A Proofs

Proof of Theorem 1: As the set $\mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$ is uncountably infinite, we cannot simply apply the standard techniques for PAC-learning a finite hypothesis set. We can, however, partition this uncountable space into a finite number $L=L(K, \gamma, \epsilon)$ of sets, such that any two BNs within a partition have similar conditional log-likelihood scores. We can then, in essense, simultaneously estimate the scores of all members of $\mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$ if we collect enough query instances to estimate the score for one representative of each partition.

Now for the details: We prove below that, if the CPtables for two BNs $\Theta^{(1)}, \Theta^{(2)} \in \mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$ have similar CPtables $\Theta^{(1)}=\left\{\theta_{d_{i} \mid \mathbf{f}_{i}}^{(1)}\right\}_{i}$ and $\Theta^{(2)}=\left\{\theta_{d_{i} \mid \mathbf{f}_{i}}^{(2)}\right\}_{i}$, then they will have similar LCL-scores wrt any query; i.e.,

$$
\begin{equation*}
\text { if } \quad\left|\theta_{d_{i} \mid \mathbf{f}_{i}}^{(1)}-\theta_{d_{i} \mid \mathbf{f}_{i}}^{(2)}\right| \leq \frac{\gamma \epsilon}{6 K} \quad \text { then } \quad \forall c, \mathbf{e}\left|\ln \left(P_{\Theta^{(1)}}(c \mid \mathbf{e})\right)-\ln \left(P_{\Theta^{(2)}}(c \mid \mathbf{e})\right)\right| \leq \frac{\epsilon}{6} \tag{1}
\end{equation*}
$$

This of course implies the same bound on the difference between their overall LCL-scores

$$
\left|\operatorname{LCL}_{k}\left(\Theta^{(1)}\right)-\operatorname{LCL}_{k}\left(\Theta^{(2)}\right)\right| \leq \frac{\epsilon}{6}
$$

for any distribution $\operatorname{LCL}_{k}(\cdot)$ - both for the "true" query distribution $\operatorname{LCL}(\cdot)$, and for the distribution associated with any empirical sample $\widehat{\mathrm{LCL}}(\cdot)$.

We therefore partition the $\mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$ space into $L=\left(\frac{6 K}{\gamma \epsilon}\right)^{K}$ disjoint sets (where any two BNs from any partition will have similar CPtable values), then define the set $R=\left\{\Theta_{i}\right\}_{i}$ to contain one representative from each partition. We prove below that a sample S of size

$$
\begin{equation*}
M\left(\frac{\epsilon}{6}, \frac{\delta}{L}\right)=2\left(\frac{3 N \log \gamma}{\epsilon}\right)^{2} \ln \frac{2 L}{\delta} \tag{2}
\end{equation*}
$$

is sufficient to estimate each of these single representatives to within $\epsilon / 6$ of correct, with probability of error at most δ / L; i.e., such that, for each i,

$$
P\left[\left|\widehat{\mathrm{LCL}}^{(S)}\left(\Theta_{i}\right)-\operatorname{LCL}\left(B_{i}\right)\right|>\frac{\epsilon}{6}\right]<\frac{\delta}{L} .
$$

As there are L representatives, we have a total probability of at most $L \frac{\delta}{L}=\delta$ that any of the representative's scores are mis-estimated by more than $\epsilon / 6$.

This means we have, in effect, estimated the scores on any $\Theta \in \mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$ to within $\epsilon / 2$: For any $\Theta \in$ $\mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$, let $\Theta^{\prime} \in R$ be the representative in Θ s partition. Observe

$$
|\widehat{\operatorname{LCL}}(\Theta)-\operatorname{LCL}(\Theta)| \begin{array}{ccccc}
& \leq & \left|\widehat{\operatorname{LCL}}(\Theta)-\widehat{\operatorname{LCL}}\left(\Theta^{\prime}\right)\right| & + & \left|\widehat{\operatorname{LCL}}\left(\Theta^{\prime}\right)-\operatorname{LCL}\left(\Theta^{\prime}\right)\right| \\
& + & + & \left|\operatorname{LCL}\left(\Theta^{\prime}\right)-\operatorname{LCL}(\Theta)\right| \\
& = & \epsilon / 2 & + & \epsilon / 6
\end{array}
$$

