, then learns a classifier
on these “bicluster member” features, which it uses to predict labels for the
test data

We demonstrate that this system works effectively across a num-
ber of standard DNA microarray classification tasks. The literature
shows that many of the “diagnostic” tasks — e.g., predicting whe-
ther a patient has some type of cancer — are relatively easy, as a
small number of genes are sufficient to produce very high classi-
fication accuracy. We focus instead on “prognostic” predictors —
e.g., predicting whether a patient (who is known to have cancer)
will respond to some specified treatment. These tasks are more dif-
ficult both because there tend to be no small set of (say 1 to 5) genes
whose expression levels distinguish the classes, and also because
the sample sizes are yet smaller, as they include only the subset of
patients with the disease.

Section 2 provides background information on biclustering
methods and classification tasks, and summarizes previous work
related to biclustering and classifying microarrays. Section 3 des-
cribes the biclustering problem and the structure of our algorithms:
ROBIC for finding biclusters and BIC for using biclusters to clas-
sify microarray samples. Section 4 describes the results of applying
our biclustering and classification method on a number of publicly
available microarray datasets. We also compare our results to those
of other approaches (including ones based on an alternative biclu-
stering algorithms) on these datasets, and provide a statistical test
(“permutation test”) to demonstrate that our results are significant.

Greiner (2007) provides additional information related to this
work, including the datasets used in the studies reported here, as
well as other studies, and also other relevant statistics about our
results.

2 RELATED WORK
2.1 Biclustering Algorithms
2.1.1 The Problem The microarray data is stored in an n ×
p matrix M , which is defined by a set of rows (genes),
G = {g1, g2, . . . , gn}, and a set of columns (samples), S =
{s1, s2, . . . , sp}, where |G| = n � p = |S|. Each element
mij is a real value, which usually represents (the logarithm of) the
expression level of gene i for sample j.

A bicluster is a subset of genes that have a similar pattern over
a subset of samples. This corresponds to a sub-matrix MIJ of M ,
where I ⊆ G is a subset of genes (rows), and J ⊆ S is a subset of
samples (columns). Our challenge is: Given a data matrix, M , find
(and then use) a set of K biclusters, Bk ≈ MIk ,Jk

where for each

k = 1, . . . , K, the set of Bk’s genes Ik ⊆ G have a similar pattern
within the set of Bk’s samples Jk ⊆ S.

2.1.2 Previous Work The Plaid system (Lazzeroni and Owen,
2002) models gene expression data M = (mij) using a set of
biclusters (which they call “layers”)

mij =
K

X

k=1

θijk [ µk + αk
j + βk

i ] (1)

where K is number of biclusters, θijk is 1 if bicluster k includes
position (i, j) and 0 otherwise, and the values 〈µk, {αk

j }j , {β
k
i } 〉

are associated with bicluster k.1 Hence, if a bicluster k includes
(i, j), then it contributes a value there that is the sum of a back-
ground value µk , a value βk

i associated with the column i and a
value αk

j associated with the row j. Note that a position can belong
to 0, 1 or more biclusters.

While the Plaid model is “additive”, we consider a multiplicative
variant:

mij =
K

X

k=1

θijk [ αk
j × βk

i ] (2)

and also allow each position to belong to 0, 1 or more biclusters.
Kluger et al. (2003) also seek a multiplicative model. That work,

however, considers only the challenge of identifying a single biclu-
ster, but not finding multiple biclusters, nor the interactions between
them. Their approach uses singular value decomposition, SVD, to
obtain a set of eigenvalues and then project patient-tuples onto the
associated eigenspaces. While our ROBIC also uses SVD, it does
not deal with eigenvalues but instead deals with the components of
the leading eigenvector. (See Section 2.2 below.)

Neither of these approaches connect their biclusters to a classifi-
cation task; they instead evaluate the quality of a bicluster by, for
example, testing against a null hypothesis of no structure in the data
matrix.

Madeira and Oliveira (2004) provide a comprehensive survey that
analyzes a large number of existing approaches to biclustering, orga-
nizing them according to the type of biclusters they can find, the
patterns of biclusters that are discovered, the methods used to per-
form the search, and the target applications. Also, Preli et al. (2006)
introduce their new algorithm (Bimax), then provide a systematic
comparison and evaluation of prominent biclustering methods, as
well as clustering and hierarchical clustering, for the purporse of
gene classification. They conclude the bicluster-based approaches
are the most effective.

