Appears in the

Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),

Seattle, Washington, July 1994.

Learning to Select Useful Landmarks

Russell Greiner
Siemens Corporate Research
Princeton, NJ 08540

greiner@learning.siemens.com

Abstract

To navigate effectively, an autonomous agent must be
able to quickly and accurately determine its current
location. Given an initial estimate of its position (per-
haps based on dead-reckoning) and an image taken of
a known environment, our agent first attempts to lo-
cate a set of landmarks (real-world objects at known
locations), then uses their angular separation to ob-
tain an improved estimate of its current position. Un-
fortunately, some landmarks may not be visible, or
worse, may be confused with other landmarks, result-
ing in both time wasted in searching for invisible land-
marks, and in further errors in the agent’s estimate of
its position. To address these problems, we propose a
method that uses previous experiences to learn a se-
lection function that, given the set of landmarks that
might be visible, returns the subset which can reliably
be found correctly, and so provide an accurate regis-
tration of the agent’s position. We use statistical tech-
niques to prove that the learned selection function is,
with high probability, effectively at a local optimal in
the space of such functions. This report also presents
empirical evidence, using real-world data, that demon-
strate the effectiveness of our approach.

1. Introduction

To navigate effectively, an autonomous agent R must
be able to quickly and accurately determine its cur-
rent location. R can obtain fairly accurate estimates
of its position using dead-reckoning; unfortunately, the
errors in these estimates accumulate over long dis-
tances, which can lead to unacceptable performance
(read “bumping into walls” or “locating the wrong of-
fice”). An obvious way to reduce this problem is to
observe the environment, and use the information in
these observations to improve our estimate of R’s po-
sition; cf., the work using Kalman filters (Kosaka &
Kak 1992; Cox & Wilfong 1990) and other techniques
(Smith & Cheeseman 1987; Kuipers & Levitt 1988;
Fennema et al. 1990; Engelson 1992) We will model the
environment using only a set of “landmarks”, each a
(potentially visible) real-world object at a known loca-
tion; these objects could be doors, corners and pictures

Ramana Isukapalli
Department of Computer Science
Rutgers University

ramana@cs.rutgers.edu

when specifying the hallways within building, or major
buildings, junctions and prominent signs when speci-
fying the streets within a city.! Given an initial esti-
mate of its position (perhaps based on dead-reckoning)
and an image taken of a known environment, R can
first attempt to locate a set of possibly visible land-
marks, then use their angular separation to obtain an
improved estimate of its current position.

Landmark-based position estimation is a popular
technique in robot navigation (Case 1986; Sugihara
1988; 1987; Levitt & Lawton 1990). Many of these
landmark-based methods assume that all landmarks
can be found reliably. Unfortunately, some landmarks
may not be visible; for example, certain corners may
always be in shadow and so are difficult to see, or
some hanging pictures may have been removed after
the floor-plan was released. These can force R to waste
time, searching in vain for invisible landmarks. Worse,
some landmarks may be easily confused with others;
e.g., door A may be mistaken for door B, or some land-
mark A (say the convex corner of two walls) may be
occluded by another object B (say the convex corner
of filing cabinet) that looks sufficiently similar that R
might think that B is A. As this can cause R to believe
that A is located at B’s position, these mis-identified
objects can produce further errors in R’s estimate of
its position.?

It therefore makes sense to search for only the subset

!Notice this information is essentially the same as the
information required for the navigation task itself, to spec-
ify the destination or some required intermediate points.
N.b., we assume that this set of all possible landmarks is
known initially; this contrasts with other systems that also
attempt to learn the set of landmarks from the observa-
tions; cf., (Kuipers & Byun 1988) and others.

2 Another possible complication is that R may identify a
wide landmark correctly, but mistakenly refer to the wrong
position within that landmark. Also, R uses a set of identi-
fied landmarks to locate its position; depending on the ge-
ometric positions of these landmarks, small errors in land-
mark location may lead to quite large errors in R’s posi-
tional estimate. We of course prefer landmarks sets that
provide position estimates that are relatively insensitive to
errors in landmark identification.

of the potentially visible landmarks that can be found
reliably, which are not confusable with others, etc. Un-
fortunately, it can be very difficult to determine this
good subset a priori, as (1) the landmarks that are
good for one set of R-positions can be bad for another;
(2) the decision to seek a landmark can depend on
many difficult-to-incorporate factors, such as lighting
conditions and building shape; and (3) the reliability of
a landmark can also depend on unpredictable events;
e.g., exactly where R happens to be when it observes
its environment, how the building has changed after
the floor-plan was finalized, and whether objects (per-
haps people) are moving around the area where R is
looking. These factors make it difficult, if not impos-
sible, to designate the set of good landmarks ahead of
time.

