A Proofs

Proof of Theorem 1: As the set $\mathcal{BN}_{\Theta \succeq \gamma}(G)$ is uncountably infinite, we cannot simply apply the standard techniques for PAC-learning a finite hypothesis set. We can, however, partition this uncountable space into a finite number $L = L(K, \gamma, \epsilon)$ of sets, such that any two BNs within a partition have similar conditional log-likelihood scores. We can then, in essense, simultaneously estimate the scores of all members of $\mathcal{BN}_{\Theta \succeq \gamma}(G)$ if we collect enough query instances to estimate the score for one representative of each partition.

Now for the details: We prove below that, if the CPtables for two BNs $\Theta^{(1)}, \Theta^{(2)} \in \mathcal{BN}_{\Theta \succeq \gamma}(G)$ have similar CPtables $\Theta^{(1)} = \{\theta^{(1)}_{d_i \mid \mathbf{f}_i}\}_i$ and $\Theta^{(2)} = \{\theta^{(2)}_{d_i \mid \mathbf{f}_i}\}_i$, then they will have similar LCL-scores wrt any query; *i.e.*,

$$\text{if} \quad \left| \theta_{d_i \mid \mathbf{f}_i}^{(1)} - \theta_{d_i \mid \mathbf{f}_i}^{(2)} \right| \leq \frac{\gamma \epsilon}{6 K} \quad \text{then} \quad \forall c, \mathbf{e} \mid \ln(P_{\Theta^{(1)}}(c \mid \mathbf{e})) - \ln(P_{\Theta^{(2)}}(c \mid \mathbf{e}))| \leq \frac{\epsilon}{6} .$$
 (1)

This of course implies the same bound on the difference between their overall LCL-scores

$$|\operatorname{LCL}_k(\Theta^{(1)}) - \operatorname{LCL}_k(\Theta^{(2)})| \leq \frac{\epsilon}{6}$$

for any distribution $LCL_k(\cdot)$ — both for the "true" query distribution $LCL(\cdot)$, and for the distribution associated with any empirical sample $\widehat{LCL}(\cdot)$.

We therefore partition the $\mathcal{BN}_{\Theta \succeq \gamma}(G)$ space into $L = (\frac{6K}{\gamma \epsilon})^K$ disjoint sets (where any two BNs from any partition will have similar CPtable values), then define the set $R = \{\Theta_i\}_i$ to contain one representative from each partition. We prove below that a sample S of size

$$M\left(\frac{\epsilon}{6}, \frac{\delta}{L}\right) = 2\left(\frac{3N\log\gamma}{\epsilon}\right)^2 \ln\frac{2L}{\delta}$$
(2)

is sufficient to estimate each of these single representatives to within $\epsilon/6$ of correct, with probability of error at most δ/L ; *i.e.*, such that, for each *i*,

$$P\left[\left|\widehat{\mathrm{LCL}}^{(S)}(\Theta_i) - \mathrm{LCL}(B_i)\right| > \frac{\epsilon}{6}\right] < \frac{\delta}{L}$$

As there are L representatives, we have a total probability of at most $L\frac{\delta}{L} = \delta$ that any of the representative's scores are mis-estimated by more than $\epsilon/6$.

This means we have, in effect, estimated the scores on $any \Theta \in \mathcal{BN}_{\Theta \succeq \gamma}(G)$ to within $\epsilon/2$: For any $\Theta \in \mathcal{BN}_{\Theta \succeq \gamma}(G)$, let $\Theta' \in R$ be the representative in Θ s partition. Observe

$$\begin{split} |\widehat{\mathrm{LCL}}(\Theta) - \mathrm{LCL}(\Theta)| &\leq |\widehat{\mathrm{LCL}}(\Theta) - \widehat{\mathrm{LCL}}(\Theta')| + |\widehat{\mathrm{LCL}}(\Theta') - \mathrm{LCL}(\Theta')| + |\mathrm{LCL}(\Theta') - \mathrm{LCL}(\Theta)| \\ &\leq \epsilon/6 + \epsilon/6 + \epsilon/6 \\ &= \epsilon/2 \,. \end{split}$$