This means, in particular, that our estimate of the scores of both $\widehat{\Theta}$ and Θ^{*} are within $\epsilon / 2$, and so

$$
\operatorname{LCL}(\widehat{\Theta})-\operatorname{LCL}\left(\Theta^{*}\right) \leq \begin{array}{ccccc}
\leq & |\operatorname{LCL}(\widehat{\Theta})-\widehat{\operatorname{LCL}}(\widehat{\Theta})| & +\widehat{\operatorname{LCL}}(\widehat{\Theta})-\widehat{\operatorname{LCL}}\left(\Theta^{*}\right) & + & \left|\widehat{\operatorname{LCL}}\left(\Theta^{*}\right)-\operatorname{LCL}\left(\Theta^{*}\right)\right| \\
\epsilon / 2 & + & 0 & + & \epsilon / 2
\end{array}
$$

To complete the proof, we need only prove Equations 1 and 2. For Equation 1: Consider the sequence of BNs $\Theta_{0}, \Theta_{1}, \ldots, \Theta_{K}$ where the first i of Θ_{i} 's CPtables come from $\Theta^{(1)}$, and the remaining from $\Theta^{(2)}$ - i.e.,

$$
\Theta_{i} \sim\left\{\theta_{d_{1} \mid \mathbf{f}_{1}}^{(1)}, \ldots, \theta_{d_{i} \mid \mathbf{f}_{i}}^{(1)}, \theta_{d_{i+1} \mid \mathbf{f}_{i+1}}^{(2)}, \ldots, \theta_{d_{K} \mid \mathbf{f}_{K}}^{(2)}\right\}
$$

Now observe

$$
\left|\ln \left(P_{\Theta^{(1)}}(c \mid \mathbf{e})\right)-\ln \left(P_{\Theta^{(2)}}(c \mid \mathbf{e})\right)\right| \leq \sum_{i=1}^{K}\left|\ln \left(P_{\Theta_{i}}(c \mid \mathbf{e})\right)-\ln \left(P_{\Theta_{i-1}}(c \mid \mathbf{e})\right)\right|
$$

Figure 1: Belief Net structure corresponding to arbitrary SAT problem [Coo90]
and each $\left|\ln \left(P_{\Theta_{i}}(c \mid \mathbf{e})\right)-\ln \left(P_{\Theta_{i-1}}(c \mid \mathbf{e})\right)\right|$ is based on changing a single CPtable entry. We therefore need only show $\quad\left|\ln \left(P_{\Theta_{i}}(c \mid \mathbf{e})\right)-\ln \left(P_{\Theta_{i-1}}(c \mid \mathbf{e})\right)\right| \leq \frac{\epsilon}{6 K}$. For any value of $z=\theta_{d_{i} \mid \mathbf{f}_{i}}$, let $f(z)=\ln \left(P_{\Theta[z]}(c \mid \mathbf{e})\right)$, where $\Theta[z]$ be the BN whose first $i-1$ CPtable entries come from $\Theta^{(1)}$, whose final $K-i-1$ entries come from $\Theta^{(2)}$, and whose $i^{t h}$ CPtable entries is z; hence $f\left(\theta_{d_{i} \mid \mathbf{f}_{i}}^{(1)}\right)=\ln \left(P_{\Theta_{i}}(c \mid \mathbf{e})\right)$, and $f\left(\theta_{d_{i} \mid \mathbf{f}_{i}}^{(2)}\right)=\ln \left(P_{\Theta_{i+1}}(c \mid \mathbf{e})\right)$. As this function is continuous, we know that

$$
|f(a)-f(b)|=\frac{\partial f(z)}{\partial z}[b-a]
$$

for some $z \in[a, b]$. As $f(z)=\ln \left(P_{\Theta[z]}(c, \mathbf{e})\right)-\ln \left(P_{\Theta[z]}(\mathbf{e})\right)$, we see that