2.2 Relation to SVD-Based Methods
There are many systems that use SVD to reduce the dimensio-
nality of microarray data (Alter et al., 2000; Wall et al., 2003;
Ding, 2003; Hastie et al., 2000). These SVD-based systems first
compute a list of eigenvalue/(row)eigenvector/(column)eigenvector
triples 〈 v(i), α(i), β(i) 〉i from M , where here v(i) ∈ < (sorted
by |v(1)| ≥ |v(2)| ≥ . . . ), α(i) ∈ <n and β(i) ∈ <p, such that
M ≈

P

i v(i)α(i) × β(i)T . They then consider only the k � p, n
largest eigenvalues, and afterwards project each p-ary patient row
vector M(j, :) onto k real values M(j, :)T · [β(1), β(2), . . . , β(k)],
whose ith component M(j, :)T · β(i) depends on all component of

1 Their model also includes an additive global offset µ0.
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both the M(j, :) and β(i) vectors. They could then use these smaller
vectors, perhaps as input to a classifier.

Our ROBIC system is significantly different as it maps each pati-
ent row vector M(j, :) onto k bits (see Table 1) where the ith is
1 if this patient belongs to the ith bicluster, which (we will see)
is true if the jth component of the ith eigenvector β(i) is signifi-
cantly larger than the other values in this eigenvector. N.b., this does
not explicitly involve taking a dot-product, nor require using any
other information from M(j, :). (Another critical difference is that
ROBIC computes these eigenvalue/eigenvectors triplets sequenti-
ally, while standard SVD systems compute all of these triplets at
once; see Section 4.2.)

2.3 Classification Algorithms
Many researchers have developed supervised learning methods to
produce classifiers that use a sample’s gene expression profile to pre-
dict if that sample belongs to a known class or not. van’t Veer et al.
(2002) uses one such technique to try to predict the clinical out-
come of breast cancer — i.e., predict whether a patient will remain
disease-free for a certain period of time. They first hard-selected
231 genes (of the 25, 000 genes on the microarray) that were signi-
ficantly associated with the disease outcome, based on all samples,
then ranked these genes based on the magnitude of the correlation
coefficient. They then sequentially added the top 5 remaining genes
(based on this ranking), each time evaluating the quality of the cur-
rent gene set by the cross-validation classification accuracy of the
classifier based on that subset. They obtained an accuracy of 83%
using 70 of these genes.

Unfortunately, the authors selected the features (genes) by loo-
king at the entire dataset. Instead, they should have done the feature
selection within each cross-validation fold. When this correction,
their prediction accuracy went down by 10%, to 73% (Molla et al.,
2004).

We will use this Breast Cancer dataset in our studies (see P1 in
Table 4 below), and also use “in-fold feature selection”.

Golub et al. (1999) developed another method for class predic-
tion: They first find the genes whose expression values were strongly
correlated with the class distinction to be predicted, then developed
a method, “neighborhood analysis”, to define an “idealized expres-
sion pattern”, corresponding to a gene that is uniformly high in one
class and uniformly low in the other. Then they use a fixed subset of
“informative genes”, chosen based on their correlation with the class
distinction. Each informative gene casts a weighted vote, which are
summed to determine the winning class as well as a “prediction
strength”. They applied their method to a human leukemia data-
base, producing a predictor for AML versus ALL class prediction.
This predictor made strong prediction for 29 of the 34 samples, and
the accuracy was 100% for those 29 samples. Notice this was “trai-
ning set accuracy”; we provide generalization error for an extension
of this dataset, D3.2

They they tried to use their neighborhood analysis system to pre-
dict response to chemotherapy (a prognostic task), but found no
informative genes, and found no evidence of a strong multi-gene
expression signature correlated with clinical outcome. We report our
result on this data set (P2) in Section 4.

Singh et al. (2002) also used a nearest neighbor (k-NN) approach,
with gene selection, to predict the class label of prostate cancer

2 In general, the Pi and Dj here refer to datasets listed in Tables 4 and 3.

samples (D4). They then used the same approach to predict the cli-
nical outcome, and here obtained 90% accuracy for a 5-gene model
with 2 nearest neighbors.