This means, in particular, that our estimate of the scores of both $\widehat{\Theta}$ and Θ^* are within $\epsilon/2$, and so

$$\begin{array}{rcl} \operatorname{LCL}(\widehat{\Theta}) - \operatorname{LCL}(\Theta^*) & \leq & |\operatorname{LCL}(\widehat{\Theta}) - \widehat{\operatorname{LCL}}(\widehat{\Theta})| & + & \widehat{\operatorname{LCL}}(\widehat{\Theta}) - \widehat{\operatorname{LCL}}(\Theta^*) & + & |\widehat{\operatorname{LCL}}(\Theta^*) - \operatorname{LCL}(\Theta^*)| \\ & \leq & \epsilon/2 & + & 0 & + & \epsilon/2 \end{array}$$

To complete the proof, we need only prove Equations 1 and 2. For Equation 1: Consider the sequence of BNs $\Theta_0, \Theta_1, \ldots, \Theta_K$ where the first *i* of Θ_i 's CPtables come from $\Theta^{(1)}$, and the remaining from $\Theta^{(2)}$ — *i.e.*,

$$\Theta_i \sim \{\theta_{d_1|\mathbf{f}_1}^{(1)}, \ldots, \theta_{d_i|\mathbf{f}_i}^{(1)}, \theta_{d_{i+1}|\mathbf{f}_{i+1}}^{(2)}, \ldots, \theta_{d_K|\mathbf{f}_K}^{(2)}\}.$$

Now observe

$$|\ln(P_{\Theta^{(1)}}(c | \mathbf{e})) - \ln(P_{\Theta^{(2)}}(c | \mathbf{e}))| \leq \sum_{i=1}^{K} |\ln(P_{\Theta_{i}}(c | \mathbf{e})) - \ln(P_{\Theta_{i-1}}(c | \mathbf{e}))|,$$

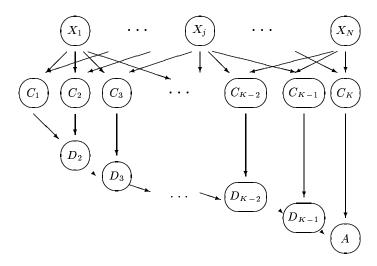


Figure 1: Belief Net structure corresponding to arbitrary SAT problem [Coo90]

and each $|\ln(P_{\Theta_i}(c | \mathbf{e})) - \ln(P_{\Theta_{i-1}}(c | \mathbf{e}))|$ is based on changing a single CPtable entry. We therefore need only show $|\ln(P_{\Theta_i}(c | \mathbf{e})) - \ln(P_{\Theta_{i-1}}(c | \mathbf{e}))| \le \frac{\epsilon}{6K}$. For any value of $z = \theta_{d_i|\mathbf{f}_i}$, let $f(z) = \ln(P_{\Theta[z]}(c | \mathbf{e}))$, where $\Theta[z]$ be the BN whose first i - 1 CPtable entries come from $\Theta^{(1)}$, whose final K - i - 1 entries come from $\Theta^{(2)}$, and whose i^{th} CPtable entries is z; hence $f(\theta_{d_i|\mathbf{f}_i}^{(1)}) = \ln(P_{\Theta_i}(c | \mathbf{e}))$, and $f(\theta_{d_i|\mathbf{f}_i}^{(2)}) = \ln(P_{\Theta_{i+1}}(c | \mathbf{e}))$. As this function is continuous, we know that

$$|f(a)-f(b)| = rac{\partial f(z)}{\partial z}[b-a]$$

for some $z \in [a, b]$. As $f(z) = \ln(P_{\Theta[z]}(c, \mathbf{e})) - \ln(P_{\Theta[z]}(\mathbf{e}))$, we see that

