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Abstract

Many of today’s best classification results are
obtained by combining the responses of a set
of base classifiers to produce an answer for
the query. This paper explores a novel “query
specific” combination rule: After learning a
set of simple belief network classifiers, we pro-
duce an answer to each query by combin-
ing their individual responses, using weights
based inversely on their respective variances

around their responses. These variances are
based on the uncertainty of the network pa-
rameters, which in turn depend on the train-
ing datasample. In essence, this variance
quantifies the base classifier’s confidence of
its response to this query. Our experimen-
tal results show that these “mixture-using-
variance belief net classifiers” muvs work
effectively, especially when the base classi-
fiers are learned using balanced bootstrap
samples and when their results are com-
bined using James-Stein shrinkage. We also
found that our variance-based combination
rule performed better than both bagging and
AdaBoost, even on the set of base classifiers
produced by AdaBoost itself. Finally, this
framework is extremely efficient, as both the
learning and the classification components re-
quire only straight-line code.

1. Introduction

Many tasks — including fault diagnosis, pattern recog-
nition and forecasting — can be viewed as classifica-

tion, as each requires assigning the class (“label”) to a
given instance (Mitchell, 1997; Hastie et al., 2002). In
many cases, the classification function is not known a
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priori . If there are labeled data sets corresponding to
this function, we can then try to learn the classifier.

Ensemble methods, which involves first learning a
number of simple classifiers then combining their re-
sponses in some principled manner to answer a query,
have proven to be very effective (Bauer & Kohavi,
1999; Opitz & Maclin, 1999). These ensemble systems
can use belief nets (Pearl, 1988; Inza et al., 2005) as
the base classifiers. This paper proposes a new way to
combine the responses of these belief-net based classi-
fiers to a given query, based on their respective vari-

ances around their responses to the given query, which
in turn are based on the datasamples used to learn
these classifiers. Informally, if a classifier is learned
from a datasample that includes instances that resem-
ble the current query, we expect the classifier’s re-
sponse to be fairly certain, and so have a small vari-
ance. By contrast, this variance would be large from
a classifier that was based on instances that were dif-
ferent from the query. (We provide a more formal de-
scription in Section 3.2.1.) Our combination rule then
uses to these “confidences” to weigh the responses.

As an example, imagine classifier HA states the prob-
ability of +c (given some evidence) is 0.3± 0.1 and of
−c is 0.7 ± 0.1, while HB thinks the answer should
be +c with probability 0.6 ± 0.005 and −c with
probability 0.4 ± 0.005. While HA prefers −c, HB

is much more confident in its response, which fa-
vors +c. A simple unweighted average of their re-
sponses 1

2 (0.3 + 0.6) vs 1
2 (0.7 + 0.4) would return −c.

However, our ensemble classifier essentially computes
scores of 0.3/0.12 + 0.6/0.0052 = 24, 030 for +c and
0.7/0.12 +0.4/0.0052 = 16, 070 for −c, and so returns
+c. Note that the variances (and hence the weight-
ings of the classifiers) are query-specific: for a different
query, HA’s variance might be smaller that HB ’s; this
would mean that HA would have the dominant influ-
ence in the decision.

Section 2 provides a quick literature review, to place
our results. Section 3 then provides the foundations:
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specifying how to use variances to combine responses
in general, then defining the two classes of belief nets
we are considering as base classifiers (näıve Bayes and
tree-augmented näıve Bayes), and showing how to ap-
proximate the variance of their responses. Section 4
then considers a number of ways to produce a va-
riety of base classifiers to combine to form so-called
muvs1, and shows empirically that they work effec-
tively, across a number of real world examples. In
particular, we show that the muv formed from a set
of base classifiers typically works (significantly) better
than just using any of those base classifiers. We also
show significant improvements by (1) combining us-
ing James-Stein shrinkage, not simple maximum like-
lihood; (2) using bootstrap samples to train different
classifiers, not disjoint samples; and (3) using a bal-

anced sample, not one that is class-wise disjoint. This
section also shows that our “variance-based combina-
tion rule” improves on AdaBoost’s simple combination
rule, and that it works better than several other stan-
dard ways to combine probabilistic classifiers. Finally,
we consider ways to combine a set of these muv ensem-
bles, and show this can produce further performance
improvements. The webpage (Web, A) presents com-
plete details of our experiments, as well as other stud-
ies, and also provides proofs of the claims presented
here.

