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Appendix

This report contains material that complements the article (GSSZ05). Ap-
pendix A provides the proofs for Theorem 2 and Proposition 3; Appendix B
provides empirical evidence supporting our use of “cross-tuning” to deter-
mine the appropriate number of iterations; Appendix C then provides addi-
tional information about the experiments we ran, including tables showing
the actual datasets used (Table II), the empirical accuracy for each dataset,
when given complete data (Table III) and incomplete data (Table IV). Ap-
pendix D presents empirical results (Table VI) showing how our algorithms
performed over 20 UCIrvine datasets (Table V) that were missing informa-
tion; Appendix E compares our ELR results with those of other algorithms,
both taken from other papers (Table VII) and our results based on SVMs
(Table VIII). Finally, Appendix F presents a short study that explores how the
performance of ELR degrades as the model become successively less accurate;
and Appendix G considers how ELR will perform when the model considered
is “more complex” than the truth.

A. Proofs

Theorem 2 It is NP-hard to find the values for the CPtables of a fixed BN-
structure that produce the largest (empirical) conditional likelihood for a given
incomplete sample.
Proof: We reduce 3SAT to our task, using a construction similar to the one in
(Coo90): Given any 3-CNF formula ϕ ��� Ci, where each Ci

����� Xi j, we
construct the network shown in Figure 1, with one node for each variable Xi
and one for each clause C j , with an arc from Xi to C j whenever C j involves Xi
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Figure 1. Belief Net structure corresponding to arbitrary SAT problem (Coo90)

— e.g., if C1 ( x1 )+* x2 ) x3 and C2 (,* x1 )+* x3 ) x4, then there are links to
C1 from each of X1, X2 and X3, and to C2 from X1, X3 and X4. In addition, we
include K - 1 other boolean nodes, . D2 /1010102/ DK 3 1 / A 4 , where D j is the child
of D j 3 1 and C j, where D1 is identified with C1, and A is used for DK .

Here, we intend each Ci to be true if the assignment to the associated vari-
ables Xi1 / Xi2 / Xi3 satisfies Ci; and A corresponds is the conjunction of those Ci
variables. We do this using all-but-the-final instances in Table I. (Note only
3 of the Xi variables are specified in each of these instances; the other n - 3
Xis are not, nor are any C js nor Dks.) There is one such instance for each
clause, with exactly the assignment (of the 3 relevant variables) that falsifies
this clause. Hence, the first line corresponds to C1

� x1 )5* x2 ) x3. The final
instance is just stating that the prior value for A should P 687 a 9 ( 1 0 0. The
“label” of each instance always corresponds to the single variable A.

We now prove, in particular, that

There is a set of parameters for the structure in Figure 1, producing the:
LCL 6<;=9 -score, over the queries in Table I, of 0

iff
there is a satisfying assignment for the associated ϕ formula.

> : Just set the CPtable for each Ci to be the disjunction of the associated
Xi1, Xi2, Xi3 variables (its parents), with the appropriate � parity. E.g., using
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Table I. Queries used in proof of Theorem 2

X1 X2 X3 X4 ?=?@? Xn A
0 1 0 0
0 0 1 0

...
...

0 1 1 0

1

C1
� x1 )A* x2 ) x3, then C1’s CPtable would be

x1 x2 x3 P BDC c1 E x1 F x2 F x3 G
0 0 0 1 H 0
0 0 1 1 H 0
0 1 0 0 H 0
0 1 1 1 H 0
1 0 0 1 H 0
1 0 1 1 H 0
1 1 0 1 H 0
1 1 1 1 H 0

Similarly set the CPtables for the D j to correspond to the conjunction of

its 2 parents D j ( D j 3 1 I C j; e.g.,

D4 C5 P BDC d5 E D4 F C5 G
0 0 0 H 0
0 1 0 H 0
1 0 0 H 0
1 1 1 H 0

.

Finally, set Xi to correspond to the satisfying assignment; i.e., if X1 ( 1,

then P B&C x1 G
1 H 0 ; and if i.e., if X4 ( 0, then P BDC x4 G

0 H 0 . Note that these CPtable

values satify all k 7 1 of the labeled instances.J : Here, we assume there is no satisfying assignment. Towards a contradic-
tion, we can assume that there is a 0-LCL set of CPtable entries. This means,
in particular, that P 687 a K xi1 / xi2 / xi3 9 ( 0, where xi1 / xi2 / xi3 correspond to the
assignment that violates the ith constraint. (E.g., for C1

� x1 )5* x2 ) x3, this
would be X1 ( 0, X2 ( 1, X3 ( 0.)

Now consider the final labeled instance, P 6 a 9 . As there is no satisfying
assignment, we know that each assignment x violates at least one constraint.
For notation, let γx refer to one of these violations (say the one with the small-
est index). So if x (�L 0 / 1 / 0 /101010NM , then γ O 0 P 1 P 0 P Q Q QSR (�L X1 ( 0 / X2 ( 1 / X3 ( 0 M
corresponds to the violation of the first constraint C1. We also let βx refer to
the rest of the assignment.
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Now observe

P 687 a 9 ( ∑x P 687 a / x 9( ∑x P 687 a K γx 9T; P 6 γx 9T; P 6 βx K<7 a / γx 9( ∑x 0 ; P 6 γx 9T; P 6 βx K<7 a / γx 9 ( 0 /
which shows that the final instance will be mislabeled. This proves that there
can be no set of CPtable values that produce 0 LCL-score when there are no
satisfying assignments.