They then used a permutation test (Mielke and Berry, 2001) to
determine whether their results were statistically significant. Here,
the class labels for the data points are randomly permuted — i.e.,
randomly re-arranged, keeping only the original probability distri-
bution of the labels. (Hence if 57% of the labels are positive in the
original dataset, then 57% of the instances in the permuted set, will
be labeled positive.) They then apply their learning and classifica-
tion system to this new data set, with the permuted labels. Given that
there is no “signal” in the labels, we expect the prediction accuracy
here to be around baseline — here 57% — unless their algorithm
is finding information that is not there. This is why they compare
the results of their algorithm on the original unpermuted data (say
90.1% accuracy), with results of their algorithm on the permuted
data, for (here) 1000 separate permuted datasets — each of which
has a different permutation of the labels. In particular, they ask
how often any (5-fold cross-validated) permutation score exceeded
theirs, as a measure of the chance that their algorithm achieved its
score on the original data by chance alone. They found accuracies
that matched or exceeded their original system, 37 times. We also
use their datasets (D4 and P4 below) and employ a permutation test
to determine validity of our results.

Gordon et al. (2002) described yet another way to use gene
expression measurements to predict clinical outcomes in cancer.
They select 2 genes randomly, then use the ratios of their expres-
sion levels and choose thresholds to accurately distinguish between
different classes of samples. This approach works fine for predicting
different types of tumors in lung cancer in mesothelioma (D2) but
when applied on the Brain clinical outcome dataset (P3 (Pomeroy
et al., 2002)), their prediction accuracy was only 68%.

The “shrunken centroid method” (Tibshirani et al., 2002) is
widely used for classifying microarray data. It shrinks the class
centroids (by a shrinkage parameter δ, typically determined by a
cross-validation process) toward the overall centroids after standar-
dizing by the within-class standard deviation for each gene. This
standardization has the effect of giving higher weight to genes
whose expression is stable within samples of the same class. We
compare our system with this approach below.

Pranckeviciene and Somorjai (2006) argues that one should first
use feature selection to identify a good, small subset of the genes,
and provides a particular method, LDA EX-FS, for this task. They
compare the classification results obtained with four different clas-
sifiers, using this reduced number of genes. For microarray classifi-
cation, in general, they found the best classifiers are SVM and the
shrunken centroids methods, especially when run on a small selec-
tion of good features. In addition, most findings confirm that feature
selection leads to better classification performances, and that it is
generally advisable to perform some dimensionality reduction, or
at least exploratory analysis prior to classification. We borrow their
ideas, of using feature selection (although of a different method,
based on biclusters), and also using SVMs.

3 METHODS
This section describes the structure of our ROBIC algorithm for
finding the biclusters, and our BIC system for using biclusters to
classify microarray samples.
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3.1 Finding Biclusters, ROBIC
We view each bicluster as a sub-matrix MIJ whose entries are “mul-
tiplicatively correlated” — that is, we identify each sample j ∈ J
with a real value βj , and each gene i ∈ I with a real value αi, and
then view the matrix value mij ∈ MIJ as approximately αi × βj ;
see Equation 2. Perhaps genes I = {g1, g2, g3} are correlated, in
that their expressions are in a 1 to 3 to 2 ratio. The actual expression
values, however, depend on the patient: here patient p2 is 10 times
as responsive as patient p1, and patient p3 (resp., p4) is 2 times
(resp. 4 times) as responsive as p1. Moreover, we assume that pati-
ents 5 through p are not involved, and similarly genes 4 through n
are not involved. We would then set α′ = 〈 1, 3, 2, 0, 0, . . . , 0 〉 and
β′ = 〈 1, 10 2, 4, 0, 0, . . . , 0 〉. (Notice we set the values for the
uninvolved genes and patients to 0.) Of course, this numbering is
just for pedagogical purposes; we do not anticipate that the genes in
a bicluster will happen to be the first three indexed in the matrix, nor
will the bicluster happen to include all-and-only the first 3 patients
in the study.

Our challenge is to find these highly correlated sub-matrices.
ROBIC seeks each bicluster in two steps: It first seeks the best
“over-complete” vectors α and β, which include information for the
bicluster, as well as non-zero values for the other genes and samp-
les. It then uses these vectors to find the subset of genes / samples
that belong to the bicluster — as the genes/samples with the largest
component value in the eigenvector.