$$\begin{array}{ll} \frac{\partial f(z)}{\partial z} &=& \frac{1}{P_{\Theta[z]}(c,\mathbf{e})} P_{\Theta[z]}(c,\mathbf{e} \mid d_i, \mathbf{f}_i) \times P_{\Theta[z]}(\mathbf{f}_i) \; - \; \frac{1}{P_{\Theta[z]}(\mathbf{e})} P_{\Theta[z]}(\mathbf{e} \mid d_i, \mathbf{f}_i) \times P_{\Theta[z]}(\mathbf{f}_i) \\ &=& \frac{1}{z} [P_{\Theta[z]}(d_i, \mathbf{f}_i \mid c, \mathbf{e}) - P_{\Theta[z]}(d_i, \mathbf{f}_i \mid \mathbf{e})] \end{array}$$

which means that $|\frac{\partial f(z)}{\partial z}| \leq 1/z \leq 1/\gamma$. (The second inequality follows from the assumption that we are only considering $\Theta \in \mathcal{BN}_{\Theta \succeq \gamma}(G)$.) Hence,

$$\begin{aligned} |\ln(P_{\Theta_{i+1}}(c \mid \mathbf{e})) - \ln(P_{\Theta_i}(c \mid \mathbf{e}))| &= |f(\theta_{d_i|\mathbf{f}_i}^{(2)}) - f(\theta_{d_i|\mathbf{f}_i}^{(1)})| \\ &\leq \frac{1}{\gamma} \times |\theta_{d_i|\mathbf{f}_i}^{(2)} - \theta_{d_i|\mathbf{f}_i}^{(1)}| &\leq \frac{1}{\gamma} \times \frac{\gamma \epsilon}{6K} = \frac{\epsilon}{6K}. \end{aligned}$$

To prove Equation 2: Observe first that the probability of any event must be at least the product of N CPtable entries, and hence $P_{\Theta}(c) \ge \gamma^N$ for any c and any $\Theta \in \mathcal{BN}_{\Theta \succeq \gamma}(G)$. This means the value of $-\ln(P_{\Theta}(c | \mathbf{e}))$, and hence $\mathrm{LCL}_{sq}(\Theta)$ for any distribution sq, is between 0 and $-N \ln \gamma$.

As the queries $q = P(c, \mathbf{e})$ are drawn at random from a stationary distribution, we can view the quantity $\ln P_{\Theta}(q)$ as an iid random value, whose range is $[0, -N \ln \gamma]$ and whose expected value is LCL(Θ). Hoeffding's Inequality bounds the chance that the empirical average score after M iid examples (here $\widehat{LCL}^{(S)}(\Theta)$) will be far away from the true mean LCL(Θ):

$$P(|\widehat{\mathrm{LCL}}^{(S)}(\Theta) - \mathrm{LCL}(\Theta)| > \frac{\epsilon}{6}) < 2\exp\left[-2M((\epsilon/6)/N\ln\gamma)^2\right].$$
(3)

Here, we want the right-hand-side to be under δ/L , which requires $M = M(\epsilon, \delta) = 2\left(\frac{3 N \ln \gamma}{\epsilon}\right)^2 \ln(\frac{2L}{\delta})$.

Proof of Theorem 2: We reduce 3SAT to our task, using a construction similar to the one in [Coo90]: Given any 3-CNF formula $\varphi \equiv \bigwedge C_i$, where each $C_i \equiv \bigvee \pm X_{ij}$, we construct the network shown in Figure 1, with one node for each variable X_i and one for each clause C_j , with an arc from X_i to C_j whenever C_j involves $X_i - e.g.$, if

Table 1: Queries used in proof of Theorem 2

X_1	X_2	X_3	X_4		X_n	A
0	1	0				0
0		0	1			0
	÷					÷
0		1		1		0
						1

 $C_1 = x_1 \vee \neg x_2 \vee x_3$ and $C_2 = \neg x_1 \vee \neg x_3 \vee x_4$, then there are links to C_1 from each of X_1, X_2 and X_3 , and to C_2 from X_1, X_3 and X_4 . In addition, we include K - 1 other boolean nodes, $\{D_2, \ldots, D_{K-1}, A\}$, where D_j is the child of D_{j-1} and C_j , where D_1 is identified with C_1 , and A is used for D_K .

