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Abstract

Most inductive inference algorithms are designed
to work most effectively when their training data
contain completely specified labeled samples. In
many environments, however, the person collect-
ing the data may record the values of only some
of the attributes, and so provide the learner with
only partially specified samples. This can be mod-
eled as a blocking process that hides the values of
certain attributes from the learner. While block-
ers that remove the values of critical attributes
can handicap a learner, this paper instead focuses
on blockers that remove only superfluous attribute
values, I.e., values that are not needed to clas-
sify an instance, given the values of the other
unblocked attributes. We first motivate and for-
malize this model of “superfluous-value blocking”,
and then demonstrate that these omissions can be
quite useful, showing that a certain class that is
seemingly hard to learn in the general PAC model
— wiz., decision trees — is trivial to learn in this
setting. We also show how this model can be ap-
plied to the theory revision problem.

Introduction

Diagnosticians often perform tests sequentially and
stop as soon as they know the correct diagnosis; they,
therefore, typically perform only a small fraction of all
possible tests. As an example, knowing that a positive
t1 blood test is sufficient to establish that a patient
has diseaseX, a doctor can conclude that a patient
has diseaseX after performing only 7, if that test is
positive. In recording his findings, the doctor will only
record (t1,+) and the diagnosis diseaseX, and will
not record the patient’s symptoms corresponding to
the other tests t5,t3,...,%,.

A learning program may later examine the doctor’s
files, trying to learn the doctor’s diagnostic procedure.

*Authors listed alphabetically by first name. We grate-
fully acknowledge receiving helpful comments from Dale
Schuurmans and George Drastal.

These records are “incomplete”, in that the values
of many attributes are missing; e.g., they do not in-
clude the results of tests 5 through ¢, for this patient.
However, within our model, the learner can use the
fact that these attributes are missing to conclude that
the missing tests are not required to reach a diagno-
sis, given the values of the other known tests; which
here means that the target classifier should establish
diseaseX and terminate on observing only (¢1,+).
This paper shows that such omissions can actually be
beneficial, by presenting learning algorithms that can
exploit these types of omissions to learn classifiers that
appear hard to learn without this auxiliary informa-
tion.

Motivation and Related Work: Existing learn-
ing systems that permit incomplete information in the
learning samples [BFOS84; Qui92] are all based on
a different learning model [SG94]: After one process
draws completely-specified samples at random, a sec-
ond process then hides the values of certain attributes,
perhaps changing the complete tuple (1,0, 1, 1) to the
partial tuple (x,0,*, 1), where “4” means this value is
hidden. From such partial tuples, each labeled with its
correct class, the learner must produce a classifier that
can classify unlabeled partial tuples. Here, the hiding
process, called “blocking”, can be viewed as a type of
random noise.

The model in this paper also assumes a random pro-
cess is generating complete attribute tuples, which are
then partially blocked. Our model differs by dealing
with blocking processes that are based, in a partic-
ular manner, on the values of the attributes and on
the target classifier that the learner is trying to ac-
quire: here, we can assume that the unblocked data
alone is sufficient to establish the correct diagnosis.
We view the values of the blocked attributes as “su-
perfluous” or “conditionally irrelevant”: irrelevant as
they do not play a role in classifying the sample, given
the values of the other specified values (i.e., condi-
tioned on those other values). E.g., as the doctor
will conclude diseaseX if #; is positive, whether %5
is positive or negative, we say that “ty is superflu-
ous, given that t; is positive”. Of course, if ¢; is
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Figure 1: Model of Blocking Process

negative, t» may then be relevant for the diagnosis.
Most other research that deals with learning in the
context of irrelevant attributes [Lit88; Blu92; AD91;
BHLY1] considers the stronger claim that an attribute
is irrelevant only if its value never plays a role in the
classification, for any values of the other features.!

Implemented learning systems that can handle miss-
ing features tend to work effectively when relative few
feature values are missing, and when these missing val-
ues are randomly distributed across the samples. How-
ever, recent studies [PBH90; RCJ88] have shown that
in practice many datasets are missing more than half
of the feature values! Moreover, these attribute val-
ues are not randomly blocked, but in fact “are missing
[blocked] when they are known to be irrelevant for clas-
sification or redundant with features already present in
the case description” [PBH90], which is precisely the
situation considered in this paper (see Definition 2).
Our model of learning may therefore be applicable to
many diagnostic tasks, and will be especially useful
where experts are not available, or are unable to artic-
ulate the classification process they are using.

Framework

Standard Model of Learning: Following standard
practice, we identify each domain instance with a fi-
nite vector of boolean attributes z = (21, ..., 2,), and
let X,, = {0,1}" be the set of all possible domain in-
stances. The learner is trying to learn a concept which
we view as an indicator function ¢ : X, — {T,F},
where z is a member of ¢ iff ¢(z) = T2 A “(la-
beled) example of a concept ¢ € C” is a pair (z, c¢(z)) €
Xnx{T, F'}. We assume that random labeled instances
are drawn independently from a stationary distribution
P: X, —[0,1].