2. Related Work

Our muv approach is an ensemble method (Bauer &
Kohavi, 1999; Opitz & Maclin, 1999), as it first pro-
duces a set of classifiers, and then combines them to
answer each query. There are many current ensem-
ble approaches, including several (Perrone & Cooper,
1993; Krogh & Vedelsby, 1995; Sollich & Krogh, 1996;
Taniguchi & Tresp, 1997) that use variance terms
when combining the base classifiers. Our approach
is significantly different. (1) Most identify a “vari-
ance” quantity with each classifier and so use the same
weight for each test/training instance; by contrast,
we (and some others) compute an “classifier+instance

variance”, which means our system can assign different
weights to a classifier for different instances. (2) While
many estimate a classifier-variance empirically, we
can compute an instance-classifier-variance analyti-

cally (see Eqn 8), based on the sample used to train the
classifiers. (3) While we use variance to weight each in-
dividual classifier-instance at performance time, some
others (including (Krogh & Vedelsby, 1995; Sollich &
Krogh, 1996)) use it during the training stage to help
minimize the ensemble generalization error. (4) As our

1“Mixture Using Variance” belief net classifiers

derivation is based on MLE (not least squares (Perrone
& Cooper, 1993; Taniguchi & Tresp, 1997)), we were
able to easily obtain a James-Stein estimator Eqn 4,
which we found to be very effective.

There are yet other systems that compute and use
classifier-instance weights at performance time. For
example, the “mixture of experts” approach (Jacobs
et al., 1991) weights each classifier-instance 〈m, e〉 by
the probability that classifier m is appropriate for in-
stance e, P ( m | e ), which is estimated from the parti-
tioned datasample. Our model differs by using a term
based on variance to weight each 〈m, e〉 pair (Eqn 3)
and by using an analytic form (here for variance),
rather than an empirical estimate. Also, our muv sys-
tem produces a classifier by blurring together the dif-
ferent classifiers, while (Jacobs et al., 1991) selects just
one of the regressors stochastically.

3. Foundations

3.1. Using Variance to Combine Responses

In general, a “probability-variance classifier” will
return both a mean µ ∈ [0, 1] and a variance σ2 to
each specific question — e.g., its response to “What is
P (Cancer=true |Gender=male, Smoke=true, Age=old )?”
might be “0.3 ± 0.1”. (We will discuss the source
of these variances in Section 3.2.1.) Now imagine
we have a set of k such classifiers, each producing a
〈µi, σ

2
i 〉 pair for a given query. What is the best single

response to this query, based on this set of {〈µi, σ
2
i 〉}i

values?

We formulate this as a statistical estimation problem.
Assume the correct answer is λ, and view the result
produced by classifier i as an estimate of λ with noise
εi — i.e., µi = λ + εi, where εi ∼ N (0, σ2

i ) and the
εis are independent of one another and the response
λ. Then the maximum likelihood estimate of λ,

λ̂MLE =

∑k
i=1

µi

σ2

i∑k
i=1

1
σ2

i

(1)

is an unbiased estimator, whose variance is

σ2 [ λMLE ] = σ2




∑k
i=1

µi

σ2

i∑k
i=1

1
σ2

i


 =

1
∑k

i=1
1

σ2

i

(2)

To translate to our context: given a fixed set of ev-
idence E = e, let µi(c, e) = E [ Pi( c | e ) ] be the ex-
pected response produced by the ith probabilistic clas-
sifier for label c and σ2

i (c, e) = σ2 [ Pi( c | e ) ] be the as-
sociated variance. The muv-classifier would then com-
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Figure 1. Structures of two simple Belief Nets: (a) Näıve Bayes (b) Tree-Augmented Näıve Bayes

pute

q(c, e) =
1∑

i
1

σ2

i
(c,e)