ROBIC actually needs to find a set of biclusters. So after finding
the appropriate α and β vectors, it will subtract their outer product
from the original matrix to produce a diminished matrix, from which
it then again seeks the best bicluster, and so forth. Note that a sin-
gle gene may belong in more than 1 bicluster, as might a single
patient; in fact, some (patient, gene) pairs can participate in several
biclusters. Also, some genes and some patients can participate in no
biclusters; see Equation 4. We give details below. The next section
describes BIC, which uses these biclusters to classify new patients.

Given a large n × p matrix M (e.g., 50, 000 × 80), ROBIC first
finds two vectors, α and β, of sizes |α| = n and |β| = p that
minimize

‖M − α βT ‖ =
X

ij

(mij − αiβj)
2. (3)

that is, we seek the best (that is, least squared error) rank-1 appro-
ximation of M . It is well known (Golub and Loan, 1989; Stewart,
1973; Leon, 1980) that these vectors correspond to the eigenvectors
of the largest eigenvalue, which can be computed using standard
singular value decomposition (SVD) (Golub and Loan, 1989)

[α, v, β] = SVD(M, 1)

(Technically the β used in Equation 3 is v × β, where v ∈ < is the
largest eigenvalue.) We let α ∈ <n represent the genes’ vector and
β ∈ <p represent the samples’ vector.

ROBIC then sorts the absolute values in α and β in descending
order producing α(s) and β(s) — see Figure 3[Top] — and re-
arranges the rows and columns in M to match this order, producing
Msorted.

ROBIC then applies a “hinge function” to α(s) (resp., β(s)) to
identify the subset of genes (resp., samples) that belong to this bic-
luster, which are the ones whose associated eigenvector components
are largest.

ROBIC( M, K, h(·) ): Bicluster Membership
% M is data matrix, K is # of biclusters, h(·) is hinge function

M (1) = M .
for k = 1..K do

1. Compute the largest singular value decomposition of M (k),
[α, v, β] = SVD(M (k), 1)
• α × v × βT = best rank-1 approximation to M (k)

• α (resp., β) represents the genes (resp., patients)
2. α(s) = Sort(α); β(s) = Sort(β)

3. M
(k)
Sorted := BiSort[M (k), α/α(s), β/β(s)]

% M
(k)
Sorted rows are re-ordered to match to α(s)

% and columns, reordered to match β(s)

4. [i, j] = h(M
(k)
Sorted, α

(s), β(s))
% i (resp., j) is “hinge” value for genes (resp., patients)

5. α(s,i) := 〈α
(s)
1 , α

(s)
2 , ..., α

(s)
i , 0, 0, . . . , 0 〉

β(s,j) = 〈β
(s)
1 , β

(s)
2 , ..., β

(s)
j , 0, 0, . . . , 0 〉

M (k+1) = M
(k)
Sorted − α(s,i) · v · β(s,j)T

Bk(j) =



1 if patient j is in bicluster k
0 otherwise

Return: K bicluster memberships R = {Bk}

Fig. 4. Pseudo-code for rank-1 bicluster algorithm, ROBIC

It does this by finding the “best-fitting pair of lines”: That is,
for each i = 1, . . . , n, find the straight line that best fits the com-
ponents 〈α

(s)
1 , . . . , α

(s)
i 〉 — i.e., that minimized the squared error

— and then let e
(i)
1 be the residual squared error. Similarly let

e
(i)
2 be the residual squared error of the best fitting line for values
〈α

(s)
i+1, . . . , α

(s)
n 〉. ROBIC then sets

i∗ = argmini{e
(i)
1 + e

(i)
2 }

to be the index that minimizes the sum of these errors, and declares
that the genes from index 1 to i∗ belong to the current bicluster;
see Figure 3[Bottom]. It uses a similar hinge function to determine
which samples belong to this bicluster. (Due of the large number of
genes, our implementation uses only the first half of the genes in
the sorted vector [α

(s)
1 , . . . , α

(s)
n

2

] to find the best fitting lines for the
genes.) It also computes a bicluster-membership vector B1, whose
jth element is 1 if sample j (w.r.t. the original order) belongs to the
this first cluster.

After finding the genes and samples in the first bicluster, ROBIC
subtracts their values off from the data matrix, and repeats the same
process on the remaining data matrix to find the next biclusters; see
Equation 2.

Figure 4 summarizes our algorithm. N.b., this process does not
use the class labels for the instances.