A learning algorithm has access to an oracle, £ X,
for random examples that, when called, will provide
(in unit time) a labeled example (x, c(x)) where x is
drawn according to P and labeled by ¢. The learning
algorithm’s goal is to produce as output a concept h

1Other research [JKP94] extends the traditional notion
of irrelevance, to handle correlated attributes.

2To simplify our presentation, we will assume that each
attribute has one of only two distinct values, {0,1}, and
that there are only two distinct classes, written {7, F'}. Tt
is trivial to extend this analysis to consider a larger (finite)
range of possible attribute values, and larger (finite) set of
classes.

that has small error, where the error of h is defined as

Err(h) = > P(x)

z€Xn, h(x)Zc(x)

which is the probability that the returned hypothesis h
will misclassify an instance x drawn from the distribu-
tion P. We use the standard PAC criterion [Val84;
KLPVS87] to specify the desired performance of our
learners:

Definition 1 (PAC learning) Algorithm L PAC
learns a set of concepts C if, for some polynomial func-
tion p(---), for all target concepts ¢ € C, distributions
P, and error parameters, 0 < €,6 < 1, when L 1is
run with inputs €, 8, and a random example oracle
EX (where each call to EX returns an instance in-
dependently chosen according to distribution P and la-
beled according to ¢), L terminates in time al most
p(%, %, le|), where |c| is the “size” of the concept ¢, and
oulputs a hypothesis h € C whose error is, with proba-
bility at least 1 — 6, at most ¢; i.e.,

VP € “distr. on X,,”, c€C, 0<¢€,6 <1,
Pr( Err(h)<e) > 1-6.

Model of “Blocked Learning”: In standard learn-
ing models, each labeled instance (z, ¢(2)) is passed “as
is” to the classifier. In our model the learner instead
only sees a “censored” version of (z,c(x)), written
“(B(x), c(x))”, based on a blocker # which is a function
that maps an instance « € {0, 1}" to a blocked instance
B(x) € {0,1,*}"; see Figure 1. The value “4” denotes
the the corresponding attribute is blocked. Hence,
a blocker could map ((1,1,0,1),7) to ({1,x*,*,%),T),
or ((x,1,0,%), F'), but not to either ((1,0,0,1),7) or
((1,1,0,1),%). Let X} = {0,1,*}" denote the set of
possible instance descriptions.

This paper considers only superfluous-value blockers:
1.e., blockers that block only attribute values that do
not affect an instance’s classification, given the values
of the other unblocked attribute values. (Therefore,
for superfluous value blockers, “x” is equivalent to a
“don’t care” value.) To state this more precisely:

Definition 2 (“Superfluous” /“Conditionally Irrelevant™)

Given a concept ¢ € C over the set of attributes

{xla ] In}

1. The altributes {xmy1,...,2,} are superfluous given
the partial assignment {x1 — v, ..., Tm > Uy}

(where each v; € {0,1} is a specified value) iff



Vi=(m+1).n, y; € {0,1}:
C(<Ula e Umy Ym41, -
2. a function B: X, — X s a legal superfluous-value
blocker if it only blocks superfluous attributes; i.e.,
if B((v1, ..., v0)) = (v1, ..., Um, *, ..., %) implies the
attributes {mq1,...,2n} are superfluous given the
partial assignment {z1 — vy, ..., Tm — Um}.

To better clarify our notion of “superfluous”, con-
sider the situation where X, = {0, 1}? is the set of all
possible domain instances and the target concept ¢ is
represented by the boolean formula z; V 25. Then a le-
gal blocker could map the instance ((1,1),T) either to
((1,%),T) or to ((*,1),T), meaning “xs is superfluous,
given that z; is positive” and vice versa. Hence, for
this single instance, either z; or 3 can be conditionally
irrelevant, depending on the tests that have already
been performed. Therefore, our notion of (ir)relevance
depends on both the instance being filtered and on the
blocker that is employed.

In general, there can be many possible superfluous
value blockers for a given concept (including the de-
generate no-op blocker that reveals every attribute).
We must therefore specify the blocking scheme B that
maps each concept ¢ € C to its superfluous value
blocker 3 = B(c¢). This paper focuses on blocking
schemes which correspond to an evaluation procedure
that takes an instance and a target concept, and runs
until the value of the target is determined, leaving
unblocked just those attributes that are examined by
the evaluation procedure. For example, the natural
blocking scheme for decision trees is one that evalu-
ates an instance on the target tree and reveals only
those attributes that were tested on the root-to—leaf
path taken by the instance.