Here, we intend each C_i to be true if the assignment to the associated variables X_{i1}, X_{i2}, X_{i3} satisfies C_i ; and A corresponds is the conjunction of those C_i variables. We do this using all-but-the-final instances in Table 1. (Note only 3 of the X_i variables are specified in each of these instances; the other $n - 3 X_i$ s are not, nor are any C_j s nor D_k s.) There is one such instance for each clause, with exactly the assignment (of the 3 relevant variables) that falsifies this clause. Hence, the first line corresponds to $C_1 \equiv x_1 \lor \neg x_2 \lor x_3$. The final instance is just stating that the prior value for A should P(+a) = 1.0. The "label" of each instance always corresponds to the single variable A.

We now prove, in particular, that

There is a set of parameters for the structure in Figure 1, producing the $LCL(\cdot)$ -score, over the queries in Table 1, of 0

there is a satisfying assignment for the associated φ formula.

 \Leftarrow : Just set the CPtable for each C_i to be the disjunction of the associated X_{i1} , X_{i2} , X_{i3} variables (its parents), with the appropriate \pm parity. *E.g.*, using $C_1 \equiv x_1 \lor \neg x_2 \lor x_3$, then C_1 's CPtable would be

x_1	x_2	x_3	$P(+c_1 x_1, x_2, x_3)$
0	0	0	1.0
0	0	1	1.0
0	1	0	0.0
0	1	1	1.0
1	0	0	1.0
1	0	1	1.0
1	1	0	1.0
1	1	1	1.0

Similarly set the CPtables for the D_j to correspond to the conjunction of its 2 parents $D_j = D_{j-1} \wedge C_j$; e.g.,

D_4	C_5	$P(+d_5 D_4, C_5)$
0	0	0.0
0	1	0.0
1	0	0.0
1	1	1.0
$egin{array}{c} 1 \\ 1 \end{array}$	$\begin{array}{c} 1\\ 0\\ 1\end{array}$	0.0

Finally, set X_i to correspond to the satisfying assignment; *i.e.*, if $X_1 = 1$, then $\frac{P(+x_1)}{1.0}$; and if *i.e.*, if $X_4 = 0$,

then $\frac{P(+x_4)}{0.0}$

- Note that these CPtable values satify all k + 1 of the labeled instances.

 \Rightarrow : Here, we assume there is no satisfying assignment. Towards a contradiction, we can assume that there is a 0-LCL set of CPtable entries. This means, in particular, that $P(+a | x_{i1}, x_{i2}, x_{i3}) = 0$, where x_{i1}, x_{i2}, x_{i3} correspond to the assignment that violates the *i*th constraint. (*E.g.*, for $C_1 \equiv x_1 \lor \neg x_2 \lor x_3$, this would be $X_1 = 0, X_2 = 1, X_3 = 0$.)

Now consider the final labeled instance, P(a). As there is no satisfying assignment, we know that each assignment **x** violates at least one constraint. For notation, let $\gamma^{\mathbf{x}}$ refer to one of these violations (say the one with the smallest index). So if $\mathbf{x} = \langle 0, 1, 0, \ldots \rangle$, then $\gamma^{\langle 0, 1, 0, \ldots \rangle} = \langle X_1 = 0, X_2 = 1, X_3 = 0 \rangle$ corresponds to the violation of the first constraint C_1 . We also let $\beta^{\mathbf{x}}$ refer to the rest of the assignment.