∑

i

µi(c, e)

σ2
i (c, e)

(3)

for each c ∈ C, then return the largest c∗ =
argmaxc q(c, e). Hence, we weight each probabilistic
estimate with the reciprocal of the associated vari-
ance.2

We also consider the James-Stein estimator, which
is biased but with smaller variance (Lehmann &
Casella, 2003). Here we assume a prior distribution
λ ∼ N (0, τ2) with unknown parameter τ2 and want
to find the estimate λJS(µ̄, σ̄) that minimizes square
error loss, which is the posterior mean,

λ̂Bayes(µ̄, σ̄) = E [λ | µ̄, σ̄ ] =

∑k
i=1

µi

σ2

i

1
τ2 +

∑k
i=1

1
σ2

i

Since τ2 is unknown, we estimate τ2 using empirical
Bayes approach. As shown in (Web, A), the resulting
empirical Bayes estimator, called the “James-Stein
estimator”, is

λ̂JS =


1 −

∑k
i=1

1
σ2

i

(
∑k

i=1
µi

σ2

i

)2




+

λ̂MLE (4)

where (a)+ = max{0, a}.3

3.2. Belief Networks, in General

In general, a (Bayesian) belief net is a model of a
joint distribution, whose nodes represent random vari-
ables and whose directed arcs describe the dependen-
cies among the nodes. For example, in Figure 1(a),

2 (1) In general, to produce probability estimates we
would then have to normalize these values: P ( c | e ) =
q(c, e)/

P

c′
q(c′, e). Note however for binary classifiers,

we will see that σ2

i (+, e) = σ2

i (−, e), which implies that
P

c′
q(c′, e) = 1.

(2) Recall this assumes the estimates are independent.
There are obvious extensions to deal with correlated es-
timates; see (Taniguchi & Tresp, 1997).

3In our experiments, reported in Section 4, we never
needed to use this “max{0, . . . }” condition.

E1 depends directly on C, and is independent of E2

given C; and in Figure 1(b), E4 depends directly on
C and E2, etc.; see (Pearl, 1988). Each node D also
includes a “CPtable” Θ = {θd|f} that quantifies these
dependencies, with one “row” for each assignment f to
D’s parents, FD, which gives the conditional distribu-
tion for D in that context. For example, assuming C
and each Ei is binary, then Figure 1(b)’s E3’s CPtable
would have the following 22 = 4 rows4

C E2 E3 = + E3 = −
+ + θ+e3|+c,+e2

θ−e3|+c,+e2

+ − θ+e3|+c,−e2
θ−e3|+c,−e2

− + θ+e3|−c,+e2
θ−e3|−c,+e2

− − θ+e3|−c,−e2
θ−e3|−c,−e2

(5)

(There would be 2 rows for E1, corresponding to C =
+ and C = −, and only 1 row for C, which has no
parents.)

We take a Bayesian stance, where we identify each
CPtable row with a Dirichlet-distributed random vari-
able; here perhaps θE1|+c = 〈θ+e1|+c, θ−e1|+c〉 is drawn
from the Dir(3, 7) Dirichlet distribution; i.e., θE1|+c ∼
Dir(3, 7); see (Heckerman, 1998).

We often then use the expected value of each pa-
rameter; i.e., θ̄E1|+c = E

[
θE1|+c

]
= 〈 3

3+7 , 7
3+7 〉.

In general, if θD|F=f ∼ Dir(α1, . . . , α|D|), then
θ̄D=i|F=f = αi

nD|F=f

where

nD|F=f =
∑

j

αj (6)

is the “effective sample size” of this row. In fact,
Cooper & Herskovitz (1992) prove that belief net
computations using these posterior means always
produce the mean value for any inference. That is,
for any fixed query P ( c | e ) and belief net structure,
let P ( c | e, Θ ) = PΘ(c | e) be the response associated
with the Θ parameters. Then

E [ P ( c | e, Θ ) ] = P ( c | e, E [ Θ ] ) = PΘ̄(c | e) (7)