3.2 Bicluster Classifier, BIC
We describe each sample with an n-tuple whose ith component
is the gene expression value for the ith gene. In the typical
“learning+classification task”, we will start with q such training
samples, each with a class label, and an additional u unlabeled test

4
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Fig. 3. [Top] Sorted α(s) (resp., β(s), β(s)) values corresponds to genes (resp., patients, patients), with two lines superimposed. [Bottom] Error values, for
each position. All figures are from the first bicluster; left 2 columns are from the Breast Cancer P1 dataset, while the far right is from Lung Cancer D3.

instances (typically u = 1). In general, p = q + u is much less than
n. Our goal is to predict the class labels for these u test samples,
based on their gene expression values.

Instead of directly using all n features, or selecting a subset of
these n genes, to predict the samples’ class label, we reduce the
dimension of the data matrix M from n × p real values to K × p
bits corresponding to the R = {B1, B2, . . . , BK} matrix returned
by ROBIC. Note K � n.

After augmenting the first q samples with their respective labels,
we have data of the form shown in Table 1. BIC then takes this infor-
mation, and learns a classifier based on the first q labeled samples,
which it applies to the remaining u unlabeled samples, to predict
their respective class labels. We experimented with several learners
here, and report results using “Support Vector Machines” (SVM)
and “Naive Bayes” (NB) (Alpaydin, 2004). To avoid over-fitting,
it is important to use only a subset of the biclusters. We therefore
use Weka’s built-in in-fold feature selection algorithm to find the
number of biclusters that give maximum prediction accuracy on test
data; see Section 2.3. Figure 5 sketches our basic bicluster classifier
algorithm, BIC. Note our system corresponds to BIC(ROBIC, . . . ).
We will also consider other variants below.

4 EXPERIMENTAL RESULTS
Our goal is to produce an effective classifier of high-dimensional
microarray data. To evaluate our approach, we therefore applied our
BIC(ROBIC, . . . ) system to several publicly available datasets, and
compared our results with results obtained using other approaches,
including some based on an alternative type of biclusters. In each
case, our ROBIC system seeks K = 30 biclusters from the data set.

Table 1. The “bicluster membership” matrix, R, whose rjk element is 1

iff the jth sample is in the kth bicluster, augmented with the label for the
“training set” samples.

B1 B2 . . . Bk . . . BK
Label

Sample Class
Sample 1 1 1 . . . 0 . . . 1 +
Sample 2 1 0 . . . 0 . . . 0 −

...
...

...
...

...
...

...
...

Sample j 1 1 . . . 1 . . . 1 +
...

...
...

. . .
...

. . .
...

...
Sample q 1 1 . . . 0 . . . 1 +

Sample q + 1 0 0 . . . 0 . . . 1
...

...
...

. . .
...

. . .
...

Sample q + u 1 1 . . . 0 . . . 0

4.1 Prognostic Datasets
We first considered datasets for predicting the clinical outcome of a
certain treatment; see top “1”-labeled row of Table 4. All but one of
the datasets were complete — i.e., included a value for each gene-
sample pair. For that one incomplete dataset (P1, Breast Cancer),
we found that 2 of the patients were missing values for roughly half
(11,776) of the genes. We therefore removed those two patients.3
We then removed a gene if its expression value was missing for any

3 Section 4.3 discusses the ramifications of this removal.
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BIC( B(·), A(·), UTrain, UTest, LTrain): LTest

% B(·) is the biclustering algorithm (e.g., ROBIC(·, 30, . . . ) or Plaid);
% A(·) is the learning algorithm (e.g., SVM or Naı̈veBayes);
% UTest is unlabeled test data; UTrain is the features associated with the training data;
% LTrain is the class labels associated with the training data; the returned LTest are the predicted labels for the test data

1. R = B(UTrain ∪ UTest, . . . )
% . . . produces biclusters based on the unlabeled part of the training set and the test set. (This may involves feature selection.)

2. C = A(R|Train + LTrain)
% . . . is the classifier produced from the Training-set portion of R along with the associated training set labels

3. For i = 1..u, LTest[i] = C(RTest[i])
% Use classifier C to predict the class label of each sample in the test set. RTest[i] is the q + ith row of R.