$$
\begin{aligned}
\frac{\partial f(z)}{\partial z} & =\frac{1}{P_{\Theta[z]}(c, \mathbf{e})} P_{\Theta[z]}\left(c, \mathbf{e} \mid d_{i}, \mathbf{f}_{i}\right) \times P_{\Theta[z]}\left(\mathbf{f}_{i}\right)-\frac{1}{P_{\Theta[z]}(\mathbf{e})} P_{\Theta[z]}\left(\mathbf{e} \mid d_{i}, \mathbf{f}_{i}\right) \times P_{\Theta[z]}\left(\mathbf{f}_{i}\right) \\
& =\frac{1}{z}\left[P_{\Theta[z]}\left(d_{i}, \mathbf{f}_{i} \mid c, \mathbf{e}\right)-P_{\Theta[z]}\left(d_{i}, \mathbf{f}_{i} \mid \mathbf{e}\right)\right]
\end{aligned}
$$

which means that $\left|\frac{\partial f(z)}{\partial z}\right| \leq 1 / z \leq 1 / \gamma$. (The second inequality follows from the assumption that we are only considering $\Theta \in \mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$.) Hence,

$$
\begin{aligned}
\left|\ln \left(P_{\Theta_{i+1}}(c \mid \mathbf{e})\right)-\ln \left(P_{\Theta_{i}}(c \mid \mathbf{e})\right)\right| & =\left|f\left(\theta_{d_{i} \mid \mathbf{f}_{i}}^{(2)}\right)-f\left(\theta_{d_{i} \mid \mathbf{f}_{i}}^{(1)}\right)\right| \\
& \leq \frac{1}{\gamma} \times\left|\theta_{d_{i} \mid \mathbf{f}_{i}}^{(2)}-\theta_{d_{i} \mid \mathbf{f}_{i}}^{(1)}\right| \leq \frac{1}{\gamma} \times \frac{\gamma \epsilon}{6 K}=\frac{\epsilon}{6 K} .
\end{aligned}
$$

To prove Equation 2: Observe first that the probability of any event must be at least the product of N CPtable entries, and hence $P_{\Theta}(c) \geq \gamma^{N}$ for any c and any $\Theta \in \mathcal{B} \mathcal{N}_{\Theta \succeq \gamma}(G)$. This means the value of $-\ln \left(P_{\Theta}(c \mid \mathbf{e})\right)$, and hence $\operatorname{LCL}_{s q}(\Theta)$ for any distribution $s q$, is between 0 and $-N \ln \gamma$.

As the queries $q=P(c, \mathbf{e})$ are drawn at random from a stationary distribution, we can view the quantity $\ln P_{\Theta}(q)$ as an iid random value, whose range is $[0,-N \ln \gamma]$ and whose expected value is $\operatorname{LCL}(\Theta)$. Hoeffding's Inequality bounds the chance that the empirical average score after M iid examples (here $\widehat{\mathrm{LCL}}^{(S)}(\Theta)$) will be far away from the true mean $\operatorname{LCL}(\Theta)$:

$$
\begin{equation*}
P\left(\left|\widehat{\mathrm{LCL}}^{(S)}(\Theta)-\operatorname{LCL}(\Theta)\right|>\frac{\epsilon}{6}\right) \quad<2 \exp \left[-2 M((\epsilon / 6) / N \ln \gamma)^{2}\right] \tag{3}
\end{equation*}
$$

Here, we want the right-hand-side to be under δ / L, which requires $M=M(\epsilon, \delta)=2\left(\frac{3 N \ln \gamma}{\epsilon}\right)^{2} \ln \left(\frac{2 L}{\delta}\right)$.
Proof of Theorem 2: We reduce 3 SAT to our task, using a construction similar to the one in [Coo90]: Given any 3-CNF formula $\varphi \equiv \bigwedge C_{i}$, where each $C_{i} \equiv \bigvee \pm X_{i j}$, we construct the network shown in Figure 1, with one node for each variable X_{i} and one for each clause C_{j}, with an arc from X_{i} to C_{j} whenever C_{j} involves X_{i} - e.g., if

Table 1: Queries used in proof of Theorem 2

X_{1}	X_{2}	X_{3}	X_{4}	\cdots	X_{n}	A
0	1	0				0
0		0	1			0
	\vdots					\vdots
0		1		1		0
						1

$C_{1}=x_{1} \vee \neg x_{2} \vee x_{3}$ and $C_{2}=\neg x_{1} \vee \neg x_{3} \vee x_{4}$, then there are links to C_{1} from each of X_{1}, X_{2} and X_{3}, and to C_{2} from X_{1}, X_{3} and X_{4}. In addition, we include $K-1$ other boolean nodes, $\left\{D_{2}, \ldots, D_{K-1}, A\right\}$, where D_{j} is the child of D_{j-1} and C_{j}, where D_{1} is identified with C_{1}, and A is used for D_{K}.