In general, we will be considering posterior Dirich-
let distributions for each CPtable row, each based on

4Here +a is a shorthand for A = + and −a for A = −.
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a prior Dir(α1, . . . , α|D|) (which we will assume has
αi = 1) and an observed sample. As we are deal-
ing with complete samples S, this has an easy form
(as the Dirichlet distribution is the conjugate prior
for the multinomial distribution): Dir(1 + #S(D =
1,FD = f), . . . , 1 + #S(D = |D|,FD = f)) where
#S(D = i,FD = f) is the number of instances in S
that have both D = i and FD = f . For example, if
there are 100 instances in S that have E1 = + and
C = +, and 200 instances that have E1 = − and
C = +, then θE1|+c ∼ Dir(1 + 100, 1 + 200).

As we are using the belief net B for a classification
task, the associated Bayesian classifier HB will return
the class label HB(e) = argmaxc{PΘ̄( c | e )}. We will
measure error as the simple empirical 0/1 loss over an
independent (e.g., hold-out) dataset S = {〈ci, ei〉}i

êrr
(S)

( B ) =
|{HB(ei) 6= ci | 〈ei, ci〉 ∈ S}|

|S|

3.2.1. Computing the Variance of a Belief
Net Response, in General

For a given structure and query, the response
q(Θ) = P ( c | e, Θ ) is a function of the parameters
Θ. As these parameters are random variables, so
is this response q(Θ). Eqn 7 provides its expected
value. Assuming the structure is correct, its variance
is asymptotically (Van Allen et al., 2001):

σ̂2 [ P ( c | e ) ] =
∑

θD|f∈Θ

1

1 + nD|f
v̄c|e(D|f)

v̄c|e(D|f) =∑

d∈D

1

θ̄d|f

[ PΘ̄( d, f , c | e ) − PΘ̄( c | e ) PΘ̄( d, f | e ) ]2

− [ PΘ̄( f , c | e ) − PΘ̄( c | e ) PΘ̄( f | e ) ]
2

(8)

where PΘ̄( · | · ) refers to the response computed us-
ing the posterior mean Θ̄. Note there is one v̄c|e(D|f)
term for each CPtable row θD|F=f . We also use its as-
sociated “effective sample size” nD|F=f (Eqn 6); given
our uniform prior and complete data assumptions,
nD|F=f = |D| + #S(FD = f). Note this σ̂2 [ P ( c | e ) ]
quantity depends only on the expected values of the
parameters and the effective sample size of each row.

To compute each v̄c|e(D|f) component, we sum over
the values of the variable d ∈ D. To help ex-
plain the various terms here, consider Figure 1(b)
where all variables are binary, and suppose the
query is P (+c | + e1,−e2,−e3, +e4 ). We would then
sum over the 15 CPtable rows {〈D,FD = f〉}, each
v̄+c|+e1,−e2,−e3,+e4

(D|FD = f) component correspond-
ing to some node D ∈ {C, E1, . . . , E4}, conditioned

on some assignment FD = f to its parents FD. One
such row, from Eqn 5, is θE3|+c,+e2

(here “FE3
= f”

is “+c,−e2”), requiring us to compute a value for
v̄+c+|+e1,−e2,−e3,+e4

(E3| + c,−e2).

While the proof underlying Eqn 8 is based an
asymptotically-Gaussian assumption, we are not sug-
gesting using that the actual form of the posterior dis-
tribution is Gaussian, especially as this response is in
[0, 1], while a Gaussian has infinite support. (Web, B)
explores the idea of instead fitting this mean and ap-
proximate variance to a Beta distribution, and shows
this posterior distribution is fairly accurate. Also,
while Eqn 8 is only guaranteed to be (asymptotically)
correct when the structure is correct, we will never-
theless apply it below in situations where we know the
structure is wrong, and observe that it still works ef-
fectively.

