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Abstract

Most inductive inference algorithms (i.e., “learners”) work most ef-
fectively when their training data contain completely specified labeled
samples. In many diagnostic tasks, however, the data will include the
values of only some of the attributes; we model this as a blocking pro-
cess that hides the values of those attributes from the learner. While
blockers that remove the values of critical attributes can handicap a
learner, this paper instead focuses on blockers that remove only super-
fluous attribute values, i.e., values that are not needed to classify an
instance, given the values of the other unblocked attributes. We first
motivate and formalize this model of “superfluous-value blocking,” and
then demonstrate that these omissions can be useful, by showing that
certain classes that seem hard to learn in the general PAC model —
viz., decision trees — are trivial to learn in this setting, and can even
be learned in a manner that is very robust to classification noise. We
also discuss how this model can be extended to deal with (1) theory
revision (i.e., modifying an existing decision tree); (2) “complex” at-
tributes (which correspond to combinations of other atomic attributes);
(3) blockers that occasionally include superfluous values or exclude re-
quired values; and (4) other hypothesis classes (e.g., DNF formulae).
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1 Introduction

A diagnostician typically performs only a small fraction of all possible tests;
furthermore, the choice of which tests are performed depends on the results
of the tests performed earlier in the diagnosis session. As an example: Know-
ing that a positive ¢; blood test is sufficient to establish that a patient has
diseaseX, a doctor can conclude that a patient has diseaseX after perform-
ing only ¢y, if that test is positive. In recording his findings, the doctor will
only record the result of this one test (¢;,+) and the diagnosis diseaseX. N.b.,
the doctor does not know, and, therefore, will not record, whether the patient
has symptoms corresponding to tests to,%3,...,1,.

A learning program (read “a medical student”) may later examine the
doctor’s files, trying to learn the doctor’s diagnostic procedure. These records
are quite “incomplete,” in that the values of many attributes are missing; e.g.,
they do not include the results of tests ¢ through ¢, on this patient. However,
within this model, the learner can use the fact that these attributes are missing
to conclude that the missing tests are not required to reach a diagnosis, given
the known values of the other tests. Hence, these omissions encode the fact
that the doctor’s classifier (which the learner is trying to learn) can establish
diseaseX and terminate on observing only that ¢; is positive.

This paper addresses the task of learning in this context: when each train-
ing sample specifies the values for only a subset of the attributes, together
with that sample’s correct class, with the understanding that the supplied
values are sufficient to classify this sample. Section 2 presents the formal
framework and Section 3 provides our results for learning decision trees in
this framework. Section 4 discusses four extensions to this model, that deal
with (1) the theory revision task (i.e., modifying an existing decision tree);
(2) “complex” attributes (which correspond to combinations of other atomic
attributes); (3) blockers that occasionally include superfluous values or ex-
clude required values; and (4) other hypothesis classes (e.g., DNF formulae).
We first close this section by further motivating our framework and describing
how it differs from related work on learning from incomplete data.?

Motivation and Related Work: Most implemented learning systems tend
to work effectively when the percentage of missing features is very small, and
when these missing features are randomly distributed across the samples. How-
ever, recent studies [PBH90, RCJ88] have shown that in practice many datasets
are missing more than half of the feature values! Moreover, these attribute
values are not randomly blocked, but in fact “are missing [blocked] when they
are known to be irrelevant for classification or redundant with features already
present in the case description” [PBH90], which is precisely the situation con-
sidered in this paper (see Definition 1). Towards explaining this empirical
observation, just note that a diagnosis, corresponding to a single path through
a n-node decision tree, can require performing only O(In(n)) of the n tests

!The extended version of this paper [GHR95] provides a more comprehensive literature
review, as well as proofs of the claims presented here.
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possible; here the remaining O( n—1In(n) ) test values are irrelevant. Our model
of learning can, therefore, be applicable to many diagnostic tasks, and will be
especially useful where experts are unavailable or are unable to articulate the
classification process they are using.

Turney [Tur95] discusses a model that also assumes that experts intention-
ally perform only a subset of the possible tests. His model differs, however, by
using test-cost, rather than test-relevance, to decide which tests to omit.