Proposition 3 (from (GGS97; Dar00)) For the labeled training case L e / c M and
each “softmax” parameter βd U f,
∂
:
LCL

V O e P c RNW 6 Θ 9
∂ βd U f (YXPΘ 6 d / f K e / c 9�- PΘ 6 d / f K e 9@Z[- θd U f XPΘ 6 f K c / e 9�- PΘ 6 f K e 9@Z 0

Proof: Below we will use P 6 χ 9 to refer to PΘ 6 χ 9 , the value the belief net
with parameters Θ will assign to the χ event. In general, for any assignment
Z,

P 6 Z 9 ( ∑
f \ ∑d \ P 6 Z K D ( d ] / F ( f ]19 P 6 D ( d ]'K F ( f ]19 P 6 F ( f ]^9 0 (1)

As we assume the different CPtable rows are estimated independently, and F
is the set of parents of D, this means

∂ P 6 Z 9
∂ βd U f ( ∑

d \ P 6 Z K d ] / f 9 ∂ P 6 d ] K f 9
∂ βd U f P 6 f 9 0

Recalling θd U f ( P 6 d K f 9 ( eβd _ f ` ∑d \ eβd \ _ f , observe that ∂ P
V
d U f W

∂ βd _ f ( θd U f 6 1 -
θd U f 9 , and when d a( d ] , ∂ P

V
d \ U f W

∂ βd _ f ( - θd U f θd \bU f. This means ∂ P
V
Z W

∂ βd _ f ( P 6 Z / d / f 9�-
θd U fP 6 Z / f 9 .

Hence, as lnP 6 c K e 9 ( lnP 6 c / e 95- lnP 6 e 9 ,
∂ lnP 6 c K e 9

∂ βd U f ( ∂ lnP 6 c / e 9
∂ βd U f - ∂ lnP 6 e 9

∂ βd U f
( 1

P 6 c / e 9
∂ P 6 c / e 9

∂ βd U f - 1
P 6 e 9 ∂ P 6 e 9

∂ βd U f
( 1

P 6 c / e 9 XP 6 c / e / d / f 9c- θd U fP 6 c / e / f 9@Zd- 1
P 6 e 9 XP 6 e / d / f 9c- θd U fP 6 e / f 9@Z

(eX P 6 d / f K c / e 9c- P 6 d / f K e 9@Zf- θd U f XP 6 f K c / e 9c- P 6 f K e 9@Z 0
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B. Empirical Evidence Justifying Cross-Tuning

Gradient based learners have to determine when to stop climbing. A naive
implementation would climb for a fixed pre-set number of iterations, or would
continue climbing as long as the empirical accuracy is increasing. Our empiri-
cal studies (on both ELR and APN) show that these approaches are problematic,
as these systems will typically overfit or underfit. To demonstrate this, we
present 5-fold cross validation learning curves from TAN+ELR training re-
sults on the CLEVE dataset. For each cross validation run, we performed
20 iterations over the training data, and plotted the “Resubstitution Error”
and “Generalization Error” after each gradient descent iteration; see Figure 2
below. The “Generalization Error” is the testing error of the resulting system
on the hold-out fold after each training iteration. (I.e., we divided CLEVE
data into 5 folds: {F1, F2, F3, F4, F5}; in each iteration of the first cross val-
idation run, we used F1+F2+F3+F4 for training, then evaluated the resulting
system against the F5 hold-out testing data to produce the “Generalization
Error”). Many of the plots show that ELR’s gradient ascent starts overfitting
significantly only after a few training iterations.

Based on the generalization error plots, we see that ELR should stop after
{2, 1, 1, 4, 5} iterations, for these 5 cross validation runs. Of course, ELR will
not know these “optimal iteration numbers” as they are based on the hold-out
data, which is not available at training time.

Fortunately, ELR estimates these numbers from the available training data,
using a standard method we call “cross-tuning”, described in Section 4 of
the manuscript, to try to identify the number of climbs (iterations) that is
appropriate for each specific dataset. Cross-tuning first splits the training set
into n parts (folds), then successively trains on n - 1 folds and evaluates on
the remaining one. In particular, for each instance, it runs the ELR algorithm
on n - 1 folds for a large number of iterations, and measures the quality of
the resulting classifier on the other fold. For each run, it determines which
iteration produces the smallest generalization error. Cross-tuning then picks
the median value m over these runs. Later, when running on the full dataset
(all n folds), it will run for m iterations before stopping.

The paired t-tests of ELR results on the UCI benchmark datasets shows that
cross-tuning is essential in ELR learning: NB+ELR(+xt) g V

p h 0 Q 03 W NB+ELR(-xt)
and TAN+ELR(+xt) > V

p h 0 Q 05 W TAN+ELR(-xt). Here NB+ELR(-xt) is comparable
to TAN+ELR(-xt), whose performance was significantly degraded by overfit-
ting. This shows cross-tuning can be effective to prevent overfitting especially
when learning parameters of complex BN structures.

The obvious downside of cross-tuning, of course, is computation expense;
see timing information in Table IX.