3.3. Näıve Bayes (NB)

The “näıve Bayes” structure assumes the attributes
(a.k.a. evidence nodes) are independent, given the
class (Duda et al., 2002); see Figure 1(a). Here,

E [ PΘ( c | e ) ] = PΘ̄( c | e ) =

PΘ̄( c )
∏

i PΘ̄( ei | c )

PΘ̄( e )
=

θ̄c

∏
i θ̄ei|c∑

c′ θ̄c′
∏

i θ̄ei|c′

To compute the variance of a näıve Bayes re-
sponse, we need to compute v̄c|e(D|f) for each CP-
table row. We will use the quantity R(c; e) =[
PΘ̄( c | e ) − PΘ̄( c | e )2

]2
. (Given that we have al-

ready computed the expected response PΘ̄( c | e ), this
R(c; e) quantity is trivial to compute.) In a slight
change of notation, we will now use +c to refer to
the value mentioned in query, and −c to refer to any
other possible value of C. Similarly, +e will refer to
the value of E appearing in the evidence part of the
query — i.e., “E2 = +e2”∈ E=e.

v̄+c|e(C|{}) =
∑

c′

R(c′; e)

θ̄c′|{}

=
∑

c′

R(c′; e)

θ̄c′
(9)

v̄+c|e(E| + c) = R(+c; e)

[
1

θ̄+e|+c

− 1

]
(10)

v̄+c|e(E| − c) = [PΘ̄( +c | e ) PΘ̄(−c | e )]2 ×
[

1

θ̄+e|−c

− 1

]
(11)

(When C is binary, then PΘ̄(−c | e ) = 1−PΘ̄( +c | e ),
which means Eqn 10 and Eqn 11 become the same.)
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3.4. Tree-Augmented Näıve Bayes (TAN)

A näıve Bayes structure is unable to express any de-
pendencies between the attributes. To begin to ad-
dress this limitation, a “tree-augmented näıve bayes”
structure, TAN, augments the NB structure by allow-
ing some edges among attributes. In particular, a TAN
structure includes a link from the classification node
down to each attribute and, if we ignore those class-
to-attribute links, the remaining links, connecting at-
tributes to each other, form a tree; see Figure 1(b).
(Hence this representation allows each attribute to
have at most one “attribute parent”.) Friedman et

al. (1997) provide an efficient “straight-line” algorithm
for learning such TAN structures given complete data,
and prove that the resulting structure maximizes the
likelihood of the data, over all possible TAN struc-
tures.

To compute the variance of a TAN response, we have
to consider CPtable rows from three types of nodes:
the root node C, the evidence node with no evidence
parents (e.g., E1 in Figure 1(b)), and all other evidence
nodes with one evidence parent (e.g., E2, E3 and E4

in Figure 1(b)). We can use Eqn 9 for C and Eqns 10
and 11 for E1. We therefore need only deal with the
evidence nodes with one evidence parent. To simplify
the notation, call this node E, with its evidence parent
F and class parent C. We need to consider 4 classes
of CPtable rows, depending on whether the value of F
matches the evidence part of the query or not (written
“+f” vs “−f”) and whether the value of C matches
the query c or not (“+c” vs “−c”).

v̄+c|e(E| +f, +c) = R(c; e)

[
1

θ̄e|+f,+c

− 1

]
(12)

v̄+c|e(E| +f,−c) = [PΘ̄( +c | e ) PΘ̄(−c | e )]
2 ×

[
1

θ̄e|+f,−c

− 1

]
(13)

v̄+c|e(E| −f, +c) = v̄+c|e(E| −f,−c) = 0

(Eqn 12 and 13 are isomorphic to Eqn 10 and 11.)

4. Experiments

This section empirically investigates how to compute
the best muv, which depends on 〈1a〉 the type of base
classifiers, 〈1b〉 the number of such classifiers, 〈2〉 how
we generate the training instance for each, and 〈3〉 ex-
actly how we combine their results.