Fig. 5. Pseudo-code of Bicluster Classifier algorithm BIC

Table 2. Empirical Results: Prediction accuracies of various learners, using 30 biclusters and 5-fold cross validation

Info/Dataset P1: Breast Cancer P2: AML P3: Brain P4: Prostate
(Outcome) (Outcome) (Outcome)

(van’t Veer et al., 2002) (Golub et al., 1999) (Pomeroy et al., 2002) (Singh et al., 2002)
#Samples 76 15 60 21
#Genes 23,625 7,129 7,129 12,600

1 Class distr’n 32 / 49 = 57.89% 8 / 7 = 53.33% 39 / 21 = 65% 8 / 13 = 61.90%

2 Original
Result

73% 78% 90%
3 Naı̈veBayes 63.18% 46.67% 63.33% 47.62%
4 SVM 67.11% 53.33% 65% 47.62%
5 PAM 83% 60% 62% 38%
6 BIC(Plaid,NB) 63.16% 73.33% 65% 71.43%

# of biclusters 1 19 1 6
7 BIC(Plaid,SVM) 63.16% 60% 65% 61.90%

# of biclusters 1 10 1 2
8 BIC(ROBIC,NB) 88.16% 80% 95% 76.19%

# of biclusters 3 30 2 1
9 BIC(ROBIC,SVM) 90.79% ± 7.6 80% ± 18.2 95% ± 7.5 85.71% ± 12.0

# of biclusters 2 16 2 13
10 Permutation Test

• Average 54.08% 51.66% 60.50% 56.77%
• # above
BIC(ROBIC,SVM)
value

0
1000

27
1000

0
1000

22
1000

of the remaining patients; this meant removing 856 of the 24,481
genes.

The remaining rows of Table 4 present the prediction accuracies
of various algorithms for the data sets, based on 5-fold cross-
validation. The bottom of row 1 shows the “base-line” percentage,
which is the accuracy of using the majority class. The second row
presents the result of the original study. Rows 3 (resp., 4) show the
result for applying Naı̈veBayes (resp., SVM) classifiers directly on
the original data matrix, M . Row 5 corresponds to using shrun-
ken centroids (PAM; (Tibshirani et al., 2002)), which is one of the
standard algorithms for learning classifiers for microarray data. We

empirically found setting δ = 0 worked best for the BreastCancer
dataset; we therefore continued to use this setting for the other data.

Row 6 contains the results for BIC(Plaid, NB): i.e., finding the
biclusters using the Plaid (Lazzeroni and Owen, 2002) biclustering
algorithm (rather than our ROBIC), then using Naı̈veBayes as the
sample classification algorithm. The number under the prediction
accuracy shows the number of biclusters used to obtained the speci-
fied accuracy. (Recall we selected a subset of biclusters using in-fold
feature selection.) Row 7 differs from row 6 only by using SVM (not
NB) for classification, BIC(Plaid,SVM). Our main results appear in
rows 8 and 9, which show the prediction accuracies based on the bic-
lusters found using our BIC(ROBIC, NB) and BIC(ROBIC, SVM)
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respectively. We provide the standard deviation for the BIC(ROBIC,
SVM) results. The last row in Table 4 gives the results of a 1000
trial permutation test. We see, for example, that the average accu-
racy of BIC(ROBIC, SVM) over 1000 permutations of the Breast
Cancer dataset was 54.08%, and that none of these 1000 individual
scores ever exceeded the 90.79% score on the original data. These
values suggest that our AML(Outcome) results are significant with
p ≤ 0.027 and our Prostate(Outcome), with p ≤ 0.022.

4.2 Other Experiments
So far, focused on the difficult “prognostic” datasets. We also ran
our algorithm on the typically easier “diagnostic” ones. The results
appear in Table 3.4 We see, again, that our BIC(ROBIC,SVM)
system performs well, on these easy tasks as well — consistently
obtaining 85% accuracy, or better. In many cases, the first biclu-
ster alone is sufficient to produce these results, as it easily splits
into the classes; see right-most pair of graphs in Figure 3, for Lung
Cancer (D3).

One concern is our methodology, of finding biclusters from both
the test and (the unlabeled portion of) the training data. While this is
clearly appropriate in the transductive framework (Tong and Koller,
1998), it does not directly match the canonical inductive frame-
work, which typically involves classifying a single instance at a
time, based on a classifier learned from the training set.5

To match the more familiar model, we considered learning a
classification function for each bicluster, based only on the trai-
ning data. That is, suppose we determine that genes {g1, g2, g3}
belong to bicluster#1, which includes samples {s1, . . . , s30} but
not {s31, . . . , s50}. We would then learn a classifier that, given the
expression values of these 3 genes, predicts whether the associated
sample belongs in the cluster or not.