To demonstrate how cross-tuning works to help avoid overfitting, we re-
visit the experiments on the CLEVE dataset. For the first cross validation run,
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Figure 2. Cross-Tuning Experiments: Resubstitution vs Generalization Error, as function of
Number of Iterations (CLEVE dataset), for 5 different CV folds
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we split the training data from folds {F1,F2, F3, F4} into another 5 folds for
cross-tuning; call them 1CT = {1CT1, 1CT2, ..., 1CT5}. (Note: F1 i F2 i
F3 i F4 = 1CT1 i 1CT2 i . . . i 1CT5.) We then ran 5-fold cross-tuning on
1CT, here by using 4 folds of 1CT for training and the remaining 1CT fold
for testing, over 20 iterations. Each cross-tuning run determined an iteration
number that produced the smallest testing error on the hold-out 1CT fold.
After 5-fold cross-tuning runs, we took the median value of the 5 estimates
and used it as the iteration number in the training on the full 1CT set.

For this first cross-validation run, this produced an estimate of 2, which we
see (from top left graph in Figure 2) is correct. We similarly computed this
quantity for the other four cross-validation scenarios, producing {2, 1, 1, 3, 5}
respectively for the 5 cross validation runs. Notice cross-tuning identified the
correct stopping number in 4 of the 5 cross validation run. The only exception
is the fourth one, where it returned 3, not 4.

C. Data for Experiments

We compared the relative effectiveness of ELR with various other classifiers,
over the same 25 datasets that (FGG97) used for their comparisons: 23 from
UCIrvine repository (BM00), plus “MOFN-3-7-10” and “CORRAL”, which
were developed by (KJ97) to study feature selection; see Table II, which also
specifies how we computed our accuracy values — based on 5-fold cross
validation for small data, and holdout method for large data (Koh95). To deal
with continuous variables, we implemented supervised entropy discretiza-
tion (FI93). Table III (resp., Table IV) summarizes the results on complete
(resp., incomplete) data.
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Table II. Description of data sets used in the experiments (FGG97).

Dataset # Attributes # Classes # Instances
Train Test

1 AUSTRALIAN 14 2 690 CV-5
2 BREAST 10 2 683 CV-5
3 CHESS 36 2 2130 1066
4 CLEVE 13 2 296 CV-5
5 CORRAL 6 2 128 CV-5
6 CRX 15 2 653 CV-5
7 DIABETES 8 2 768 CV-5
8 FLARE 10 2 1066 CV-5
9 GERMAN 20 2 1000 CV-5

10 GLASS 9 7 214 CV-5
11 GLASS2 9 2 163 CV-5
12 HEART 13 2 270 CV-5
13 HEPATITIS 19 2 80 CV-5
14 IRIS 4 3 150 CV-5
15 LETTER 16 26 15000 5000
16 LYMPHOGRAPHY 18 4 148 CV-5
17 MOFN-3-7-10 10 2 300 1024
18 PIMA 8 2 768 CV-5
19 SATIMAGE 36 6 4435 2000
20 SEGMENT 19 7 1540 770
21 SHUTTLE-SMALL 9 7 3866 1934
22 SOYBEAN-LARGE 35 19 562 CV-5
23 VEHICLE 18 4 846 CV-5
24 VOTE 16 2 435 CV-5
25 WAVEFORM-21 21 3 300 4700
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Table III. Empirical accuracy of classifiers learned from complete data