Let MUV( kNB, 〈 boot/disj, bal/skew 〉, mle/js ) re-
fer to the muv built from k näıve Bayes classi-
fiers, combined using maximum likelihood (mle) vs
a James-Stein estimator (js), from a set of datasam-

ples produced by standard bootstrap methods vs di-
vided into k disjoint partitions, where the division
was balanced wrt the class, vs skewed. (Note that
these arguments do not apply to MUV( 1NB, 〈·,·〉, · ).)
We similarly define the 23 = 8 classes for each k:
MUV( kTAN, 〈 boot/disj, bal/skew 〉, mle/js ). In
general, the term MUV( 〈1〉, 〈2〉, 〈3〉 ) refers to the
mixture-using-variance model where 〈1〉 refers to the
type of base classifier, and perhaps the number of such
classifiers (e.g., 2-NB or 3-TAN); 〈2〉 is how to gener-
ate the different samples used to produce the different
classifiers, and 〈3〉 refers to the estimator used (either
mle or js).

We used the following 12 UCI datasets (UCI, 2006)
for our experiments, listing the name followed by
its number of classes, number of instances and
number of attributes: AUSTRALIAN(2, 690, 14),
BREAST(2, 286, 9), CLEVE(2, 303, 13), CRX(2, 690,
15), DIABETES(2, 768, 8), GERMAN(2, 1000, 20),
GLASS2(2, 163, 9), HEART(2, 270, 13), IRIS(3, 150,
4), PIMA(2 768, 8), VOTE(2, 435, 15),5 and WAVE-
FORM(3, 300, 21); see (Web, A) for details.

4.1. How to combine Base Classifiers 〈3〉: MLE
vs James-Stein Estimator

For each trial (each dataset, and each cross-validation
iteration), we learned a single näıve Bayes (1NB)
from the training data S. We then produced k
bootstrap datasets {Si} from S, and trained a NB
from each. Here, we considered two combination
rules: MLE (Eqn 1, producing Eqn 3) vs JS (Eqn 4).
Hence we are comparing MUV( kNB, 〈boot,bal〉,mle )
with MUV( kNB, 〈boot,bal〉, js ). We similarly pro-
duced and compared MUV( kTAN, 〈boot,bal〉,mle )
with MUV( kTAN, 〈boot,bal〉, js ). We then evaluated
each these systems on the remaining fold.

Over these tests, we found that the “js” variants were
typically better than the corresponding “mle” ones.
For example, MUV( 3NB, 〈boot,bal〉, js ) dominates
MUV( 3NB, 〈boot,bal〉, mle ) in 5 out of 12 sets and
is never worse. A 1-sided t-test, over all 360 =
12[datasets]× 3 [values of k] × 2 [structures]× 5 [folds]
situations shows that the James-Stein estima-
tor is better than MLE with p < 2.3E-5. We
found similar results in the “disjoint” case
(next section) where MUV( kNB, 〈disj,bal〉, js )
dominated MUV( kNB, 〈disj,bal〉,mle );
and MUV( kTAN, 〈disj,bal〉, js ) dominated
MUV( kTAN, 〈disj,bal〉,mle ) with p < 0.0099.

5As suggested in (Holte, 1993), we remove
the“Physician-free-freeze” variable from the VOTE
data, as it alone leads to 99% accuracy.
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Figure 2. (a) MUV( ξ, 〈(boot/disj), bal〉, js ) vs MUV( ξ, 〈(boot/disj), bal〉, mle ); (b) MUV( ξ, 〈boot, bal〉, js ) vs
MUV( ξ, 〈disj, bal〉, js ); (c) MUV( ξ, 〈boot, bal〉, js ) vs MUV( ξ, 〈disj, skew〉, js ); (d) MUV( kNB, Ada, js ) vs Ad-
aBoost(NB). Each 〈X, Y 〉 point corresponds to one dataset. In (a,b,c), averaged over all ξ ∈ {2, 3, 4} × {NB, TAN}.

Figure 2(a) plots the average for each database, over
both NB and TAN cases.

4.2. How to generate Samples: 〈2a〉 Bootstrap
vs Disjoint

For each trial, we need to generate different train-
ing sets for the k different classifiers. One approach
is to divide the data into k disjoint subsets (each of
size ≈ |S|/k); another involves generating k boot-
strap samples — each formed by drawing |S| in-
stances with replacement. We found that bootstrap
worked significantly better with p < 1.41E-10. Fig-
ure 2(b) shows that the muv-ensemble (over both
kNBs and kTANs, for k = 2, 3, 4) based on bootstrap-
ping MUV( kNB, 〈boot,bal〉, js ) outperforms the one
based on disjoint subsets MUV( kNB, 〈disj,bal〉, js ).