This report presents a way around this problem:
Section 2 proposes a method that learns a good “se-
lection function” that, given the set of landmarks that
may be visible, returns the subset which can usually
be found correctly. We also use statistical techniques
to prove that this learned selection function is, with
high probability, effectively at a local optimum in the
space of such functions. Section 3 then presents empir-
ical results that demonstrate that this algorithm can
work effectively. We first close this section by present-
ing a more precise description of the performance task,
showing how R estimates its position:

Specification of Performance Task: At each point,
R will have an estimate x of its current position z and
a measure of the uncertainty (here the covariance ma-
trix). R uses the LMs(x) algorithm to specify the
subset of the landmarks that may be visible from each
position x; we assume LMs(x) is essentially the same
as LMs(x). (Le., we assume that R’s estimate of its
position is sufficient to specify a good approximation
of the set of possibly appropriate landmarks.) R also
uses an algorithm Locate(x, ¢, img, lms) that,
given R’s estimate of its position x and uncertainty &,
an image img taken at R’s current position and a set of
landmarks 1ms, returns a new estimated position (and
uncertainty) for R.

To instantiate these processes: In the current RAT-
BOT system (Hancock & Judd 1993), the LMs pro-
cess uses a comprehensive “landmark-description” of
the environment, which is a complete list of all of the
objects in that environment that could be visible, to-
gether with their respective positions. This could be
based on the floor-plan of a building, which speci-
fies the positions of the building’s doors, walls, wall-
hangings, etc.; or in another context, it could be a
map of the roads of a city, which specifies the locations
of the significant buildings, signs, and so forth. The
Locate(x, ¢, img, lms) process first attempts to
find each landmark /; € 1ms within the image img; here
it uses x and ¢ to specify where in the image to look for
this ;. It will find a subset of these landmarks, each at
some angle (relative to a reference landmark). Locate

then uses simple geometric reasoning to obtain a set of
new estimates of R’s position; perhaps one from each
set of three found landmarks (Hancock & Judd 1994),
or see (Gurvits & Betke 1994). After removing the
obvious outliers, Locate returns the centroid of the
remaining estimates as its positional-estimate for R,
and the variance of these estimates as the measure of
uncertainty; see (Hancock & Judd 1993).

As our goal is an efficient way of locating R’s po-
sition, our implementation uses an inexpensive way of
finding the set of landmarks based on simple tests on
the visual image; n.b., we are not using a general vision
system, which would attempt to actually identify spe-
cific objects and specify particular qualities from the
visual information.?

. Function for Selecting Good Landmarks

While many navigation systems would attempt to lo-
cate all of the landmarks that might be visible in an
image (i.e., the full set returned by LMs(%)), we ar-
gued above that it may be better to seek only a subset
of these landmarks: By avoiding “problematic” land-
marks (e.g., ones that tend to be not visible, or con-
fusable), R may be able to obtain an estimate of its
location more quickly, and moreover, possibly obtain
an estimate that is more accurate.

We therefore want to identify and ignore these bad
landmarks. We motivate our approach by first pre-
senting two false leads: One immediate suggestion is
to simply exclude the bad landmarks from the cata-
logue of all landmarks that LMs uses, meaning LMs ()
will never return certain landmarks. One obvious com-
plication is the complexity of determining which land-
marks are bad, as this can depend on many factors, in-
cluding the color of the landmark, the overall arrange-
ment of the entire environment (which would specify
which landmarks could be occluded), the lighting con-
ditions, etc. A more serious problem is the fact that a
landmark that is hard to see from one R position may
be easy to see, and perhaps invaluable, from another;
here, R should be able to use that landmark when reg-
istering its location from some positions, but not from
others.