While there are several learning systems which are designed to handle in-
complete information in the samples (¢f., [BFOS84, Qui92, LR8T]), they all
appear to be based on a different learning context, which is appropriate for a
different situation [SG93, SG94]: After one process draws completely-specified
samples at random, a second process (which also could be “nature”) then
hides the values of certain attributes, perhaps changing the complete tuple
(1,0,0,1) to the partial tuple (x,0,*, 1), where “x” means this value is hidden.
The learner is given only such partial tuples, each labeled with its correct class,
and must produce a classifier capable of classifying such partially-specified (but
unlabeled) instances. Notice the resulting classifier may not be completely ac-
curate, as the missing data can be critical to producing the correct diagnosis.
Here, the second process, called “blocking,” is considered random, based on
some distribution that is unknown to the learner.

While the model in this paper also assumes a random process is generating
complete tuples which are then partially blocked, our model differs by dealing
with blocking processes that are based on the values of the attributes and on
certain particulars of the target classifier that the learner is trying to acquire.
In particular, we assume that the unblocked data is sufficient to establish
the correct diagnosis; hence, there is a classifier that will always produce the
correct answer using only the unblocked data.

We view the values of the blocked attributes as “superfluous,” or perhaps
“relatively irrelevant”: irrelevant as they are known not to play a role in clas-
sifying the sample, given the values of the other specified values (i.e., relative
to those values). E.g., as the doctor will conclude diseaseX if ¢; is positive,
whether ¢, is positive or negative, we say that “ty is superfluous, given that ¢,
is positive”. Of course, if ¢; is negative, other tests may then be relevant for
the diagnosis; perhaps a negative {5 and a positive t3 will also be sufficient to
establish diseaseX, etc. John et al. [JKP94] would consider ¢; to be “weakly
irrelevant”; by contrast, an attribute is “strongly irrelevant” if its value never
plays a role in the classification, under any circumstance (i.e., independent of
the values of any other attributes); cf., [Lit88, Blu92, BHLI1]. Of course, our
situation differs from those models of learning, as our environment explicitly
identifies which attributes are weakly irrelevant.

Two final comments to help place our model within the framework of ex-
isting computational learning results: First, in our model, certain attribute
values are omitted; this differs from models where the class label is omitted
[AS91, FGMP94], or where the attribute value is changed [SV88a, Lit91, GS95].

Second, as our blocker is providing additional information to the learner, its
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role is similar to that of a benevolent teacher. However previous teaching
models such as that of Goldman and Mathias [GM93] allow the teacher to
present arbitrary instances to the learner, without regard to an underlying
real-world distribution. By contrast, our blocker/teacher is forced to deal with
the instances selected by the distribution, but can help the learner by declaring
certain attribute values to be irrelevant.

2 Framework

Following standard practice, we identify each domain instance with a finite
vector of boolean attributes © = (z1,...,2,), and let X,, = {0,1}" be the set
of all possible domain instances. The learner is trying to learn a concept c,
which we view as an indicator function ¢: X,, — {7, F'}, where z is a member
of ¢iff ¢(z) = T. We assume the learner knows the set of possible concepts, C.?
A “(labeled) example of a concept ¢ € C” is a pair (z, c(x)) € X, x{T, F'}; and
a m-sample of any ¢ € C is a sequence {{z',c(z")), ..., (z™, c(2™))) € (X, %
{T',F})™. We assume there is a stationary distribution P: X, — [0, 1] over
the space of domain instances, from which random labeled instances are drawn
independently, both during training and testing of the learning algorithm.

To continue the earlier example, suppose the first attribute in the instance
& = (t1,...,t4) corresponds to the ¢; blood test and the subsequent attributes
ty, t3 and t4 correspond (respectively) to particular tests of the patient’s bile,
melancholy and phlegm. Then the instance (0,1,1,1) corresponds to a pa-
tient whose t; test was negative, but whose bile, melancholy and phlegm tests
(t2, t3 and t4) were all positive. Assume that the concept associated with
diseaseX corresponds to any tuple (t1,...,ts) where either t; = 1 or both
ty = 0 and t3 = 1. Hence labeled examples of the concept diseaseX include
((1,0,1,1),7, ((1,0,0,0),7, ((0,0,1,1),7), and ((0,1,0,0), F'). Further,
P(z) specifies the probability of dealing with a patient with the particular
set of symptoms specified by z; e.g., P({1,0,1,0)) = 0.01 means 1% of the
time we will deal with a patient with positive blood and melancholy tests, but
negative bile and phlegm tests.