Now observe

$$\begin{array}{rcl} P(+a) &=& \sum_{\mathbf{x}} P(+a,\,\mathbf{x}) \\ &=& \sum_{\mathbf{x}} P(+a\,|\,\gamma^{\mathbf{x}}) \cdot P(\,\gamma^{\mathbf{x}}) \cdot P(\,\beta^{\mathbf{x}}\,|\,+a,\,\gamma^{\mathbf{x}}) \\ &=& \sum_{\mathbf{x}} 0 \quad \cdot P(\,\gamma^{\mathbf{x}}) \cdot P(\,\beta^{\mathbf{x}}\,|\,+a,\,\gamma^{\mathbf{x}}) &=& 0 \ , \end{array}$$

which shows that the final instance will be mislabeled. This proves that there can be no set of CPtable values that produce 0 LCL-score when there are no satisfying assignments.

Proof of Proposition 3: Below, we will use $P(\chi)$ to refer to $P_{\Theta}(\chi)$, the value the belief net with parameters Θ will assign to the χ event. In general, for any assignment Z,

$$P(Z) = \sum_{\mathbf{f}'} \sum_{d'} P(Z \mid D = d', \mathbf{F} = \mathbf{f}') P(D = d' \mid \mathbf{F} = \mathbf{f}') P(\mathbf{F} = \mathbf{f}') .$$

$$(4)$$

As we assume the different CPtable rows are estimated independently, and \mathbf{F} is the set of parents of D, this means

$$\frac{\partial P(Z)}{\partial \beta_{d|\mathbf{f}}} \quad = \quad \sum_{d'} P(Z \,|\, d', \mathbf{f}\,) \, \frac{\partial P(d' \,|\, \mathbf{f}\,)}{\partial \beta_{d|\mathbf{f}}} P(\mathbf{f}\,) \,.$$

Recalling $\theta_{d|\mathbf{f}} = P(d|\mathbf{f}) = e^{\beta_{d|\mathbf{f}}} / \sum_{d'} e^{\beta_{d'|\mathbf{f}}}$, observe that $\frac{\partial P(d|\mathbf{f})}{\partial \beta_{d|\mathbf{f}}} = \theta_{d|\mathbf{f}}(1 - \theta_{d|\mathbf{f}})$, and when $d \neq d'$, $\frac{\partial P(d'|\mathbf{f})}{\partial \beta_{d|\mathbf{f}}} = -\theta_{d|\mathbf{f}}\theta_{d'|\mathbf{f}}$. This means $\frac{\partial P(Z)}{\partial \beta_{d|\mathbf{f}}} = P(Z, d, \mathbf{f}) - \theta_{d|\mathbf{f}}P(Z, \mathbf{f})$. Hence, as $\ln P(c|\mathbf{e}) = \ln P(c, \mathbf{e}) - \ln P(\mathbf{e})$,

$$\begin{aligned} \frac{\partial \ln P(c | \mathbf{e})}{\partial \beta_{d | \mathbf{f}}} &= \frac{\partial \ln P(c, \mathbf{e})}{\partial \beta_{d | \mathbf{f}}} - \frac{\partial \ln P(\mathbf{e})}{\partial \beta_{d | \mathbf{f}}} \\ &= \frac{1}{P(c, \mathbf{e})} \frac{\partial P(c, \mathbf{e})}{\partial \beta_{d | \mathbf{f}}} - \frac{1}{P(\mathbf{e})} \frac{\partial P(\mathbf{e})}{\partial \beta_{d | \mathbf{f}}} \\ &= \frac{1}{P(c, \mathbf{e})} [P(c, \mathbf{e}, d, \mathbf{f}) - \theta_{d | \mathbf{f}} P(c, \mathbf{e}, \mathbf{f})] - \frac{1}{P(\mathbf{e})} [P(\mathbf{e}, d, \mathbf{f}) - \theta_{d | \mathbf{f}} P(\mathbf{e}, \mathbf{f})] \\ &= [P(d, \mathbf{f} | c, \mathbf{e}) - P(d, \mathbf{f} | \mathbf{e})] - \theta_{d | \mathbf{f}} [P(\mathbf{f} | c, \mathbf{e}) - P(\mathbf{f} | \mathbf{e})]. \end{aligned}$$

References

[Coo90] G.F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42(2–3):393–405, 1990.