We therefore decided to use, instead, a selection
function Sel that filters out the bad landmarks from
the set of possibly visible landmarks, lms = LMs(
x): Here, each selection function Sel; returns a
subset Sel;(1lms, X, ¢) = 1lms; C 1lms; R then
uses this subset to compute its location, returning
Locate(x, ¢, img, 1ms;). We want to use a selection
function Sel; such that Locate(x, &, img, 1lms;)
is reliably close to R’s true position, x. To make this

®Figure 3 shows, and describes, the actual “images” we
use. Also, this articles does not provide pseudo-code for
either LMs or Locate, as our learning algorithm regards
these process as black-boxes.

more precise, let

Err(Sel;, (x,%,6,img)) =
|| x — Locate(x, &, img, Sel;(LMs(x), x,5)) ||

be the error* for the selection function Sel; and any
“situation” (x,%,6,img), and let

AveErr(Sel;) =
E(X,f(,&,img) [EI'I'(Seli: <X, }A{; a-a Hng))]

be the expected error, over the distribution of situa-
tions (x, %, &,img), where F.[-] is the expectation oper-
ator. Our goal is a selection function Sel,p; that min-
imizes this expected value, over the set of possible se-
lection functions.

The second false lead involves “engineering” this op-
timal selection function initially. One problem, as ob-
served above, is the difficulty of determining “analyt-
ically” which landmarks are going to be problematic
for any single situation. Worse, recall that our goal is
to find the selection function that works best over the
distribution of situations; which depends on the dis-
tribution of R’s actual positions when the function is
called, the actual intensity of light sources, what other
objects have been moved where, etc. Unfortunately,
this distribution of situations is not known a prior:.

We are therefore following a third (successful) ap-
proach: of learning a good selection function. Here,
we first specify a large (and we hope, comprehensive)
class of possible selection functions & = {Sel;}. Then,
given “labeled samples” — each consisting of R’s posi-
tion and uncertainty estimates, the relevant landmark-
set and image, and as the label, R’s actual position
— identify the selection function Sel; which minimizes

AveErr(Sel;).

Space of Selection Function: We define each selec-
tion function Sel; € & as a conjunction of its partic-
ular set of “heuristics” or “filters”; Filters(Selecty) =
{f1,..., fm}, where each filter f; is a predicate that ac-
cepts some landmarks and rejects others. Hence, the
Select;(1lms, X, &) procedure will examine each
£ € 1ms individually, and reject it if any f; filter re-
jects it; see Figure 1.

While we can define a large set of such filters, this
report focuses on only two parameterized filters:

BadTypeg,(¢,%x,0): Reject £ if Type(£) & K3

TooSmally, x,(¢,%,6) : Reject £ if ||Posn(€) — x|| > k4
and AngleWidth(¢, x) < ks

* As we are also considering the efficiency of the overall
process, we will actually use the slightly more complicated
error function presented in Section 3 below. This is also
why we did not address the landmark-selection task using
robust analysis: Under that approach, our system would
first spend time and resources seeking each landmark, and
would then decide whether to use each possible correspon-
dence. As our approach, instead, specifies which landmarks
should be sought, we will gather less data, and so expend
fewer resources.

Sel; (1lms: landmarks, X: pos’n, ¢: var.): landmarks
OK_LMs — {}
ForEach £ € 1lms
KeeplM «— T
ForEach f; € Filters(Sel;)

If [fi({, %, 6) = Ignore | Then KeeplM — F
End (inner) ForEach
If [KeeplM = T]

End (outer) ForEach
Return(OK_LMs)
End Select

Then OK_LMs +« OK_LMs + /¢

Figure 1: PseudoCode for Sel; Selection Function

where Type({) refers to the type of the landmark ¢,
which can be “Door”, “BlackStrip”, etc.? The pa-
rameter K3 specifies the subset of landmark-types that
should be used. Using “Posn(¢)” to refer to £’s real-
world codrdinates and “AngleWidth(¢, x)” to refer to
the angle subtended by the landmark ¢, when viewed
from %, TooSmall, x,(¢, %,) rejects the landmark ¢
if £ is both too far away (greater than k; meters) and
also too small (subtends an angle less than ks degrees),
from R’s estimated position x.