In general, a learning algorithm L has access to a source of labeled examples
that allows L to draw random labeled examples (z,¢(x)) according to the
distribution P and labeled by the target concept ¢ € C. L’s output is a
hypothesis A in C. We discuss below how we this model interacts with our
model of blocking, and then discuss how we evaluate L.

Model of “Blocked Learning”: In standard learning models, each la-
beled instance (z,c(x)) is passed “as is” to the classifier. In our model, how-

ever, the learner instead only sees a “degraded version” of (z,c(x)), written
“(B(x),c(x))”, based on a blocker 3: X, — {0,1,*}" that replaces certain

2To simplify our presentation, we will assume that each attribute has one of only two
distinct values, {0,1}, and that there are only two distinct classes, written {7, F'}. It is
trivial to extend this analysis to consider a larger (finite) range of possible attribute values,
and larger (finite) set of classes.
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Figure 1: Blocking Model Yes / No

attribute values by the “blocked” (or in our case, “don’t care”) token “x”,

but otherwise leaves x, and the label c¢(z) intact; see Figure 1. Hence, a
blocker could map ((1,1,0,1),7) to (B((1,1,0,1)),7) = ({1, *,*,%),T) ),
or (B((0,1,0,1)),F) ) = ((*,1,0,%),F) ); but no such blocker can map
((1,1,0,1),7T) to either ((1,0,0,1),7), or ({(1,1,0,1}),*). Let X* = {0, 1,*}"
denote the set of possible instance descriptions.

This paper considers only superfluous-value blockers: i.e., the blocker will
block only attribute values that do not affect an instance’s classification, given

the values of the other unblocked attribute values. To state this more precisely:

Definition 1 (“Superfluous”) Given a concept ¢ € C over the set of at-
tributes {xq,...,x,}:

(1) The attributes {xmy1,..., 2.} are superfluous given the partial assignment

{x1 = v, ..., Ty o Uy} (where each v; € {0,1} is a specified value) iff

Vi = (m—l—l)..n, Yy; € {07 1} : C(<'Ula o Uy Ymtts - - ym>) = C(<vlv o U, 0,0 0>)

(2) a function B: X, — X' is a legal blocker if it only blocks superflu-

ous attributes; i.e., if B((v1,...,0n)) = (V1,...,U;m, %, ... %) implies the at-

tributes {xmq1,...,2,} are superfluous given the partial assignment {x; —

V1 wvey T U be ).

For example, a blocker # can map the specified instance (1,0,1,1) to
the partial 5((1,0,1,1)) = (*,0,1,%) only if all four instances (0,0,1,0),
(0,0,1,1), (1,0,1,0), and (1,0,1,1) have the same class (e.g., perhaps all are
in class 7).

To motivate this model, consider the behavior of a classifier d; using a
standard decision tree ¢, a la CART [BFOS84] or ¢4.5 [Qui92|. Here, given any
instance, d; will perform only the tests on a single path through ¢. Hence, d;
will see only the values of the attributes corresponding to those tests. Notice
that the other variables, corresponding to tests that do not label nodes on
this path, do not matter: d; will reach the same conclusion no matter how we
adjust their values. Similar claims hold for many other classification structures,
including decision lists and the rule sets produced by c4.5.
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Performance Criterion: To specify how we will evaluate the learner, we first
define the error of the hypothesis h (returned by the learner) for a given set
of samples drawn from distribution P and labeled according to concept ¢, as
Err(h) = P(z : ¢(x) # h(x)), which is the probability that ~ will misclassify
an instance x drawn from P.