4.3. How to generate Samples: 〈2b〉 Balanced
vs Skewed

So far, we always used “balanced” subsets of the data
— where each split (whether bootstrap or disjoint)
has roughly the population average over the class dis-
tribution. (So if 60% of the instances in S are +,
then each subset will have about 60% positive in-
stances.) In our case, it might make sense to in-
stead consider learning one NB based on the pos-
itive instances, and another only on the negatives.
Here, we assume the +NB will know more about
+instances, and so have more confidence in its vote
than will −NB. (This is motivated by the way multi-
TAN systems (Friedman et al., 1997) are constructed.)
We therefore compare MUV( ξ, 〈boot,bal〉, js ), sys-
tems with MUV( ξ, 〈disj, skew〉, js ) where the latter
splits the data based on the class. (Note that the k
here corresponds to the number of classes.)

However, our empirical results show that
MUV( ξ, 〈disj, skew〉, js ) is a bad idea, as it almost

always performs worse than MUV( ξ, 〈boot,bal〉, js ),
often with significant margins; see Figure 2(c).
Balanced is better than Skewed with p < 3.59E-09.

This empirical evidence supports the claim that
one should use bootstrapping with balanced
split, combined using James-Stein shrinkage —
MUV(−, 〈boot, bal〉, js ) — over the other options.

4.4. How to generate Samples: 〈2〉 AdaBoost

There are, of course, other very effective ways to gen-
erate different samples for different base classifiers,
for use in an ensemble. One well-known approach is
Boosting (Freund & Schapire, 1997), which sequen-
tially re-weights the instances, to produce a series of
different training sets. Many projects have shown that
that boosting in general, and AdaBoost in particular,
works very effectively.

After AdaBoost has produced its set of classifiers, it
then combines them in an instance-independent fash-
ion — i.e., it learns a single scalar weight for each clas-
sifier, which it uses when combining their responses,
for any instance. We therefore investigated whether we
could improve this performance by using our mixture-
using-variance approach to combine their responses.

In particular, we used NB as the AdaBoost base clas-
sifiers. This produced a set of base NB classifiers. We
then formed the AdaBoost(NB) classifier by combin-
ing these base classifiers in the usual AdaBoost man-
ner, and also formed the MUV( kNB,Ada, js ) ensem-
ble by combining them using the muv approach, here
using James-Stein estimator. The results appear in
Figure 2(d). We see that MUV( kNB, Ada, js ) out-
performs AdaBoost(NB) at the p < 0.04 level, even
though we are using the base classifiers that AdaBoost
generated! We also note that muv’s performance in
non-binary data sets (e.g., waveform) does not degrade
as much as AdaBoost(NB)’s.
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Figure 3. Average accuracies (over 12 datasets) of different combinations of different classifiers

4.5. Other Combination Rules

The above empirical evidence shows that our muv ap-
proach works effectively. Of course, this might sim-
ply be because any combination would work well. We
therefore compared our approach with other combina-
tors.

For each query, each binary base classifier pi produces
3 quantities: µi(+), µi(−), and σ2

i . (Recall from Foot-
note 2 that σ2

i (+) = σ2
i (−) for binary classifiers.) For

each i, let Vi(+) = 1 and Vi(−) = 0 if µi(+) > µi(−),
and otherwise let Vi(+) = 0 and Vi(−) = 1. Below
are five ways to combine k such classifiers, for a given
query e.