Using these filters, & = {Sely, », K, } is the set of
all selection functions, over a combinatorial class of
settings of these three parameters. As stated above, we
want to find the best settings of these variables, which
minimize the expected error AveErr[Selg, i, x5 |-

Hill-Climbing in Uncertain Space: There are two
obvious complications with our task of finding this op-
timal setting: First, as noted above, the error function
depends on the distribution of situations, which is not
known initially. Secondly, even if we knew that in-
formation, it is still difficult to compute the optimal
parameter setting, as the space of options is large and
ill-structured (e.g., K3 is discrete, and there are subtle
non-linear effects as we alter k; and ks).

We use a standard hill-climbing approach to ad-
dress the second problem, based on a set of opera-
tors 7 = {7, } that each map one selection function to
another; i.e., for each s € §, 7,(s) € S is another se-
lection function. We use the obvious set of operators:

7'1+ increments the value of k; and 7, decrements k;’s

value; hence Tl+(5615, 8, {t1,t3,t7}) = 8616, 8, {t1,t3,t7}
and 77 (Sels s {11,437) = Sela g {11,43,47). Sim-
ilarly, 7'2+ and 7, respectively increment and decre-
ment the ks value. There are 9 different 75 op-
erator, each of which “flips” the ** bit of Ka;
hence 73(Sels, s {11,13473) = Sels g {1347} and
Tés(S615, 8, {t1,t3,t7}) = Sel57 8, {t1,t3,t7,t8}-

To address the first problem — wviz., that the distri-
bution is unknown — we use a set of observed examples

°The current system contains nine different types: Mis-
cellaneous, Black_Strip, Concave_Corner, Convex_Corner,
Dark_Door, Light_Door, Picture, FireExtinguisher and
Support_between_Windows.

LEARNSF(Sely : select fn, €: %“', 6: ?}f+) . select fn
For j « 1. do

TTSel;] — {7mu(Sel;) }x

Take n — m(5, SIEGEL

U — {ul, ey un}
If 3Sel’ € 7[Sel;] such that

EM[Sel;] — EM[Sel'] > £

then Let Selj;; « Sel’
else [Here, VSel’, £()[Sel;] —

Return Sel;

End For
End LEARNSF

samples,

[Each u; = (xi,%i, 64, img;) |

E®[Sel'] < £]

Figure 2: (Simplified) PseudoCode for LEARNSF

to estimate the relevant information: Let
u -
E](cl,)kgng, = fz(u)[Err(SelklykzyKa)]
= qu,eu Err(Selg, ks, k5, i)

be the empirical average error of the selection func-
tion Selg, r, K, over the set of training samples U =
{ (xi, %, 63, 1mgl) }i, which we assume to be indepen-
dent and identically distributed. We then use some
statistical measure to relate the number of samples

seen, to our confidence that EEZO will be close to the
real mean p; = By, [Err(Sel;, u;)] = AveErr(Sel;)
value. In particular, we need a function m(---) such
that, after m(e, §) samples, we can be at least 1—¢ con-

fident that the empirical average E®) will be within
¢ of the population mean y; ie., |U| > m(e,8) =
Pr[|E®) — | > €] < 6. If we can assume that the
underlying distribution of error values is close to a nor-
mal distribution, then we can use

MNorm (€,6) = (%2_1(1 - g))Q

where the z(p) = \/127 ffoo

the p'? quantile of the standard normal distribution
N(0,1) (Bickel & Doksum 1977).

The LEARNSF algorithm, sketched in Figure 2,°
combines the ideas of hill-climbing with statistical
sampling: Given an initial selection function Sel; =
Selg, k. k5 € S, and the parameters € and §, LEARNSE
will use a sequence of example situations {u;} to climb
from the initial Sel; through successive neighboring
selection functions (Sely, Sels, Sels, .. .) until reaching,
and returning, a final Sel,. With high probabil-
ity, this Sel,, is essentially a local optimum. More-
over, LEARNSF requires relatively few samples for each
climb. To state this more precisely:

2
— % .
e~ 7 dx function computes

5We actually use much more efficient, but more com-
plex, algorithm that, for example, decides whether to climb
to a new Selj;1 « Sel’ after observing each image, (rather
than a batch of n images); see (Greiner & Isukapalli 1994;
Greiner 1994).

tree orna-
s in image

Figure 3: RATBOT’s view (looking ug
ment), and “strip”, corresponding to an

Theorem 1 (from (Greiner & Isukapa
The LEARNSF(Sely, €, §) process increme
series of selection functions Sely, Seb, ...,
each Seljy1 = 7;(Sely) for some 7; € T an
ity at least 1 — 6,