We now use the standard “PAC-criterion” [Val84, KLPV8T7] to specify the

desired performance of our learners:

Definition 2 (PAC-learning) An algorithm, L, PAC-learns a set of con-
cepts C if, for some polynomial function p(---), for all target concepts ¢ €
C, distributions P, and error parameters ¢,6 > 0, L runs in time at most
p(L, . lc),® and outputs a hypothesis h € C whose error is, with probability at

least 1 — 0, under €; i.e.,

VP € “distr. on X,,”, c€C, ¢,6 >0, Pr(Err(h)<e) > 1-6.

Notice the learner is expected to acquire a classifier that has high accuracy
on completely specified instances, even though it was trained on blocked values.
To explain why this is reasonable, note that we can assume that the classifier
(read “doctor”) is in a position to specify the tests should be performed. (Also,
as irrelevant values are known not to matter for the classification, the learner
can simply substitute any value, say “0”, for each blocked attribute.)

3 Results for Decision Trees

This section discusses the challenge of learning decision trees, within this “su-
perfluous blocking model” in the simplest situation; the next section deals
with more complicated cases. For notation, let D7, be the set of decision
trees defined over n boolean variables, X,.

The DT[FE] model assumes that the learner begins with an Empty initial
decision tree, which is “grown” into a full decision tree based on a set of
samples, and that the blocker is using the target decision tree, dr, to classify
the instances. On receiving a complete instance, = (x1,...,x,), the blocker
traverses the dp decision tree, from the root down, recording not just the
appropriate classification for this instance drp(xz) € {T, F}, but also the set
of tests that were performed, which correspond to the path through dr. The
blocker will then pass on only the attributes encountered on the path, and will
block all of the other attributes.

For example, imagine that a doctor was using the decision tree shown in
Figure 2, in which he descends to a node’s right child if the node’s test is
positive, and goes to the left child otherwise. Given the complete instance
(21,29, 23,24, 25,26) = (0,1,1,0,0,0), the doctor (using dy) will first perform
test x; and as it fails, descend to the left, to the node labeled x;. As this
xy test succeeds, dy reaches a leaf node, labeled F. Here, the learner will

3Here, |c| is the “size” of the concept ¢, which is defined in subsequent sections. Note
that by bounding the running time we also bound the size of sample the algorithm may use.
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do ==
Figure 2: Decision Tree, d,
see (4((0,1,1,0,0,0,0)), F') = ({0, 1, %, %, %, %), F'). Alternatively, given the in-
stance (1,1,0,0,1,0), the learner will see (8((1,1,0,0,1,0)), do((1,1,0,0,1,0))) =
((1,1,%,0,%,%), 7). Note that different trees that encode the same classifica-

tion function can have different blocking functions.

There is currently no known algorithm capable of learning decision trees in
the standard PAC model.* There is, however, a simple algorithm that can learn
decision trees from these blocked instances in the DT[E] model. If the target
decision tree is believed to consist of no more than s nodes, the algorithm first
draws a sample of

ms = % [sIn(8n) + In(1/6)]

random (blocked and labeled) training examples, and then calls the routine
BuiLpDT (figure 3) to build a small decision tree that correctly classifies this
sample. The critical observations are that (¢) the root of the target tree can
never be blocked and (i¢) any variable that is never blocked appears on the
path to every leaf reached by the sample and hence can be placed at the root
without penalty. BUILDDT first selects as the root any attribute value that
is never blocked, then splits on this attribute, and calls itself recursively.

While this algorithm is parameterized by the size of the tree s, it is easy to
produce a modified version that does not require this parameter by using the
standard technique [HKLW91] of repeated attempts with successively doubled
estimates of s. We call this modified procedure GROWDT(n, ¢, ¢).

Theorem 1 For anyco € DT, any values of €,6 € (0,1) and any distribution,
under the DT[E] model, GROWDT ( n, €, 6 ) will, with probability at least 146,
return a tree ¢ € DT ,,, whose error (on unblocked, unlabeled instances) is at
most €. Moreover, GROWDT requires O(|co|L1In(%)) blocked labeled samples
and returns a tree of size || < |co| (where |c| is the number of nodes in c).