Notice this “bicluster membership predictor”, BMP1, was based
only on the training data. Hence, the training phase would pro-
duce K = 30 such BMPis — one for each bicluster — and also
a classifier that maps from these K bits to a class label, corre-
sponding perhaps to the disease outcome. (This is reminiscent of
stacking (Wolpert, 1992).) Then, to classify a novel test sample, we
would run the K BMPis on that sample’s data to produce K bits (or
fewer if used some feature selection), then let BIC use those values
to predict the outcome. We did try this but found that this approach
did not work well. For example, for the Breast Cancer dataset, this
method produced a (5-fold cross-validated) prediction accuracy of
only 73.75%.

Towards explaining this, recall that our biclusters are actually
built sequentially: bicluster#k is based on the matrix M (k) formed
after subtracting off biclusters numbered 1 to k-1. So a classifier
learned on the values of set of genes associated with M (k) will not
perform well for a novel patient whose expression values correspond
to M (1). Nor can we train on the M (1) data, as each individual
mij value is actually the sum of all biclusters that include this
pair (Equation 2), which means these membership functions are not

4 Greiner (2007) attempts to compare to these results to the numbers
reported in the literature, and explains why this is difficult.
5 In addition, our model also requires us to keep and use all of the training
instances; in this way, it is like nearest neighbor (Alpaydin, 2004). Also, as
the biclusters are learned independently from the labels, there is no chance
that we are inadvertently “cheating” (Molla et al., 2004).

independent — a patient’s membership in one bicluster might throw
off his membership in another.

Our ROBIC system finds the top pair of eigenvectors from a
matrix, then subtracts their (truncated) outer-product and recurs, fin-
ding the top pair of eigenvectors from the “reduced” matrix, and
so forth, K = 30 times. Another obvious approach is simply to
find the top 30 pairs of eigenvectors at once — i.e., simply compute
SVD(M,30) once, rather than (in essence) computing SVD(M,1) 30
times. We found, however, that this did not work. For the Breast
Cancer dataset P1, the (5-fold cross-validated) prediction accuracy
was only 60.53%. To understand why, notice that ROBIC does not
deal with the complete eigenvectors, but instead “truncates” them
by setting most of the values to 0; see Step 5 of Figure 4. This
non-linearity makes a significant difference.

We also experimented with a number of alternative hinge functi-
ons; see (Asgarian, 2007). None worked as well as the “best-2-line”
hinge function described above.

4.3 Discussion
The data in Tables 4 and 3 suggest several obvious conclusions:
First, we see that our BIC(ROBIC) system works extremely well:
It produces at least 80% accuracy across all 8 different datasets, and
over 90% in 3 of them! It is at least as good as many of the other
obvious standard algorithms, and appears better than most, especi-
ally on the difficult prognostic datasets.6 This is reinforced by the
permutation tests, which strongly suggest that there is a signal in
the bicluster membership values, which can be used in predicting
prognostic and diagnostic information.

Second, we see that BIC(ROBIC, SVM) dominates BIC(ROBIC,
NB), which is why we advocate using this particular classification
system.7

The comparison with BIC(Plaid, . . . ) suggest that our ROBIC
biclusters, based on “multiplicative relations between genes and
samples”, can produce better classifiers than biclusters based on
“additive” relations; i.e., Equation 2 appears better than Equation 1
for this task.

We found that the actual classifier typically involved several diffe-
rent biclusters. In particular, it is not based just on the first bicluster
found. This is not surprising: The claim that a set of genes within a
subset of patients are correlated does not imply that this correlation
is related to any pre-specified condition. So the first bicluster found
might relate to some other factor (e.g., gender, or some other disease
or condition). Moreover, we may need to “subtract” off the influence
of this dominant bicluster to reveal the bicluster that corresponds to
the specific condition associated with the diagnosis or prognosis.