, such that
ith probabil-

1. the expected error of each selection function s strictly
better than its predecessors i.e.,
V2<j<m: AveErr(Selj_1) < AveErr(Sel;); and
2. the final selection function (returned by LEARNSF),
Sely, ts an “e-local optimum” — i.e.,

—-3r € T: AveErr(7(Selyn)) < AveErr(Sel,) —

given the statistical assumption that the underlying distri-
bution is essentially normal. Moreover, LEARNSF will ter-
minate with probability 1, and will stay at any Sel; (be-
fore either terminating or climbing to a new Sel i+1) for
a number of samples that is polynomial in —, = |T| and
A=max o Seles, |[Err(Selu) — Err(r (Sel) u)| which
18 the largest difference in error between a pair of neighbor-
ing selection functions for any sample. a

3. Empirical Results

To test the theoretical claims that a good selection
function can help an autonomous agent to register
its position efficiently and accurately, and also that
LEARNSF can help find such good selection functions,
we implemented various selection functions and the
LEARNSF learning algorithm, and incorporated them
within the implemented autonomous agent, RATBOT,
described in (Hancock & Judd 1993). This section de-
scribes our empirical results.

We first took a set of 270 “pictures” at known loca-
tions within three halls of our building. Each of these
pictures is simply an array of 360 intensity values, each
corresponding to the intensity at a particular angle, in
a plane parallel to the floor; these are shown on right-
hand side of Figure 3.7 We have also identified 157 dif-
ferent landmarks in these regions, each represented as

"These were obtained using a “NOMAD 200” robot with
a CCD camera mounted on top, pointing up at a spherical
mirror (which is actually a christmas tree ornament); see
left-hand side of Figure 3. We then extract from this image
a 1-pixel annulus, which corresponds to the light intensity
at a certain height; see right-hand side of Figure 3.

. | ki ke K
= Sely | 5 0 110011110
| Sel, | 5 10 000000000
5 “‘{ Sels | 10 0 111111111
te | Sel, | 10 10 100100011
=7 b Sels | 5 10 101100011
g

RN I S— .

g 3’%'?1
é) 560 1d00 15b0 ZdOO

Image Number

Figure 4: LEARNSF’s Hill-Climbs, for different initial
Selection Functions

simply an object of a specified type (one of the nine cat-
egories), located between a pair of codrdinates (1, y1)
and (z2, y2); where, once again, this (z, y) plane is par-
allel to the floor and goes through the center of the
bulb.

Each experiment used a particular initial selection
function, error function, values for ¢ and 6, way of es-
timating R’s position, and statistical assumption. We
first describe one experiment in detail, then discuss a
battery of other experiments that systematically vary
the experimental parameters.

Experiment#1 Specification: LEARNSF began
with the Sel; selection function shown in Figure 4.
This function rejects a landmark if either it is more
than 5 meters away from our estimated position and
also subtends an angle less than 0 degrees,® or if
the landmark’s type is one of Concave_Corner, Con-
vex_Corner, or Support_between_Windows (these are
the second, third and ninth types, corresponding to
the bits that are 0 in the Sel; row of Figure 4). We
used 6 = 0.05, meaning that we would be willing to
accept roughly 1 mistake in 20 runs. The € = 0.1 set-
ting means that we do not care if the average error of
two selection functions differs by less than 0.1m; as we
allowed errors as large as 4m, this corresponds to an
allowable tolerance of only 2.5%.

As our goal is to minimize both positional error and
computational time, we use an error function that is
the weighted sum of the positional error (which is the
difference between the obtained estimated position and
the real position) and “#landmarks—to—pos’n-error ra-
tio” times the number of landmarks that were selected.
Here, we set the ratio to 0.01, to mean, in effect, that
each additional landmark “costs” 0.01m.

Finally, while we know that image img; is taken at
location x;, it unrealistic to assume that RATBOT will
know that information; in general, we assume that
RATBOT will instead see an approximate x;. We

8 As nothing can subtend an angle strictly less than 0°,
this first clause is a no-op — 1ie., it will not reject any
landmark.