4 Extensions

4.1 Theory Revision: Non-Empty Initial Tree
In many situations, we may already have an initial decision tree, d;,;; € DT ,,,
which is considered quite accurate, but not perfect. This subsection describes

4The most general known algorithms run in pseudo-polynomial time, i.e., they learn an
s-node decision tree in time polynomial in s°(1°8%) [EH89, Riv87].



Knowing What Doesn’t Matter 8

Algorithm BUILDDT( S: set_of _partial_samples ): TreeType
/* Builds a tree using samples S */
Let NT be new tree
If (all samples in S are labeled with same {) or (S is empty) then
NT.LeafLabel = { (or “...=T" if S| =0)
Return( NT )
Let z; be any variable that is unblocked forall s & S.
Let S = {(z — {z;/0},¢) | (z,0) €S, z;/0 € z}
st = {(z — {x;/1},0) | (z,0) €8, z;/1 €}
/* To form s°: Assemble the instances in S that include the x;/0 assignment,
then project out that attribute; similarly for St. */
Let NT.InternalNodeLabel = z;
NT.If0 = BuipDT( s? ); NT.If1 = BuioDT( s' )
Return( NT )
End BuiLpDT

Figure 3: BUILDDT Algorithm for learning decision trees

ways of using a set of labeled samples to modify d;,;; i.e., to form a new tree
dperter that is similar to d;,;;, but (with high probability) more accurate. We
let DT'[T R+] refer to this model, where the T'R designates “Theory Revision”,
corresponding to the many existing systems that perform essentially the same
task, albeit in the framework of Horn-clause based reasoning systems; cf.,
[Tow91, WP93, MB88, OM90, LDRG94]. (We explain the final “+” below.)
There are several obvious advantages to theory revision over the “grow
from scratch” approach discussed in the previous section: First, notice from
Theorem 1 that the number of samples required to build a decision tree is pro-
portional to the size of the final tree, which can be exponential in the number
of attributes. This means that, given only a small number of labeled samples,
we may be unable to produce even an adequate tree, much less the optimal
one. This same set of samples, however, may be sufficient to specify how to
improve a given initial theory, meaning the decision tree obtained by a theory
revision process can be much better than one obtained from scratch. Another
advantage of the theory revision approach is that it facilitates “learning while
doing”: That is, we could use the initial dy = d;n;; to classify (unlabeled) in-
stances as they are seen. If dy’s label is found to be incorrect,® we then consult
an expert who provides the correct label, possibly after asking for (and receiv-
ing) the values of the critical attributes that dy had inappropriately judged to
be superfluous. The learner can use this information to form a new decision
tree, call it dy, which is then used as its classifier. The theory revision process
then iterates: consulting the expert if d; produces an incorrect label, and using
that new information to produce a newer, better d;, and so forth.® Here, the

SFor example, if dy is being used to propose a repair to a faulty device, the user can
trivially see whether the proposed repair worked or not.

6In fact, this research project was originally motivated by exactly this task; viz., revising
an existing diagnostic theory where each training sample contains only the information
used to reach a specific conclusion, from a particular, faulty knowledge base. Langley et
al. [LDRGY94] describes the implementation and experiments with a system in this model.
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total amount of expert-time may be much less than if we began with an empty
tree.

To explain the DT[T R+] model in more detail: As before, the real-world
continues to generate completely-specified samples z, each labeled dy(z) €
{T, F'} by the target (but unknown) decision tree dy. Here, the blocker first
runs this sample through the initial decision tree d;,;;, to obtain both a pro-
posed (but not necessarily correct) label d;,;;(2) and a particular set of un-
blocked attribute values; call this 8y, ., (). (To motivate this: imagine the only
way to determine the value of each attribute is to perform an expensive test.
We would then perform only the tests deemed essential by the best available
authority, namely, d;;;.)