Data set NB+OFE NB+ELR TAN+OFE TAN+ELR GBN+OFE GBN+ELR

1 AUSTRALIAN 86.81 j 0.84 84.93 j 1.06 84.93 j 1.03 84.93 j 1.03 86.38 j 0.98 86.81 j 1.11

2 BREAST 97.21 j 0.75 96.32 j 0.66 96.32 j 0.81 96.32 j 0.70 96.03 j 0.50 95.74 j 0.43

3 CHESS 87.34 j 1.02 95.40 j 0.64 92.40 j 0.81 97.19 j 0.51 90.06 j 0.92 90.06 j 0.92

4 CLEVE 82.03 j 2.66 81.36 j 2.46 80.68 j 1.75 81.36 j 1.78 84.07 j 1.48 82.03 j 1.83

5 CORRAL 86.40 j 5.31 86.40 j 3.25 93.60 j 3.25 100.00 j 0.00 100.00 j 0.00 100.00 j 0.00

6 CRX 86.15 j 1.29 86.46 j 1.85 86.15 j 1.70 86.15 j 1.70 86.00 j 1.94 85.69 j 1.30

7 DIABETES 74.77 j 1.05 75.16 j 1.39 74.38 j 1.35 73.33 j 1.97 75.42 j 0.61 76.34 j 1.30

8 FLARE 80.47 j 1.03 82.82 j 1.35 83.00 j 1.06 83.10 j 1.29 82.63 j 1.28 82.63 j 1.28

9 GERMAN 74.70 j 0.80 74.60 j 0.58 73.50 j 0.84 73.50 j 0.84 73.70 j 0.68 73.70 j 0.68

10 GLASS 47.62 j 3.61 44.76 j 4.22 47.62 j 3.61 44.76 j 4.22 47.62 j 3.61 44.76 j 4.22

11 GLASS2 81.25 j 2.21 81.88 j 3.62 80.63 j 3.34 80.00 j 3.90 80.63 j 3.75 78.75 j 3.34

12 HEART 78.89 j 4.08 78.52 j 3.44 78.52 j 4.29 78.15 j 3.86 79.63 j 3.75 78.89 j 4.17

13 HEPATITIS 83.75 j 4.24 86.25 j 5.38 88.75 j 4.15 85.00 j 5.08 90.00 j 4.24 90.00 j 4.24

14 IRIS 92.67 j 2.45 94.00 j 2.87 92.67 j 2.45 92.00 j 3.09 92.00 j 3.09 92.00 j 3.09

15 LETTER 72.40 j 0.63 83.02 j 0.53 83.22 j 0.53 88.90 j 0.44 79.78 j 0.57 81.21 j 0.55

16 LYMPHOGRAPHY 82.76 j 1.89 86.21 j 2.67 86.90 j 3.34 84.83 j 5.18 79.31 j 2.18 78.62 j 2.29

17 MOFN-3-7-10 86.72 j 1.06 100.00 j 0.00 91.60 j 0.87 100.00 j 0.00 86.72 j 1.06 100.00 j 0.00

18 PIMA 75.03 j 2.45 75.16 j 2.48 74.38 j 2.81 74.38 j 2.58 75.03 j 2.25 74.25 j 2.53

19 SATIMAGE 81.55 j 0.87 85.40 j 0.79 88.30 j 0.72 88.30 j 0.72 79.25 j 0.91 79.25 j 0.91

20 SEGMENT 85.32 j 1.28 89.48 j 1.11 89.35 j 1.11 89.22 j 1.12 77.53 j 1.50 77.40 j 1.51

21 SHUTTLE-SMALL 98.24 j 0.30 99.12 j 0.21 99.12 j 0.21 99.22 j 0.20 97.31 j 0.37 97.88 j 0.33

22 SOYBEAN-LARGE 90.89 j 1.31 90.54 j 0.54 93.39 j 0.67 92.86 j 1.26 82.50 j 1.40 85.54 j 0.99

23 VEHICLE 55.98 j 0.93 64.14 j 1.28 65.21 j 1.32 66.39 j 1.22 48.52 j 2.13 51.95 j 1.32

24 VOTE 90.34 j 1.44 95.86 j 0.78 93.79 j 1.18 95.40 j 0.63 96.32 j 0.84 95.86 j 0.78

25 WAVEFORM-21 75.91 j 0.62 78.55 j 0.60 76.30 j 0.62 76.30 j 0.62 65.79 j 0.69 65.79 j 0.69
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Table IV. Empirical accuracy of classifiers learned from incomplete data
(25 UCI benchmark datasets with “missing completely at random” at 0.25)

Data set NB+ELR NB+APN NB+EM TAN+ELR TAN+APN TAN+EM GBN+ELR GBN+APN GBN+EM

AUSTRA-
LIAN 78.41 j 1.01 78.41 j 0.96 78.55 j 1.01 77.25 j 0.59 78.12 j 0.74 77.25 j 0.59 74.06 j 1.06 74.06 j 1.06 74.78 j 0.74

BREAST 95.59 j 1.32 96.03 j 1.20 96.03 j 1.20 96.03 j 1.13 95.88 j 0.95 96.18 j 1.02 94.12 j 1.63 94.85 j 1.36 94.85 j 1.36

CHESS 94.56 j 0.69 89.59 j 0.94 89.68 j 0.93 96.15 j 0.59 93.90 j 0.73 94.09 j 0.72 90.34 j 0.90 90.06 j 0.92 90.06 j 0.92

CLEVE 84.07 j 1.90 82.03 j 2.05 82.03 j 2.05 83.73 j 1.57 83.73 j 1.57 83.73 j 1.57 83.05 j 1.93 81.36 j 2.34 83.39 j 1.89

CORRAL 81.60 j 3.25 83.20 j 3.67 83.20 j 3.67 88.80 j 3.67 90.40 j 1.60 88.80 j 2.65 92.00 j 1.79 88.80 j 2.65 92.00 j 1.79

CRX 87.54 j 1.43 86.00 j 1.67 86.00 j 1.67 85.85 j 1.43 84.62 j 1.29 85.85 j 1.43 86.15 j 1.67 87.23 j 1.10 86.92 j 0.97

DIABETES 75.42 j 1.84 74.64 j 1.83 74.64 j 1.83 74.64 j 2.06 74.90 j 2.19 74.90 j 2.19 73.46 j 1.99 73.20 j 1.99 72.81 j 1.79

FLARE 83.00 j 1.42 82.35 j 1.21 82.44 j 1.24 82.54 j 0.86 82.35 j 1.90 82.54 j 1.52 82.63 j 1.28 82.63 j 1.28 82.63 j 1.28

GERMAN 74.50 j 0.89 74.10 j 1.09 74.00 j 1.05 72.70 j 0.54 74.00 j 0.97 72.90 j 0.40 73.70 j 0.68 73.40 j 0.86 73.70 j 0.68

GLASS 35.71 j 4.33 35.71 j 4.33 35.71 j 4.33 35.71 j 4.33 35.71 j 4.33 35.71 j 4.33 35.71 j 4.33 35.71 j 4.33 35.71 j 4.33

GLASS2 79.38 j 3.22 77.50 j 3.03 77.50 j 3.03 76.25 j 2.72 76.25 j 3.37 76.25 j 2.72 78.13 j 3.28 77.50 j 3.75 78.13 j 3.28

HEART 75.19 j 5.13 74.81 j 4.63 74.81 j 4.63 72.22 j 3.26 73.33 j 4.00 73.33 j 4.00 73.70 j 3.95 73.33 j 4.37 73.33 j 4.37

HEPATITIS 81.25 j 7.65 86.25 j 5.00 86.25 j 5.00 82.50 j 5.00 87.50 j 3.95 86.25 j 5.00 86.25 j 3.64 86.25 j 3.64 86.25 j 3.64