Sample # Selection Function E[LM-Err]
0 Sel, = ({5, 0; [110011110]) 1171
62 Sely.y = ((5, 0); [110111110]) 0.916
102 Sely.p = ((5, 2); [110111110]) 0.647

Table 1: Data for LEARNSFE’s Climbs from Sel;
model this by setting x; = z; + VZ»(U), where each I/Z»(o) is
a normally-distributed random value with mean zero
and variance o. Here, we used o = 0.3m. Recall also
that the Locate function needs a value for ¢ to con-
strain its landmark-location process; we also set & to
be o.

Experiment#1 Results: Given these settings,
LEARNSF observed 62 labeled samples before
climbing to the new selection function Sel;.; =
((5, 0); [110111110]}, which differs from Sel; only by
not rejecting all Convex_Corners.” It continued us-
ing this selection function for 40 additional samples,
before climbing to the Sel;.s = ((5, 2); [110111110])
selection function, which rejects landmarks that are
both more than 5m from R’s estimated position and
also less than 2°. It continued using this Sel;.s function
for another 700 samples before LEARNSF terminated,
declaring this selection function to be a “0.1-local op-
timum” — i.e., none of Sel;.»’s neighbors has a utility
score that is more than € = 0.1 better than Sely.5. (We
found, in fact, that Sel;.; is actually a bona fide local
optimum, in that none of its neighbors is even as good
as it is.)

The solid line (labeled “17) in Figure 4 shows
LEARNSF’s performance here. Each horizontal line-
segment corresponds to a particular selection func-
tion, where the line’s y-value indicates the “average
test error” of its selection function, which was com-
puted by running this selection function through all
270 images.'® These horizontal lines are connected by
vertical lines whose z-value specify the sample number
when LEARNSF climbed. Table 1 presents a more
detailed break-down of this data.

Other Variants: Our choice of Sel; = ((5, 0);
[110111110]) was fairly arbitrary; we also consid-
ered the four other reasonable starting selection func-
tions shown in Figure 4. Notice that Sels =
((5, 10); [000000000]) rejects every landmark; and
Sels = ((5, 0); [111111111]) accepts every landmark.
Figure 4 also graphs the performance of these func-
tions. Notice that LEARNSF finds improvements in all
five cases.

We also systematically varied the other parameters:
trying values of ¢ = 1.0, 0.2, 0.1, 0.05, 0.02,0.01,
0.005; é6 = 0.005, 0.01, 0.05, 0.1; o =

9Sel.g:j refers to the selection function reached after j
climbs, when starting from Sel;. Hence, Sel;.o = Sel;.

1976 avoid testing on the training data, we computed
this value using a new set of randomly-generated positional
estimates, {x, = z; + I/EC)/}, where again I/EU)I is a random
variable drawn from a 0-mean o-variance distribution.

0, 0.3, 0.5, 1.0; and the “#landmark-to—pos’n-error
ratio” of 0, 0.02, 0.05, 0.1, 0.2. (The 0 setting tells
LEARNSF to consider only the accuracy of a landmark
set, and not the cost of finding those landmarks.) We
also used LEARNSF g7, a variant of LEARNSF that re-
places the myorm (+) function with the weaker

mui(e,8) = 1(2)'In?

function, which is based on Hoeffding’s inequality (Ho-
effding 1963; Chernoff 1952), and so does not require
the assumption that the error values are normally dis-
tributed. All of these results are reported, in detail, in

(Greiner & Isukapalli 1994).

Summary of Empirical Results: The first obvious
conclusion is that selection functions are useful; notice
in particular that the landmarks they returned enabled
R to obtain fairly good positional estimates — within
a few tenths of a meter. Notice also that the obvious
degenerate selection function, Sels which accepted all
landmarks, was not optimal; i.e., there were functions
that worked more effectively. Secondly, this LEARNSF
function works effectively, as it was able to climb to
successively better selection functions, in a wide vari-
ety of situations. Not surprisingly, we found that the
most critical parameter was the initial selection func-
tion; the values of €, , o and even the “#landmark—to—
pos’n-error ratio” had relatively little effect. We also
found that this LEARNSF yoprm system seemed to work
more effectively than the version that did not require
the normality assumption, LEARNSF g7: in almost all
instances, both systems climbed through essentially
the same selection functions, but LEARNSF norm TE-
quired many fewer samples — by a factor of between
10 and 100! (In the numerous different runs that used
6 = 0.05, LEARNSF yorm climbed a total of 84 times
and terminated 24 times, and so had 84 + 24 = 108
opportunities to make a mistake; it made a total of
only 3 mistakes, all very minor.) Finally, LEARNSF’s
behavior was also (surprisingly) insensitive to the ac-
curacy of R’s estimated position, over a wide range of
errors; e.g., even for non-trivial values of |z — x|.