Our model is otherwise the same as the PAC model.
In particular, the learner’s task is still to acquire a
classifier that has high accuracy on completely specified
instances. (This objective is reasonable as the classifier
can specify the tests to be performed. Recall, however,
the learner only sees training instances that have been
filtered through a legal blocker.)

We say that “a concept class C is learnable with
respect to the blocking scheme B” if there is a
learning algorithm L that achieves the PAC crite-
rion shown in Definition 1, with the sole modifica-
tion that L uses the blocked-oracle £ Xp(.), where on
each call, EXp(.) returns the labeled blocked instance
(B(e)(x), c(x)) € X} x{T, F}, rather than the un-
blocked (x,c(z)) € X,, x {T, F'} that EX would have
returned. (Le., E Xp() first filters the instance through
the B = B(c) filter associated with target concept ¢.)

Results for Decision Trees

This section discusses the challenge of learning decision
trees within this “superfluous blocking model”. Deci-
sion trees have a natural blocking strategy since each
example is classified by a unique root-leaf path in the

v yn)) = c¢({v1, ..., Um, 0,...,0))

tree. We consider the blocker that suppresses those at-
tributes that do not appear on an instance’s evaluation
path in the target decision tree. We begin with the
simplest situation, and progress to successively more
complicated situations. For notation, let D7, be the
set of decision trees defined over n boolean variables,
Xn.

Empty Initial Tree: The DT[E] model assumes that
the learner begins with an Empty initial decision tree,
which is extended into a full decision tree based on a
set of samples, and that the blocker uses the target
decision tree dp to block attributes of the instances.
On receiving a complete instance, = (21,...,2,),
the blocker traverses the dp decision tree, from the root
down, recording not just the appropriate classification
for this instance dr(z) € {T,F}, but also the set
of tests that were performed; this corresponds to the
path through dr. The blocker then passes on only the
attributes encountered on the path, and blocks all the
other attributes.

The simple GRowDT; algorithm, shown in Fig-
ure 2, can learn decision trees from these blocked in-
stances in the DT[E] model. The critical observations
are that the root of the target tree can never be blocked
and that any variable that is never blocked appears
on the path to every leaf reached by the sample and
hence can be placed at the root.® After GRowDT
has collected “enough” samples, it calls BUILDDT to
find the best tree; given those samples. BUILDDT first
selects as its root any attribute value that is never
blocked, then splits on this attribute, and calls itself
recursively.

Theorem 1 For any target tree co € DT ,,, any values
of €,6 € (0,1) and any distribution, under the DT[FE]
model, GROWDT ( n, ¢, 6§ ) will, with probability at
least 1 — 6, return a tree ¢’ € DT, whose error is at
most €. Moreover, GROWDT requires O(|co| In(%))
samples, and returns a tree of size |¢'| < |co|, where |c|

1s the number of nodes in c.

We see here the advantage of exploiting these super-
fluous values, as there is currently no known algorithm
capable of learning decision trees in the standard PAC
model.’

Non-Empty Initial Tree: In many situations, we
may already have an initial decision tree, d;ni;: € DT,

°If the blocker also provides additional information
about the order in which tests are recorded, then GRowDT
can be trivially modified to learn a tree identical to the dr
decision tree traversed by the blocker.

*While the GROWDT, algorithm is parameterized by
the size of the tree s, we can produce a modified version
GROWDT that does not require this parameter by using the
standard technique [HKLW91] of repeated attempts with
successively doubled estimates of s.

“The best known general algorithms run in pseudo-
polynomial time, i.e., they learn an s-node decision tree
in time polynomial in s'°% ¢ [EH89].



Algorithm GROWDT ( n: Z%, ¢:(0,1), 6:(0,1) ): TreeType
/* Returns tree of size s that correctly classifies a (large enough) sample of n-tuples */

Draw m, = %[s In(8n) + In(1/6)]
Return( BuipDT( S, ) )
End GROWDT,

partially-specified labeled samples, S. (from the EXp( oracle)

Algorithm BUILDDT ( S: set_of_partial samples ): TreeType

/* Builds a tree using samples S */
Let NT be new tree

If (all samples in S are labeled with same {) or (S is empty) then

NT.LeaflLabel = £ (or “...=T” if 8| =10)

Return( NT )

Let z; be any variable that is unblocked forall s & S.

Let 8 = {{(z — {z:/0},£) | (z,£) €8, z;/0 € z}
st = {{z — {=:/1},€) | (,€) €8, z;/1 € =z}

/* To form S°: Assemble the instances in S that include the z;/0 assignment,
then project out that attribute; similarly for S'. */

Let NT.InternalNodelLabel = z;
NT.If0 = BumwpDT( s° );
Return( NT )
End BuiLpDT

NT.If1 = BuiLpDT( s' )

Figure 2: BUILDDT Algorithm for learning decision trees

which is considered quite accurate, but not perfect. We
can use a set of labeled samples to modify d;,:; 1.€., to
form a new tree dpeszer that is similar to djpiz, but (with
high probability) more accurate. We let DT[T R+] re-
fer to this model, where the T'R designates “Theory
Revision”, corresponding to the many existing systems
that perform essentially the same task (typically for
Horn-clause based reasoning systems) [MB88; OM90;
Tow91; WP93; LDRGY4].