IRIS 94.67 j 0.82 94.67 j 0.82 94.67 j 0.82 94.67 j 0.82 94.67 j 0.82 94.67 j 0.82 94.67 j 0.82 94.67 j 0.82 94.67 j 0.82

LETTER 75.28 j 0.61 67.24 j 0.66 67.14 j 0.66 81.86 j 0.54 85.25 j 0.50 84.07 j 0.52 72.80 j 0.63 69.81 j 0.65 68.60 j 0.66

LYMPHO-
GRAPHY 84.83 j 2.80 84.14 j 1.38 83.45 j 1.29 82.07 j 3.84 78.62 j 2.01 81.38 j 3.87 78.62 j 2.29 78.62 j 2.29 79.31 j 2.18

MOFN-
3-7-10 82.03 j 1.20 82.03 j 1.20 82.03 j 1.20 82.03 j 1.20 82.03 j 1.20 82.03 j 1.20 82.03 j 1.20 82.03 j 1.20 82.03 j 1.20

PIMA 74.90 j 2.85 74.90 j 2.85 74.90 j 2.85 74.25 j 2.45 73.99 j 2.28 73.99 j 2.28 73.99 j 2.06 74.64 j 2.25 74.77 j 2.31

SATIMAGE 84.90 j 0.80 81.85 j 0.86 81.90 j 0.86 87.70 j 0.73 87.80 j 0.73 87.70 j 0.73 73.95 j 0.98 76.35 j 0.95 76.30 j 0.95

SEGMENT 89.74 j 1.09 85.19 j 1.28 85.19 j 1.28 89.35 j 1.11 89.22 j 1.12 89.09 j 1.12 77.40 j 1.51 77.40 j 1.51 77.40 j 1.51

SHUTTLE-
SMALL 99.17 j 0.21 99.07 j 0.22 99.07 j 0.22 99.28 j 0.19 99.17 j 0.21 99.17 j 0.21 99.22 j 0.20 98.04 j 0.32 98.04 j 0.32

SOYBEAN-
LARGE 85.54 j 1.79 87.68 j 1.77 86.07 j 2.37 84.29 j 1.25 84.64 j 1.34 86.61 j 0.80 50.54 j 1.61 50.18 j 1.75 48.21 j 2.43

VEHICLE 62.72 j 1.69 57.28 j 1.25 57.51 j 1.38 64.85 j 1.29 62.49 j 1.28 62.60 j 1.44 49.94 j 0.91 44.73 j 1.94 44.73 j 1.94

VOTE 94.71 j 0.86 90.80 j 1.54 91.03 j 1.52 94.94 j 0.86 95.40 j 0.51 95.17 j 0.67 95.17 j 0.76 95.63 j 0.92 95.17 j 0.76

WAVEFORM
-21 73.34 j 0.64 73.64 j 0.64 73.64 j 0.64 72.26 j 0.65 72.28 j 0.65 72.26 j 0.65 64.38 j 0.70 55.85 j 0.72 55.85 j 0.72
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Table V. UCIrvine Datasets with Missing Information

dataset information * # instances # attributes # classes missing ratio missing total/attris

AGARICUS-LEPIOTA 8124 22 2 CV5 1.39% 2480/1
ALLBP 2800/972 29 3 train/test 5.54% 4556+1508
ALLHYPER 2800/972 29 5 train/test 5.54% 4556+1508
ALLREP 2800/972 29 4 train/test 5.54% 4556+1508
ANNEAL 798 38 6 CV5 64.94% 19692/28
BANDS 540 29 2 CV5 1.93% 302
BREAST-CANCER 699 10 2 CV5 0.23% 16
CLEVE 303 13 2 CV5 0.18% 7
CRX 690 15 2 CV5 0.65% 67/7
DERMATOLOGY 366 34 6 CV5 0.06% 8/1
DIS 2800 29 2 CV5 5.61% 4556
HORSE-COLIC 368 22 2 CV5 23.80% 1927
HYPOTHYROID 3163 25 2 CV5 6.74% 5329
IMPORTS-85 205 25 7 CV5 1.15% 59/7
MONK1-CORRUPT 288/144 6 2 train/test 30.17% 521+261
PRIMARY-TUMOR 339 17 22 CV5 3.90% 225/5
SICK 2800 29 2 CV5 5.61% 4556
SICK-EUTHYROID 3163 25 2 CV5 6.74% 5329
SOYBEAN-LARGE 307/376 25 2 train/test 4.32% 705/33
WATER-TREATMENT 523 38 13 CV5 2.97% 591/31

D. Dealing with Missing Data

We ran a body of experiments over the 20 UCIrvine datasets shown in Ta-
ble V, and found that, when dealing with NB, ELR was significantly better than
either APN or EM: NB+ELR > V

p h 0 Q 00559 W NB+EM and NB+ELR > V
p h 0 Q 026125 W NB+APN.