4. Conclusion

While there are many techniques that use observed
landmarks to identify an agent’s position, they all de-
pend on being able to effectively find an appropriate
set of landmarks, and will produce degraded or unac-
ceptable information if the landmarks are not found,
or mis-identified. We can avoid this problem by using
only the subset of “good” landmarks. As it can be very
difficult to determine this subset @ priori, we present
an algorithm, LEARNSF, that uses a set of training
samples to learn a function that selects the appropri-
ate subset of the landmarks, which can then be used
robustly to determine our agent’s position. We then
prove that this algorithm works effectively — both the-
oretically and empirically, based on real data obtained
using an implemented robot.

Acknowledgments

We gratefully acknowledge the help we received from
Thomas Hancock, Stephen Judd, Long-Ji Lin, Leonid
Gurvits and the other members of the RatBOT team.

References

Bickel, P. J., and Doksum, K. A. 1977. Mathemat:-
cal Statistics: Basic Ideas and Selected Topics. Oakland:
Holden-Day, Inc.

Case, M. 1986. Single landmark navigation by mobile
robots. In SPIFE, volume 727, 231-38.

Chernoff, H. 1952. A measure of asymptotic efficiency for
tests of a hypothesis based on the sums of observations.
Annals of Mathematical Statistics 23:493-507.

Cox, 1., and Wilfong, G., eds. 1990. Autonomous Robot
Vehicles. Springer-Verlag.

Engelson, S. P. 1992. Active place recognition using im-
age signatures. In SPIE Symposium on Intelligent Robotic
Systems, Sensor Fusion V, 393-404.

Fennema, C.; Hanson, A.; Riseman, E.; Beveridge, J.;
and Kumar, R. 1990. Model-directed mobile robot navi-
gation. IEFE Transactions on Systems, Man and Cyber-
netics 20(6):1352-69.

Greiner, R., and Isukapalli, R. 1994. Learning to select
useful landmarks. Technical Report SCR-LS594-473.

Greiner, R. 1994. Probabilistic hill-climbing: Theory and
applications. Technical report, SCR.

Gurvits, L., and Betke, M. 1994. Robot navigation using
landmarks. Technical Report SCR-94-TR-474, SCR/MIT.

Hancock, T., and Judd, S. 1993. Ratbot: Robot navi-
gation using simple visual algorithms. In 1993 IEEE Re-
gional Conference on Control Systems.

Hancock, T., and Judd, S. 1994. Hallway navigation
using simple visual correspondence algorithms. Technical
Report SCR-94-TR-479, SCR.

Hoeffding, W. 1963. Probability inequalities for sums
of bounded random variables. Journal of the American
Statistical Association 58(301):13-30.

Kosaka, A., and Kak, A. C. 1992. Fast vision-guided
mobile robot navigation using model-based reasoning and
prediction of uncertainties. Computer Vision, Graphics,
and Image Processing 56(3):271-329.

Kuipers, B. J., and Byun, Y.-T. 1988. A robust, qual-
itative method for robot spatial learning. In AAAI-88,
T74-79.

Kuipers, B. J., and Levitt, T. S. 1988. Navigation and
mapping in large-scale space. Al Magazine 9(2):25-43.
Levitt, T. S., and Lawton, D. T. 1990. Qualitative navi-
gation for mobile robots. Artificial Intelligence 44:305-60.
Smith, R., and Cheeseman, P. 1987. On the representa-
tion and estimation of spatial uncertainty. International
Journal of Robotics Research 5(4):56—68.

Sugihara, K. 1987. Location of a robot using sparse visual
information. Robotics Research: The Fourth International
Symposium, 319-26. MIT Press.

Sugihara, K. 1988. Some location problems for robot nav-

igation using a single camera. Computer Vision, Graphics
and Image Processing 42(1):112-29.