Here, we intend each C_{i} to be true if the assignment to the associated variables $X_{i 1}, X_{i 2}, X_{i 3}$ satisfies C_{i}; and A corresponds is the conjunction of those C_{i} variables. We do this using all-but-the-final instances in Table 1. (Note only 3 of the X_{i} variables are specified in each of these instances; the other $n-3 X_{i}$ s are not, nor are any C_{j} s nor D_{k} s.) There is one such instance for each clause, with exactly the assignment (of the 3 relevant variables) that falsifies this clause. Hence, the first line corresponds to $C_{1} \equiv x_{1} \vee \neg x_{2} \vee x_{3}$. The final instance is just stating that the prior value for A should $P(+a)=1.0$. The "label" of each instance always corresponds to the single variable A.

We now prove, in particular, that
There is a set of parameters for the structure in Figure 1, producing the $\widehat{\mathrm{LCL}}(\cdot)$-score, over the queries in
Table 1, of 0
iff
there is a satisfying assignment for the associated φ formula.
\Leftarrow : Just set the CPtable for each C_{i} to be the disjunction of the associated $X_{i 1}, X_{i 2}, X_{i 3}$ variables (its parents), with the appropriate \pm parity. E.g., using $C_{1} \equiv x_{1} \vee \neg x_{2} \vee x_{3}$, then C_{1} 's CPtable would be

x_{1}	x_{2}	x_{3}	$P\left(+c_{1} \mid x_{1}, x_{2}, x_{3}\right)$
0	0	0	1.0
0	0	1	1.0
0	1	0	0.0
0	1	1	1.0
1	0	0	1.0
1	0	1	1.0
1	1	0	1.0
1	1	1	1.0

Similarly set the CPtables for the D_{j} to correspond to the conjunction of its 2 parents $D_{j}=D_{j-1} \wedge C_{j}$; e.g.,

D_{4}	C_{5}	$P\left(+d_{5} \mid D_{4}, C_{5}\right)$
0	0	0.0
0	1	0.0
1	0	0.0
1	1	1.0

Finally, set X_{i} to correspond to the satisfying assignment; i.e., if $X_{1}=1$, then $\frac{P\left(+x_{1}\right)}{1.0}$; and if i.e., if $X_{4}=0$, then $\frac{P\left(+x_{4}\right)}{0.0}$. Note that these CPtable values satify all $k+1$ of the labeled instances.
\Rightarrow : Here, we assume there is no satisfying assignment. Towards a contradiction, we can assume that there is a 0-LCL set of CPtable entries. This means, in particular, that $P\left(+a \mid x_{i 1}, x_{i 2}, x_{i 3}\right)=0$, where $x_{i 1}, x_{i 2}, x_{i 3}$ correspond to the assignment that violates the i th constraint. (E.g., for $C_{1} \equiv x_{1} \vee \neg x_{2} \vee x_{3}$, this would be $X_{1}=0, X_{2}=1, X_{3}=0$.)

Now consider the final labeled instance, $P(a)$. As there is no satisfying assignment, we know that each assignment \mathbf{x} violates at least one constraint. For notation, let $\gamma^{\mathbf{x}}$ refer to one of these violations (say the one with the smallest index). So if $\mathbf{x}=\langle 0,1,0, \ldots\rangle$, then $\gamma^{\langle 0,1,0, \ldots\rangle}=\left\langle X_{1}=0, X_{2}=1, X_{3}=0\right\rangle$ corresponds to the violation of the first constraint C_{1}. We also let $\beta^{\mathbf{x}}$ refer to the rest of the assignment.