However, there was no statistical significance when considering TAN: TAN+ELR g V
p h 0 Q 083164 W

TAN+EM and TAN+ELR g V
p h 0 Q 077631 W TAN+APN. All of the data appears in Ta-

ble VI.
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Table VI. Results on UCI Datasets with missing information

errors NB+EM NB+APN NB+ELR TAN+EM TAN+APN TAN+ELR

AGARICUS-LEPIOTA 4.41 j 0.3 4.35 j 0.32 0 j 0 0.01 j 0.01 0 j 0 0 j 0

ALLBP 4.22 j 0 4.22 j 0 3.09 j 0 4.12 j 0 4.12 j 0 3.5 j 0

ALLHYPER 2.78 j 0 2.78 j 0 1.85 j 0 2.37 j 0 1.85 j 0 1.75 j 0

ALLREP 3.5 j 0 3.6 j 0 3.29 j 0 2.47 j 0 2.67 j 0 2.78 j 0

ANNEAL 5.79 j 1.66 4.65 j 1.84 1.76 j 0.67 6.54 j 1.64 5.16 j 1.86 1.89 j 0.4

BANDS 30 j 1.96 29.81 j 1.79 25.56 j 1.39 25.37 j 2.06 24.63 j 2.24 26.48 j 2.24

BREAST-CANCER 2.59 j 0.84 2.59 j 0.84 3.74 j 1.14 5.18 j 0.89 5.76 j 1.27 5.04 j 0.85

CLEVE 15.67 j 3.23 15.67 j 3.23 16 j 2.72 18 j 1.62 17.33 j 1.63 18 j 1.62

CRX 14.06 j 1.11 14.06 j 1.04 13.33 j 0.93 15.22 j 0.51 15.07 j 0.77 15.22 j 0.51

DERMATOLOGY 2.19 j 0.82 2.19 j 1.11 1.92 j 0.7 4.66 j 1.11 3.29 j 1.11 3.29 j 1.27

DIS 2.11 j 0.56 2.11 j 0.6 1.39 j 0.26 1.71 j 0.27 1.57 j 0.3 1.43 j 0.22

HORSE-COLIC 19.73 j 1.66 19.73 j 1.66 17.81 j 1.15 18.08 j 1.01 18.36 j 0.82 19.73 j 0.93

HYPOTHYROID 2.25 j 0.6 1.99 j 0.63 1.96 j 0.54 2.31 j 0.6 2.24 j 0.6 2.15 j 0.55

IMPORTS-85 37.56 j 4.27 37.56 j 3.33 40 j 2.51 34.63 j 1.79 34.15 j 3.45 33.17 j 3.05

MONK1-CORRUPT 36.11 j 0 36.11 j 0 34.72 j 0 22.92 j 0 22.22 j 0 16.67 j 0

PRIMARY-TUMOR 51.64 j 2.69 50.15 j 3.01 50.45 j 2.89 51.94 j 4.51 54.93 j 3.38 51.94 j 4.51

SICK 4.71 j 1.21 4.89 j 1.36 4.11 j 0.77 4.46 j 0.85 4.46 j 0.88 4.18 j 0.71

SICK-EUTHYROID 7.03 j 0.93 6.96 j 0.89 6.36 j 0.99 7.25 j 0.89 7.15 j 0.91 6.46 j 1.1

SOYBEAN-LARGE 11.97 j 0 7.71 j 0 8.51 j 0 8.78 j 0 10.11 j 0 10.37 j 0

WATER-TREATMENT 47.31 j 1.91 47.31 j 1.91 47.31 j 1.91 47.31 j 1.91 47.31 j 1.91 47.31 j 1.91

average 15.2815 14.922 14.158 14.1665 14.119 13.568
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E. ELR vs other Learning Algorithms

Table VII summarizes the experimental results (on complete data) obtained
from the following papers.

GSSZ04 Greiner et al. (2004)
GZ02 Greiner and Zhou (2002)
GD04 Domingos et al. (2004)
FGG97 Friedman et al. (1997)

In short, we found that x+ELR performed comparably to C4.5 and SNB.
We next compared ELR to SVM-light (Joa02). Here, tried a number of pa-

rameter setting before settling on the values “c 0.05 poly 2 (t=1 d=2)”,
which we found had the best average performance, over all of the datasets.
(Note we just considered the datasets with binary classes.) When using this
single-best setting, we found ELR was best, for any of the structures:
NB+ELR > V

p h 0 Q 023 W SVM-light (best_ave)
TAN+ELR > V

p h 0 Q 036 W SVM-light (best_ave)
GBN+ELR g V

p h 0 Q 0078 W SVM-light (best_ave)
Table VIII presents these results. (Table IX provides timing information.)
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Table VII. ELR vs Other Learning Algorithms (from other papers)

GSSZ04 GZ02 GD04 FGG97

Data set GBN+ELR NB+ELR TAN+ELR NB+ELR TAN+ELR NB+ELR TAN+ELR C4.5 C4.5 SNB

AUSTRALIAN 86.81 84.93 84.93 84.93 85.07 85.12 82.77 84.90 85.65 86.67
BREAST 95.74 96.32 96.32 95.54 96.12 96.61 96.49 93.90 94.73 96.19
CHESS 90.06 95.40 97.19 95.40 97.09 94.00 96.25 99.50 99.53 94.28
CLEVE 82.03 81.36 81.36 82.33 81.33 83.40 78.36 79.40 73.31 78.06
CORRAL 100.00 86.40 100.00 90.40 100.00 87.27 92.29 98.50 97.69 83.57
CRX 85.69 86.46 86.15 84.64 85.07 84.95 83.97 86.10 86.22 85.92
DIABETES 76.34 75.16 73.33 75.69 75.95 75.81 76.16 74.10 76.04 76.04
FLARE 82.63 82.82 83.10 82.72 82.35 81.87 82.20 82.70 82.55 83.40
GERMAN 73.70 74.60 73.50 74.00 73.60 75.44 73.91 72.90 72.20 73.70
GLASS 44.76 44.76 44.76 41.90 41.90 57.80 49.82 59.30 69.62 71.98
GLASS2 78.75 81.88 80.00 77.50 76.25 80.62 77.51 76.10 76.67 79.17
HEART 78.89 78.89 78.15 79.26 80.00 84.50 81.53 78.20 81.11 81.85
HEPATITIS 90.00 86.25 85.00 85.16 85.16 87.06 86.98 82.50 86.25 90.00
IRIS 92.00 94.00 92.00 95.33 95.33 95.15 92.37 96.00 94.00 94.00
LETTER 81.21 83.02 88.90 83.54 88.90 69.32 82.48 87.80 77.70 75.36
LYMPHO-

