
A Proofs
Proof of Theorem 1: As the set

����������	�
�
is uncountably infinite, we cannot simply apply the standard techniques

for PAC-learning a finite hypothesis set. We can, however, partition this uncountable space into a finite number����� 	������������
of sets, such that any two BNs within a partition have similar conditional log-likelihood scores. We

can then, in essense, simultaneously estimate the scores of all members of
��� ����� 	�
�

if we collect enough query
instances to estimate the score for one representative of each partition.

Now for the details: We prove below that, if the CPtables for two BNs ��� ��! � �"�$#�!&% �������'��	�
�
have similar

CPtables �"�(�)! �+*-, �(��!.0/�1 2�/43�5 and �6�$#�! �7*8, �$#4!.0/91 2:/03�5 , then they will have similar LCL-scores wrt any query; i.e.,

if ;;; , �(�)!.0/�1 2:/=< , �$#4!.0/91 2:/ ;;; > �?�@ � then ACB ��DFE�G$HI	�J �LKNM�O 	 B E)DP��� < G$HL	�J �LKRQSO 	 B E)DP���TE > �@VU (1)

This of course implies the same bound on the difference between their overall LCL-scoresE
LCL W 	 � �(�)! � < LCL W 	 � �$#4! �TE > �@

for any distribution LCL W 	YX0�
— both for the “true” query distribution LCL

	YX0�
, and for the distribution associated

with any empirical sample ZLCL
	YX4�

.
We therefore partition the

�������'�[	�
�
space into

�\� 	-]Y^�`_ � ^
disjoint sets (where any two BNs from any partition

will have similar CPtable values), then define the set a �7* � 5 3 5 to contain one representative from each partition. We
prove below that a sample b of size ced �@ �gf�h � ijdlknm G$onpl�� h # G$H iq�f (2)

is sufficient to estimate each of these single representatives to within
�sr @

of correct, with probability of error at mostf r �
; i.e., such that, for each t , Jvu ;;;; ZLCL �:wx! 	 � 5 � < LCL

	zy 5 � ;;;;|{
�@j} ~ f� U

As there are
�

representatives, we have a total probability of at most
�V�� � f that any of the representative’s scores

are mis-estimated by more than
�sr @

.
This means we have, in effect, estimated the scores on any ��% �������'��	�
�

to within
�sr i

: For any ��%�������'��	�
�
, let ���C%�a be the representative in � s partition. Observe� ZLCL �����C� LCL ����� ��� � ZLCL �����C� ZLCL ���P�T� ��� � ZLCL ���P�s�C� LCL �����T� ��� �

LCL ���P�T�[� LCL ����� �� �)�-� � �)�-� � �)�-�� �)�8���
This means, in particular, that our estimate of the scores of both �� and �g� are within

�sr i
, and so

LCL � ����C� LCL �����'� � �
LCL � ����[� ZLCL � ���� ��� ZLCL � ����C� ZLCL �����'� � � ZLCL �������[� LCL ������� �� �)�8� �   � �)�-�

To complete the proof, we need only prove Equations 1 and 2. For Equation 1: Consider the sequence of BNs�?¡ � � � � UTUTU � � ^ where the first t of � 5 ’s CPtables come from �6�(�)! , and the remaining from �6�$#4! — i.e.,� 5 ¢ *-, �(��!. M 1 2 M � UTU-U � , �(�)!.0/)1 2:/ � , �$#4!.0/$£ M 1 2:/:£ M � U-UTU � , �$#4!.�¤¥1 2 ¤�3 U
Now observe E�G$H=	�J � KNM�O 	 B E)DP��� < G:HI	�J � K¦Q§O 	 B E�D��)�-E > ^¨ 5:© � E9G:HI	�J=� / 	 B E)DP��� < G:HL	�JL� / ª M 	 B E�D��)�TEn�
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Figure 1: Belief Net structure corresponding to arbitrary SAT problem [Coo90]

and each
E9G:HI	�J � / 	 B E)DP��� < G$HI	�J � / ª M 	 B E�D��)�-E

is based on changing a single CPtable entry. We therefore need only
show

E�G$HI	�J � / 	 B E)DP��� < G:HI	�J � /Ïª M 	 B E)DP���TE > _]Y^ . For any value of Ð ��, .0/)1 2:/ , let Ñ 	 Ð � � G$HI	�J ��Ò Ó)Ô 	 B E)DP���
, where��Õ ÐzÖ be the BN whose first t <Ø× CPtable entries come from ���(�)! , whose final

� < t <\× entries come from �6�$#4! , and
whose tSÙ�Ú CPtable entries is Ð ; hence Ñ 	 , �(�)!.0/)1 2:/ � � G:HL	�J=� / 	 B E�D��)�

, and Ñ 	 , �$#4!.0/91 2:/ � � G:HI	�JL� /:£ M 	 B E�D��)�
. As this function

is continuous, we know that E Ñ 	�ÛÜ� < Ñ 	�ÝT�TE � Þ Ñ 	 Ð �Þ Ð Õ Ý < Û Ö
for some Ð&%ßÕ Û��4Ý Ö . As Ñ 	 Ð � � G$HL	�J ��Ò Ó�Ô 	 B �4DP��� < G:HL	�J ��Ò Ó�Ô 	zDP���

, we see thatà�á � Ó !à Ó � �âxãYä åSæ �0ç�è éê! J ��Ò Ó�Ô 	 B ��DëE�ì 5 �4í 5 ��î�J ��Ò Ó�Ô 	zí 5 � < �ânãêä å9æ �0éê! J ��Ò Ó�Ô 	qD�E)ì 5 ��í 5 �Pî�J �lÒ Ó�Ô 	zí 5 �� �Ó Õ J ��Ò Ó�Ô 	zì 5 ��í 5 E B �4DP� < J �lÒ Ó�Ô 	zì 5 �4í 5 E�D�� Ö
which means that

E à8á � Ó !à Ó E > × r Ð > × r��
. (The second inequality follows from the assumption that we are only

considering �F% ���ï���'��	�
�
.) Hence,E9G:HI	�J=� /$£ M 	 B E�D��)� < G$HI	�JL� / 	 B E�D��)�-E � E Ñ 	 , �$#4!.0/)1 2:/ � < Ñ 	 , �(��!.0/�1 2(/ �TE> �� îðE , �:#�!.0/�1 2(/I< , � ��!.0/91 2(/ E > �� î �`_]Y^ � _]Y^ U

To prove Equation 2: Observe first that the probability of any event must be at least the product of m CPtable
entries, and hence

J=��	 B �ëñò�Có
for any B and any �v% ���ô�l�'�[	�
�

. This means the value of < G$HL	�J���	 B E)DP���
, and

hence LCL õ�ö 	 � �
for any distribution ÷8ø , is between ù and < m G$H��

.
As the queries ø � Jj	 B �êD��

are drawn at random from a stationary distribution, we can view the quantity
G:H�JÍ��	 ø �

as an iid random value, whose range is Õ ù � < m G:H�� Ö and whose expected value is LCL
	 � �

. Hoeffding’s Inequality

bounds the chance that the empirical average score after
c

iid examples (here ZLCL �:wx! 	 � �
) will be far away from the

true mean LCL
	 � �

:Jj	úE ZLCL �:wx! 	 � � < LCL
	 � �TE {

�@ � ~ i�ûTüÜýÿþ < inc 	)	��sr @ ��r m G:H��C� #�� U (3)

Here, we want the right-hand-side to be under f r �
, which requires

c ��c 	��8� f � �òi���� ó�� � �_ 	 # G:HI	 # �� �
.

Proof of Theorem 2: We reduce 3SAT to our task, using a construction similar to the one in [Coo90]: Given any
3-CNF formula 
����� 5 , where each � 5 ������� 5�� , we construct the network shown in Figure 1, with one node
for each variable � 5 and one for each clause � � , with an arc from � 5 to � � whenever � � involves � 5 — e.g., if
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Table 1: Queries used in proof of Theorem 2° ± ° Ç ° È °���������°�� Î  �        �  
...

...  � �  
�

� � ��� �! #" � #! � � and � # � " � �! #" � �  �%$ , then there are links to � � from each of � � , � # and � � , and to � #
from � � , � � and � $ . In addition, we include

� < × other boolean nodes,
*'& # � U-UTU � & ^)( � ��* 3 , where

& � is the child
of
& � ( � and � � , where

& � is identified with � � , and
*

is used for
& ^ .

Here, we intend each � 5 to be true if the assignment to the associated variables � 5 � � � 5 # � � 5 � satisfies � 5 ; and
*

corresponds is the conjunction of those � 5 variables. We do this using all-but-the-final instances in Table 1. (Note
only 3 of the � 5 variables are specified in each of these instances; the other + < k � 5 s are not, nor are any � � s nor& W s.) There is one such instance for each clause, with exactly the assignment (of the 3 relevant variables) that falsifies
this clause. Hence, the first line corresponds to � � � � �  ," � #  � � . The final instance is just stating that the prior
value for

*
should

Jj	.-�ÛP� � × U ù . The “label” of each instance always corresponds to the single variable
*

.
We now prove, in particular, that

There is a set of parameters for the structure in Figure 1, producing the ZLCL
	êX4�

-score, over the queries in
Table 1, of ù

iff
there is a satisfying assignment for the associated 
 formula.