1. SumVote: return argmaxc{
∑

i Vi(c)}

2. MaxProb: return argmaxc{maxi µi(c)}

3. SumProb: return argmaxc{
∑

i µi(c)}

4. MinVar: return argminc{mini σ2
i (c)}

5. SumP/V: return argmaxc{
∑

i µi(c)/σ2
i (c)}

Note only the final two involve variance; SumP/V
corresponds6 to our muv; and given our bootstrap
sampling framework, SumProb corresponds to
Bagging (Breiman, 1996). Figure 3(a) summarizes
the average performance of these 5 combinators and
shows that SumP/V (aka muv) outperforms the
other combination rules, with the following p values:

1NB 1TAN SumVote MaxPr SumPr MinV
0.003 0.016 0.015 0.003 0.011 0.001

4.6. Which Base Classifiers 〈1〉: MUV[muv]?

The previous sections investigated muvs built from be-
tween 1 and 4 base classifiers, each either a NB or a
TAN structure. Unfortunately, it is not clear which
of these work best, as different muvs work best for
different databases.

6We actually modify the sum using James-Stein shrink-
age, corresponding to Eqn 4. Note this is the only combi-
nator where this operation is possible.

Why not learn many muvs, and then somehow com-
bine their responses for each query? This “mixture of
muv-mixtures” is practical, as the algorithms to learn
each of these muvs is straight-line code and so is very
efficient, as are the algorithms to compute, and then
combine, their responses.

Unfortunately, it is not clear how to combine these en-
sembles. We therefore considered the same combina-
tion rules presented in Section 4.5; but rather than use
base classifiers, we instead combined nine muvs: 1NB,
2NB, 3NB, 4NB, 1TAN, 2TAN, 3TAN, 4TAN, and Ad-
aBoost(NB) (using “js” throughout, and “boot,bal”
for the first 8).7 Figure 3(b) presents the results,
over those 5 options, for each dataset. We see that
“SumP/V[Muv]” (that is, “MUV[muv]”) is the best;
it is more accurate than the second best model selec-
tion approach, MinVar[Muv] (which also uses vari-
ance), with p < 0.039. Overall this result is consistent
with the other outcomes (Figure 3(a)), as it shows that
the variance-based combination rule continue to pro-
duce the best classifiers.

5. Conclusions

Future Work: (1) We are attempting to compute the
variance of a muv-classifier formed using the “js” com-
bination Eqn 4. This is important for the MUV[muv]
model; see Footnote 7. (2) Is there a way to con-
nect this analysis to the Bayesian approach, perhaps
by interpreting the normalized version of the term
1/σ2

m(c, e) in terms of the posterior probability of that
classifier? (3) What is the asymptotic behaviour of
this framework? Can we, for example, quantify its
generalization performance as we increase the number
of base classifiers? (It appears fairly robust to overfit-
ting, at least over the number of classifiers we consid-
ered.) What should happen, as we increase the sample
size, and hence the variance become smaller for each

7 Even though we use the “JS” variant for each muv
classifier, we use the variance for the associated MLE esti-
mate Eqn 2.
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classifier?

Contributions: This paper proposes a novel en-
semble method muv for constructing a mixture of
Bayesian classifiers, which combines their responses
using a query-specific measure that is based on the
variances of these classifier responses. For each query,
a muv will first compute the mean and variance of the
response of each base probabilistic classifier, then ap-
ply a statistically sound combination process (based on
maximum likelihood estimation, possibly augmented
with James-Stein shrinkage) to produce a single re-
sponse. In essence, this allows each classifier to inde-
pendently state its confidence in its assessment, which
our combination process uses in making its assessment.

We applied this muv technique to learn classifiers for
a wide range of real-world datasets, using simple be-
lief nets (NB and TAN structures) as base classifiers.
We explored several ways of producing different classi-
fiers and for combining their response; our results show
that it is best to use James-Stein shrinkage and use bal-

anced bootstrap samples to produce different classifiers.
muv’s performance dominates two well-known ensem-
ble methods: Boosting and Bagging. Moreover, our
method is not as sensitive to non-binary classes as Ad-
aBoost. Finally, we considered combining these muvs,
and found that using the mixture-using-variance ap-
proach on these combinations, MUV[muv], produces
yet better accuracy. In addition, we note that this sys-
tem is extremely efficient, as both learning and testing
involve only straight-line code.

For these reasons, we advocate using this MUV[muv]
approach for classification problems in general. See
(Web, A) for additional details, and data.
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