GRAPHY 78.62 86.21 84.83 83.45 79.31 85.30 82.16 78.40 77.03 77.72
MOFN-

3-7-10 100.00 100.00 100.00 100.00 100.00 86.33 100.00 84.00 85.55 87.50
PIMA 74.25 75.16 74.38 75.42 75.69 74.95 76.16 74.10 75.13 74.86
SATIMAGE 79.25 85.40 88.30 85.50 88.60 82.70 85.80 82.30 83.15 82.05
SEGMENT 77.40 89.48 89.22 89.74 89.74 92.99 94.29 91.80 93.64 93.25
SHUTTLE-

SMALL 97.88 99.12 99.22 99.28 99.38 99.17 99.48 99.40 99.17 99.28
SOYBEAN-

LARGE 85.54 90.54 92.86 92.65 92.65 90.80 93.37 91.10 92.00 92.89
VEHICLE 51.95 64.14 66.39 62.72 64.97 65.47 72.73 68.30 69.74 61.36
VOTE 95.86 95.86 95.40 96.09 95.40 96.30 95.13 94.70 95.63 94.71
WAVEFORM

-21 65.79 78.55 76.30 78.45 76.74 82.28 74.66 65.10 74.70 76.53
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Table VIII. ELR vs SVM

Data set NB+ELR TAN+ELR GBN+ELR svm-light k
AUSTRALIAN 84.93 j 1.06 84.93 j 1.03 86.81 j 1.11 70.29 j 9.11

BREAST 96.32 j 0.66 96.32 j 0.70 95.74 j 0.43 93.97 j 1.21

CHESS 95.40 j 0.64 97.19 j 0.51 90.06 j 0.92 97.65 j 0.00

CLEVE 81.36 j 2.46 81.36 j 1.78 82.03 j 1.83 72.54 j 4.39

CORRAL 86.40 j 3.25 100.00 j 0.00 100.00 j 0.00 96.80 j 5.22

CRX 86.46 j 1.85 86.15 j 1.70 85.69 j 1.30 70.15 j 8.34

DIABETES 75.16 j 1.39 73.33 j 1.97 76.34 j 1.30 69.28 j 5.77

FLARE 82.82 j 1.35 83.10 j 1.29 82.63 j 1.28 82.06 j 3.81

GERMAN 74.60 j 0.58 73.50 j 0.84 73.70 j 0.68 66.20 j 1.75

GLASS2 81.88 j 3.62 80.00 j 3.90 78.75 j 3.34 79.37 j 8.45

HEART 78.89 j 4.08 78.15 j 3.86 78.89 j 4.17 76.67 j 2.81

HEPATITIS 86.25 j 5.38 85.00 j 5.08 90.00 j 4.24 86.25 j 5.23

MOFN-3-7-10 100.00 j 0.00 100.00 j 0.00 100.00 j 0.00 100.00 j 0.00

PIMA 75.16 j 2.48 74.38 j 2.58 74.25 j 2.53 70.59 j 4.03

VOTE 95.86 j 0.78 95.40 j 0.63 95.86 j 0.78 93.10 j 1.15

average 85.43 85.92 86.05 81.66l
We tried many settings, and found the setting [c=0.05, poly 2 (t=1, d=2) produced

the best average for SVM. (As this is based on ALL data, it does give svm-light a
slight advantage.)
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Table IX. Training Time in seconds, on AMD/MP2600-2048

ELR without cross-tuning ELR with 5-fold cross-tuning

dataset NB+ELR TAN+ELR NB+ELR TAN+ELR SVM-light c 0.05 poly 2

AUSTRA-
LIAN 593.23 1204.16 1345.39 2965.11 2460 CV5

BREAST 478.16 850.11 1067.95 1997.25 60 CV5
CLEVE 214.85 500.27 473.33 1028.93 60 CV5
CORRAL 25.33 118.97 110.67 300.29 60 CV5
CRX 701.17 1296.07 1591.67 3648.29 1020 CV5
DIABETES 518.7 666.61 1107.73 2617.4 60 CV5
FLARE 919.35 1057.65 2090.83 5080.25 180 CV5
GERMAN 951.43 2151.93 3755.08 10346.66 60 CV5
GLASS2 109.62 49.18 229.08 435.69 60 CV5
HEART 245.18 170.88 530.64 1055.6 60 CV5
HEPATITIS 138.79 95.4 308.16 587.67 60 CV5
PIMA 705.64 330.59 1361.73 3345.17 120 CV5
VOTE 776.67 468.1 1878.65 1976.25 60 CV5
CHESS 1932.27 2180.17 4784.38 5574.15 60 Train/Test
MOFN-

3-7-10 70.78 85.86 140.74 232.32 60 Train/Test

Average 969.61 5861.2 2968.08 28460.81 296
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Figure 3. “Correctness of Structure”: Comparing ELR to OFE, on increasingly incorrect
structures for (a) Complete Data; (b) Incomplete Data

F. “Correctness of Structure” Study

The NaïveBayes-assumption, that the attributes are independent given the
classification variable, is typically incorrect. This is known to handicap the
NaïveBayes classifier in the standard OFE situation; see the paper and (DP96).