If dinit’s label is correct (i.e., if dp(x) = dipi(2)), then the learner re-
ceives (fq,,.,(x),dr(x)). Otherwise, dp(x) # dinit(x), the learner receives
(Basisvar (@), dr(x)), where the By, .,va. blocker specifies the value of any at-
tribute that is unblocked by either 3y, ., or 84,. Hence, if 84, ,((0,0,1,1,0,0)) =

(0,0, %, *, %, %) and B4,((0,0,1,1,0,0)) = (*,0, 1, *,*, %), then 84, ,va,((0,0,1,1,0,)) =

<07 07 17 *7 *7 *>'

The MoDpIFYDT Algorithm: The MODIFYDT process is designed to handle
the DT[T R+] situation. We outline a “batch” version, which produces a new
d' after seeing a large enough quantity of labeled partially-specified values.”
Like GROWDT, MoDIFYDT first accumulates a sufficient set of samples,
then uses them to produce a decision tree of a given size; it then produces a
new tree by replacing many of d;,;;’s leaf nodes with new subtrees. That is,
we can identify each presented (84, ,,vir (), dr(2z)) instance with the particular
leaf node in d;,,;; that d;,;; would reach in processing that sample. For example,
using the dy tree from Figure 2, we would identify ((0,0,0,*, 1,%),7T") with the
far left [F]-labeled node, call it {ooo———. For each leaf node ¢, let Inst({) be
the subset of the samples identified with ¢, including only the attributes that
are not in the path to £. So, perhaps
<<_7_ *717*> T>
Inst(logo———) = <<—,— ,%,0,0), F)
<<_7 — %, 0, 1> T>
MoDIFYDT then calls BUILDDT to build a tree, based on this Inst({) set.
Here, this produces

BUILDDT( Inst(lopo———) ) =

Finally, MODIFYDT replaces each ¢ leaf node with the new BUILDDT(
Inst(l) ) subtree. Here, this produces the the d; tree shown in Figure 4.

"The extended paper [GHR95] presents the actual pseudo-code for this MoDIFYDT al-
gorithm, and also bounds the number of samples needed, as a function of the number of
additional nodes that must be added. It also presents a modified version that works in-
crementally: potentially updating the current decision tree after seeing each sample that is
either incorrectly labeled or incorrectly blocked.
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Figure 4: Tree MoDIFYDT  formed from dp, based on
((0,0,0,%,1,%), F'), ({0,0,0,%,0,0), F), ((0,0,0,%,0,1),7")

Notice that dy will correctly label each of the instances seen. (MODIFYDT
can then perform some post-processing, to simplify the tree — e.g., it both
branches from an internal node descend to functionally-equivalent subtrees,
than that node and its subtrees can be replaced with one copy of the subtree;
etc.)

It is easy to see that that the resulting tree d’ will return the correct answer
for each instance x corresponding to a sample seen (i.e., for each s € ), and
otherwise, when no s € S matches x, d will return the same answer as the
original d;;;.

Learner is also told which attributes are NOT needed: In the DT'[T R+|
model, the “environment” (read “expert”) tells the learner which additional
attributes are necessary, via the 34,v4,,,, blocker. An alternative blocker might
also specify that some of the attributes that d;,;; included are, in fact, super-
fluous — i.e., that some of the tests d;,;; requested should not have been run.
The DT'[T R+| model provides this information by using the 34, blocker. (As
the learner knows d;y;;, it can determine the values of 3y, ,, if necessary.)
While we could simply use the GROWDT algorithm to produce a tree
from scratch in this situations, for the reasons given above, we instead prefer
to produce a new tree that continues to return d;,;;’s answers for each instance
not seen in the sample. To do this, our MODIFYDT?2 algorithm will grow
the tree “inside-out”: It will use the labeled samples as GROWDT did, to
grow a tree from the root. However, where GROWDT would put a leaf node
(labeled with a class), MODIFYDT2 will instead put a diminished subtree of
dinit, corresponding to the parts of the initial d;,;; that were not eliminated
in the path to that leaf. For example, suppose MODIFYDT2, working on the
initial tree dy, received (only) the labeled instance a = ((*,0,*,*, 1, %), F).
It would then produce the dy tree show in Figure 5. The labeled instance a
corresponds to the path from x3 to x5 (i.e., down x3’s left-child), and then from
that x5 to its right child {_q__;_ (labeled with [F']). Now observe the two other
subtrees, which correspond to the o = 1 and 25 = 0-and-z5 = 0 situations;
here MODIFYDT?2 places diminished versions of dg, which correspond to the