As before, the real-world continues to generate
completely-specified samples, , each labeled dr(z) €
{T, F'} by the target (but unknown) decision tree dr.
Here, however we need a slightly different type of
blocker, which first runs this sample through the ini-
tial decision tree d;n;q, to obtain both a proposed (but
not necessarily correct) label d;,;+(2) and a particular
set of unblocked attribute values; call this fq,, ., (z) €
Xy If dipie’s label is correct (ie., if dp(z) =
dinit(z)), then the learner receives (Bq,,,, (2), dr(z)).
Otherwise, if dp(z) # dinit(x), the learner receives
(Bdsnievar (), dp(2)), where the B4,,,,va, blocker spec-
ifies the value of any attribute that is unblocked by
either B4, ., or Bay.

The extended paper [GHR94] presents the
MopiryDT? algorithm (an extension of the earlier
BuiLpDT algorithm) which can modify an initial deci-
sion tree d;,;¢, based on a set of such labeled partially-
specified instances. It also shows that MopiryDTt
can effectively pac-learn the target decision tree.

Learner is also told which attributes were NOT
needed: Alternatively, the blocker might also spec-
ify that some of the attributes that d;,;; included
are in fact superfluous; i.e., that some of the tests
that were performed should not have been run. The
DT[TR+] model provides this information by using
the B4, blocker. (As the learner knows djn;e, it can de-

termine which attributes f4,,,, would block, if neces-
sary.) [GHRY4] describes the MopiryDT* algorithm
that can pac-learn decision trees given such instances.

Extending the “perfect blocker” model: Each
of the blockers described above is “perfect”, i.e., will
remove all-and-only the superfluous attribute values.
In practice, however, a diagnostician may occasionally
perform a superfluous test or omit a relevant test, or
could even mis-read or mis-record some attribute val-
ues. These types of errors can occur, for example, if
different patients are diagnosed by different experts,
each of whom uses his own tree to do the classification.
The extended paper [GHR94] generalizes our “perfect”
model by removing these restrictions, producing var-
ious 7 blockers, each parameterized by the 6-tuple

of probability values, § = (prc, Prs,Pri, Psc, Psx, Psi)
where

Attribute value is

Blocker’s value is: ‘ Required  Superfluous
Correct Pre Psc
* Prx Pax
Incorrect ‘ Pri Psi

To explain: Given any target decision tree dp, for each
instance, we can label each attribute value as either re-
quired or superfluous. For each required attribute, 57
stochastically makes a 3-way decision: providing the
attribute’s correct value with probability p,., “*” with
probability p,., and the incorrect value with proba-
bility py; (e.g., returning 0 when the correct attribute
value is 1). Similarly, if the attribute is superfluous,
B7 will return the attribute’s correct value, the value

“¥” or the wrong value, with respective probabilities

Psc, Psx, O Psi-

The DT[E] model, discussed above, uses p,. = ps« =
1 and the other p; values all 0; and the traditional
complete-tuple model uses p,. = p;c = 1. We can



use this framework to connect this work with ear-
lier models of attribute noise; in particular, as [KL8S;
SV88] consider erroneous but not missing attribute val-
ues, they each assume p,. = ps« = 0.

As a final point, we have considered learning arbi-
trary DNF formulae when superfluous values are omit-
ted. Here, each blocked instance is simply an impli-
cant of either the target formula ¢ or its negation —p.
There are several different ways of specifying which
implicant should be returned, including “the smallest
prime implicant”, and “the values of the smallest pre-
fix of a single ordering, say (z1,...,z,), that qualifies
as an implicant”. We present several situations where
a benevolent blocker (think “teacher”) can make for-
mulae trivial to learn, and other situations where an
adversarial blocker can make learning such formulae
as difficult as learning DNF in the usual “completely-
specified tuple” model.

Summary

Even though most diagnosticians perform and record
only a small fraction of the set of possible tests to
reach a classification, most learning systems are de-
signed to work best when their training data contains
completely-specified attribute-value tuples. This ab-
stract presents learning algorithms designed to deal
with exactly such partially-specified instances. We
show, in particular, that it is easy to “PAC learn” deci-
sion trees in this model. We also present extensions to
the underlying model, and suggest corresponding algo-
rithms, to incrementally modify a given initial decision
tree, and provide a framework for discussing various
types of “noise” — where the blocker can stochastically
omit required values, or include superfluous values.
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