The paper demonstrated above that ELR is more robust than OFE, in that
it is not as handicapped by an incorrect structure. We designed the following
simple experiment to empirically investigate this claim.

We used synthesized data, to allow us to vary the “incorrectness” of the
structure. Here, we consider an underlying distribution P0 over the k 7 1
binary variables . C / E1 / E2 /1010102/ Ek 4 where (initially) we made NaïveBayes-
assumptions and set1

P 687 c 9 ( 0 0 9 P 687 ei Km7 c 9 ( 0 0 2 P 687 ei K�- c 9 ( 0 0 8 (2)

and our queries were all complete; i.e., each instance of the form E (nL � e1 / � e2 /o01010^/ � ek M .
We then used OFE (resp., ELR) to learn the parameters for the NaïveBayes

structure from a data sample, then used the resulting BN to classify additional
data. As the structure was correct for this P0 distribution, both OFE and ELR
did quite well, efficiently converging to the optimal classification error.

We then tried to learn the CPtables for this NaïveBayes structure, but for
distributions that were not consistent with this structure. In particular, we
formed the m-th distribution Pm by asserting that E1

� E2
� 01010 � Em (i.e.,

P 687 ei Kp7 e1 9 ( 1 0 0, P 687 ei KT- e1 9 ( 0 0 0 for each i ( 2 0b0m) in addition to
Equation 2. Hence, P0 corresponds to the m ( 0 case. For m q 0, however,
the m-th distribution cannot be modeled as a NaïveBayes structure, but could
be modeled using that structure augmented with m - 1 links, connecting Ei 3 1
to Ei for each i ( 2 0b0m.

Figure 3(a) shows the results, for k ( 5, based on 400 instances. As pre-
dicted, ELR can produce reasonably accurate CPtables here, even for increas-
ingly wrong structures. However, OFE does progressively worse.

1 For binary variables, we let “ r c” represent c s True, and “ t c” represent c s False.
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Figure 4. G u T situations, complete data. (a) Model is NB; Truth is C v E1; (b) Model is
TAN; Truth is NaïveBayes. (Each point is averaged over 10 runs)

“Correctness of Structure”, Incomplete Data: We next degraded this train-
ing data by randomly removing the value of each attribute, within each in-
stance, with probability 0 0 5. Figure 3(b) compares ELR with the standard
systems APN and EM; again we see that ELR is more accurate, in each case.

G. Model is More Complex than Truth (G q T )

Section 5.1 focused on the common situation where G (the BN-structure
being instantiated) is presumedly simpler than the “truth” — e.g., we used
naïve-bayes when there probably were dependencies between the attributes.
This section considers the opposite situation, where we allow the model “more
degrees of freedom” than the truth. As this is atypical, we could only consider
artificial data.

In our first experiment, we attempt to learn the parameters for a naïve-
bayes model, when the truth is C � E1 — i.e., the other attributes E2, . . . , Ek
are each irrelevant. We focus on k ( 6 and k ( 7 attributes, where all variables
are binary. When the data is complete, we used first OFE and then ELR to
instantiate the parameters of a given NaïveBayes model. Figure 4(a) shows
the learning curve as we increase the sample size, over 10 different runs.
(Each run used its own training sample.) We see that NB+OFE is consistently
slightly better than NB+ELR: averaged over all of the runs, this is significant
at p w 0 0 002.

We also weakened the C � E1 condition, to simply require that C be highly
correlated with E1. Using the same set-up show above, when the correlation
is 0.96, we found NB+OFE > V

p h 0 Q 001 W NB+ELR. When the correlation is 0.80,
the dominance is even more: NB+OFE > V

p h 0 Q 0001 W NB+ELR.

The second experiment “reverses” the situations shown in Appendix F
above. Here, the truth corresponds to a naïve-bayes structure (with no depen-
dencies between the evidence Ei variables, conditioned on the class variable),
but we attempt to find the parameters for a “Pm-based structure” — i.e., a TAN
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Figure 5. G u T situations, incomplete data. (a) Model is NB; Truth is C v E1; (b) Model is
TAN; Truth is NaïveBayes. (Each point is averaged over 10 runs.)

structure that links E1
� E2

� 01010 � Em. These results appear in Figure 4(b),
again this is averaged over 10 runs. (This difference is not significant.)

We next considered the same two situations, but in the incomplete data
case. In particular, here we blocked a value of any entry with probability 0.2.

The results, shown in Figure 5, show that the generative measures (NB+APN
and NB+EM) dominated the discriminative NB+ELR: NB+APN > V

p h 0 Q 02 W NB+ELR
and NB+EM > V

p h 0 Q 015 W NB+ELR. (Moreover, NB+EM > V
p h 0 Q 025 W NB+APN.) The gen-

erative approach is also superior in the other sitation (Figure 5(b)): TAN+APN > V
p h 0 Q 025 W TAN+ELR,

and TAN+EM > V
p h 0 Q 05 W TAN+ELR.

In a nutshell, we observed that discriminative ELR learning typically did
worse than the generative learners in this “model is more complex than truth”
situation, when dealing with either complete or incomplete data.

Note, of course, that we had to produce a carefully constructed experi-
ment to illustrate this point. As this “G q T” situation is very uncommon, we
continue to advocate using ELR in general.
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