Now observe

$$
\begin{aligned}
P(+a) & =\sum_{\mathbf{x}} P(+a, \mathbf{x}) \\
& =\sum_{\mathbf{x}} P\left(+a \mid \gamma^{\mathbf{x}}\right) \cdot P\left(\gamma^{\mathbf{x}}\right) \cdot P\left(\beta^{\mathbf{x}} \mid+a, \gamma^{\mathbf{x}}\right) \\
& =\sum_{\mathbf{x}} 0 \cdot P\left(\gamma^{\mathbf{x}}\right) \cdot P\left(\beta^{\mathbf{x}} \mid+a, \gamma^{\mathbf{x}}\right)=0,
\end{aligned}
$$

which shows that the final instance will be mislabeled. This proves that there can be no set of CPtable values that produce 0 LCL -score when there are no satisfying assignments.
Proof of Proposition 3: Below, we will use $P(\chi)$ to refer to $P_{\Theta}(\chi)$, the value the belief net with parameters Θ will assign to the χ event. In general, for any assignment Z,

$$
\begin{equation*}
P(Z)=\sum_{\mathbf{f}^{\prime}} \sum_{d^{\prime}} P\left(Z \mid D=d^{\prime}, \mathbf{F}=\mathbf{f}^{\prime}\right) P\left(D=d^{\prime} \mid \mathbf{F}=\mathbf{f}^{\prime}\right) P\left(\mathbf{F}=\mathbf{f}^{\prime}\right) \tag{4}
\end{equation*}
$$

As we assume the different CPtable rows are estimated independently, and \mathbf{F} is the set of parents of D, this means

$$
\frac{\partial P(Z)}{\partial \beta_{d \mid \mathbf{f}}}=\sum_{d^{\prime}} P\left(Z \mid d^{\prime}, \mathbf{f}\right) \frac{\partial P\left(d^{\prime} \mid \mathbf{f}\right)}{\partial \beta_{d \mid \mathbf{f}}} P(\mathbf{f})
$$

Recalling $\theta_{d \mid \mathbf{f}}=P(d \mid \mathbf{f})=e^{\beta_{d \mid \mathbf{f}}} / \sum_{d^{\prime}} e^{\beta_{d^{\prime} \mid \mathbf{f}}}$, observe that $\frac{\partial P(d \mid \mathbf{f})}{\partial \beta_{d \mid \mathbf{f}}}=\theta_{d \mid \mathbf{f}}\left(1-\theta_{d \mid \mathbf{f}}\right)$, and when $d \neq d^{\prime}$, $\frac{\partial P\left(d^{\prime} \mid \mathbf{f}\right)}{\partial \beta_{d \mid \mathbf{f}}}=-\theta_{d \mid \mathbf{f}} \theta_{d^{\prime} \mid \mathbf{f}}$. This means $\frac{\partial P(Z)}{\partial \beta_{d \mid \mathbf{f}}}=P(Z, d, \mathbf{f})-\theta_{d \mid \mathbf{f}} P(Z, \mathbf{f})$.

Hence, as $\ln P(c \mid \mathbf{e})=\ln P(c, \mathbf{e})-\ln P(\mathbf{e})$,

$$
\begin{aligned}
\frac{\partial \ln P(c \mid \mathbf{e})}{\partial \beta_{d \mid \mathbf{f}}} & =\frac{\partial \ln P(c, \mathbf{e})}{\partial \beta_{d \mid \mathbf{f}}}-\frac{\partial \ln P(\mathbf{e})}{\partial \beta_{d \mid \mathbf{f}}} \\
& =\frac{1}{P(c, \mathbf{e})} \frac{\partial P(c, \mathbf{e})}{\partial \beta_{d \mid \mathbf{f}}}-\frac{1}{P(\mathbf{e})} \frac{\partial P(\mathbf{e})}{\partial \beta_{d \mid \mathbf{f}}} \\
& =\frac{1}{P(c, \mathbf{e})}\left[P(c, \mathbf{e}, d, \mathbf{f})-\theta_{d \mid \mathbf{f}} P(c, \mathbf{e}, \mathbf{f})\right]-\frac{1}{P(\mathbf{e})}\left[P(\mathbf{e}, d, \mathbf{f})-\theta_{d \mid \mathbf{f}} P(\mathbf{e}, \mathbf{f})\right] \\
& =[P(d, \mathbf{f} \mid c, \mathbf{e})-P(d, \mathbf{f} \mid \mathbf{e})]-\theta_{d \mid \mathbf{f}}[P(\mathbf{f} \mid c, \mathbf{e})-P(\mathbf{f} \mid \mathbf{e})] .
\end{aligned}
$$

References

[Coo90] G.F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42(2-3):393-405, 1990.