4.4 Bicluster Characteristics
Our ROBIC system found 30 biclusters for each of the 8 datasets
(4 prognastic and 4 diagnostic). There were a wide range of sizes

6 Yes, we did remove 2 of the 78 patients from the Breast Cancer dataset P1.
To be fair to the original publication, which considered all 78 patients, we
could declare that our system misclassified those two patients. This would
drop the accuracy of our BIC(ROBIC,SVM) system to 90.79 × 76/78 =

88.46. This is still significantly better than 73%. Notice all of the other
systems listed in Table 4 were based on the set of 76 patients.
7 We had earlier explored other learning algorithms in the role of SVM here,
including decision trees, nearest neighbor, and SVM with various kernel, but
found that SVM with the linear kernel works best.
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Table 3. Empirical Results: Prediction accuracies for the diagnostic datasets.

Dataset D1: Colon D2: Lung Cancer D3: AML-ALL D4: Prostate Cancer
Info (Alon et al., 1999) (Gordon et al., 2002) (Golub et al., 1999) (Singh et al., 2002)
#Samples 62 181 72 136
#Genes 2,000 12,533 7,129 12,600

Class distr’n 40 / 22 = 64.52% 150 / 31 = 82.87% 47 / 25 = 65.27% 77 / 59 = 56.62%
BIC(ROBIC,SVM) 88% 96.13% 84.72% 86.77%

# of biclusters 3 1 10 1

of these 240 biclusters. Figure 6 present two histograms that show
the distributions of the number of patients (resp., genes) that appear
in each bicluster. (To simplify the later graph, we omitted the one
bicluster that included over 4500 genes.) Notice almost all of the
biclusters involve a small number of patients (median 5.5), and
small number of genes (median 31.5). The following table shows
how many patients (resp., genes) were members of no biclusters,
exactly 1 bicluster, and more than 1:

# of patients in: # of genes in:
0 biclusters: 127 53563
1 bicluster: 81 18172

>1 biclusters: 415 13010

(4)

As expected, we see that most patients belong to many biclusters,
and that the most genes participate in none. Greiner (2007) presents
all of this data.

4.5 Implementation and Timing
The ROBIC code (for finding the biclusters from M ) is written
in Matlab. A script, written in JAVA, transforms this resulting R
matrix into Weka (Witten and Frank, 2005) format (ARFF). We then
use Weka for building the classifier on the transformed data and
evaluating the results.

We ran our BIC(ROBIC, . . . ) system on a Pentium 4 machine
with 1.3G memory. Calculating SVD(M,1) is relatively fast — only
a few seconds in Matlab. The slowest part is computing the mini-
mum error for two lines in the genes’ vector, which is necessary to
find the subset of genes for each bicluster. Altogether, finding each
bicluster from a data matrix that has around 100 samples and 20,000
genes takes approximately 1 minute. The subsequent Weka compu-
tation required around 30 minutes, most of this time is due to the
cost of the “in-fold” aspect of feature selection.

5 CONCLUSION
Extensions (1) While we focused on ways to use the biclusters to
predict the class of the samples, we anticipate this approach can also
be used to predict the class of the genes, mutatis mutandis. (2) We
have only tested our system on binary classification tasks. We plan
to extend it to more general r-ary classification tasks, as well as
to regression. (3) Each bicluster is based on only a relatively small
subset of the genes; it would be interesting to determine if, in fact,
these genes are associated with some specific pathways. Moreover,
we might be able to use these biclusters to suggest novel interacti-
ons (Madeira and Oliveira, 2004). (4) Our current system assumes
complete data — that is, that we have a value for each (patient,gene)
pair. We plan to explore ways to extend our system to handle incom-
plete data. (5) Finally, we will continue to seek other modifications

to our BIC and especially ROBIC systems, to further improve their
performance.

Contributions DNA microarray data contain a great deal of infor-
mation about a sample — often enough to predict a patient’s
diagnosis and prognosis. Unfortunately, as microarrays are very
high-dimensional (with many 10s of thousands of genes) and very
noisy, it can be very difficult to find the patterns that correspond to
these predictions.

This paper presents an effective way to make accurate predictions
from microarray data, by first using biclusters to reduce the dimen-
sionality of the data. We present a novel algorithm for identifying
biclusters based on the best rank-1 matrix approximation, and a
method for using such biclusters to classify samples. Our empirical
studies suggest that our overall system works very effectively across
a number of microarray datasets; and in particular, that it works bet-
ter than other standard microarray classification systems on difficult
prognostic tasks. We also show that our specific “rank-1 approxi-
mation” approach is more effective than an alternative “additive”
biclusterer, for this task.

See (Greiner, 2007) for more information about our implementa-
tion, and additional experimental results.
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