/ : Just set the CPtable for each � 5 to be the disjunction of the associated � 5 � , � 5 # , � 5 � variables (its parents), with
the appropriate � parity. E.g., using � � � � �0 1" � #! � � , then � � ’s CPtable would be

2 ± 2 Ç 2 È 3 � �54 ± � 2 ±76 2 Ç 6 2 È �      �-�      � �-�    �    z�    � � �-�  �     �-�  �   � �-�  � �   �-�  � � � �-�  
Similarly set the CPtables for the

& � to correspond to the conjunction of its 2 parents
& � �8& � ( �:9 � � ; e.g.,Ë � Æ0; 3 � �5< ; � Ë � 6 Æ0; �     z�    �  z�  �    z�  � � �-�   .

Finally, set � 5 to correspond to the satisfying assignment; i.e., if � � � × , then
3 � � 2 ± ��8�   ; and if i.e., if � $ � ù ,

then
3 � � 2 � � q�   . Note that these CPtable values satify all = - × of the labeled instances.

> : Here, we assume there is no satisfying assignment. Towards a contradiction, we can assume that there is a ù -LCL
set of CPtable entries. This means, in particular, that

Jj	.-�Û�E � 5 � � � 5 # � � 5 � � � ù , where
� 5 � � � 5 # � � 5 � correspond to the

assignment that violates the t th constraint. (E.g., for � � � � �? @" � #! � � , this would be � � � ù , � # � × , � � � ù .)

3



Now consider the final labeled instance,
Jj	zÛ��

. As there is no satisfying assignment, we know that each assignmentA violates at least one constraint. For notation, let
�CB

refer to one of these violations (say the one with the smallest
index). So if A �ED ù � × � ù � U-UTU F , then

�0G ¡ è ��è ¡ èIHIHIH J �ED � � � ù � � # � × � � � � ù F corresponds to the violation of the first
constraint � � . We also let K B refer to the rest of the assignment.

Now observe Jj	L-�ÛP� � M B Jj	L-[Û�� A �� M B Jj	L-�ÛëES�NB ��X8Jj	��OB���XTJj	 K BëEP-�Û��`�NBP�� M B ù XTJj	��OB|�=X-Jj	 K BëEP-�Û��`�NBP� � ù �
which shows that the final instance will be mislabeled. This proves that there can be no set of CPtable values that

produce ù LCL-score when there are no satisfying assignments.

Proof of Proposition 3: Below, we will use
Jj	RQ6�

to refer to
Jl�|	RQ��

, the value the belief net with parameters � will
assign to the

Q
event. In general, for any assignment S ,Jj	 S � � ¨ 2UT ¨ .�T Jj	 S E & � ì � ��V � í � �LJj	 & � ì � EUV � í � �LJj	WV � í � � U (4)

As we assume the different CPtable rows are estimated independently, and
V

is the set of parents of
&

, this meansÞ Jj	 S �Þ K .�1 2 � ¨ . T Jj	 S E�ì � ��í=� Þ Jj	zì � E)íL�Þ K .�1 2 Jj	zíL� U
Recalling

, .�1 2 � Jj	zì�E�í=� �YX[ZR\7] ^ r M .�T X Z \ T ] ^ , observe that
à â � .C1Ï2 !à Z \�] ^ � , .�1 2 	 ×&< , .�1 2 � , and when

ì`_� ì � ,à â � . T 1Ï2 !à ZR\7] ^ � < , .�1 2 , . T 1 2 . This means
à â �7a|!à ZR\7] ^ � Jj	 S ��ì'��í�� < , .�1 2 Jj	 S ��í=�

.
Hence, as

G$H�Jj	 B E)DP� � G:H�Jj	 B �4DP� < G:H�Jj	zDP�
,Þ G:H�Jj	 B E)DP�Þ K .�1 2 � Þ G:H�Jj	 B �4DP�Þ K .�1 2 < Þ G:H�Jj	zDP�Þ K .�1 2� ×Jj	 B ��D�� Þ Jj	 B ��D��Þ K .�1 2 < ×Jj	zDP� Þ Jj	zDP�Þ K .�1 2� ×Jj	 B ��D�� Õ Jj	 B �4D���ì'��íL� < , .�1 2 Jj	 B ��D��4íL� Ö < ×Jj	zDP� Õ Jj	qD'�4ìú�4íL� < , .�1 2 Jj	qD'�4íL� Ö� Õ Jj	zì'��í�E B �êDP� < Jj	zì'��íPE�D�� Ö < , .�1 2 Õ Jj	zíPE B �úD�� < Jj	zí E)DP� Ö U
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