>

{x2/1} and {z3/0, x5/0} assignments. (For pedagogical reasons, Figure 5
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dg -

Figure 5: Tree MODIFYDT?2 formed from dy, based on ({0, %, 1, *, %, %), F)

includes “phantom nodes”, shown as O which correspond to where z; and x5
had been in the original dy tree, to illustrate the connection. Of course, these

nodes would not be present in the subtree that MODIFYDT2 would produce.)
In general, we can view MODIFYDT2’s result as an initial “prefix” subtree,
which we call d,q, whose “leafs” correspond to sub-trees. The prefix dyq is
exactly what GROWDT would produce, using the given set of samples. (For
example, given only ((x,0,*,%, 1,%), F), GROWDT would produce the x5 — x5
tree embedded within Figure 5’s d, tree. Given more samples, MODIFYDT?2
would produce a more elaborate tree.) Each of the “leaf sub-trees” is a dimin-
ished version of the initial dy, which omits the nodes corresponding to known
assignments, in the sense that dy’s x5 = 1 subtree has eliminated the node
that had been labeled x4, replacing that node with its x5/1 child. This means
the resulting d, will return the correct label for each training instance; but, in
every other situation, it will produce the same label that dy had returned.

4.2 “Complex Attributes”

The algorithms discussed above all assume that each “node” in the decision tree
corresponds to a single test, e.g., the ¢t; mentioned above. In general, the doctor
may have several tests that are equally able to determine the presence of some
symptom — e.g., he may be able to determine a patient’s blood type by either
asking the patient, or by performing a simple blood test. Here, the doctor may
decide on ty, or t1; based on the availability of some resource, the time of day,
or some other external factors. We can model this by assuming the doctor flips
a coin to decide whether to use ¢y, or t;;,. The resulting “decision structure”
no longer corresponds to a decision tree, as the prior test results no longer
deterministically specify which test will be run. Worse, notice the algorithms
presented above will not work here, as there will be no single attribute whose
value is always specified when reaching this “¢;, V t1;” situation.

There is, however, another straightforward routine that can learn such
structures, CA-BUILDDT}. If ever CA-BUILDDT, reaches a situation where
there is no “categorical attribute”, it then simply looks for a pair of attributes
whose specified values are disjoint and exhaustive; here, it would find that
{ t14, t1p } have this property. It would then create a node labeled “t;, V
t1,”, and recur appropriately: the 4-branch under this node will include all
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instances whose t;, value was + when t;, was specified, or whose ¢, value was
+ when ¢y, was specified; and the others all will go under the — arc.

There i1s an obvious extension of this idea to handle arbitrary boolean
combinations of any k-tuple of attributes; the CA-BuiLDDT} will requires
O(n*) time to find the appropriate k-tuple.

4.3 Imperfect blocking

So far our model has assumed that the blocker removes all-and-only the su-
perfluous attribute values, and also never “flips” the value of any attribute
(i.e., never presents a 1 as a 0). It is easy to generalize this model by remov-
ing these restrictions, producing a 37 blocker, parameterized by the 6-tuple,
P = (Prey Prey Pris Pscy Psey Psi): Given any target decision tree dr, for each in-
stance, we can label each attribute value as either required or superfluous.
In the “uniform” case, for each required attribute, 37 stochastically makes a
3-way decision: presenting the attribute’s correct value with probability p,., *
with probability p,., and the incorrect value with probability p,; (e.g., using 0
when the correct attribute value is 1). Similarly, if the attribute is superfluous,
37 will return the attribute’s correct value, the value “*” or the wrong value,
with respective probabilities p,., ps«, or ps;. Hence,

Attribute value is

Blocker’s value is: Required Superfluous
Correct Pre Pse
* Prs Psx
Incorrect Pri Psi

The DT'[FE] model, discussed above, uses p,. = ps« = 1 with the other p; values
all 0; and the traditional complete-tuple model uses p,. = ps. = 1. Previous
attribute noise models [KL88, SV88b, GS95] do not consider missing attribute
values (i.e., they assume p,. = ps. = 0).

We also consider the “product” (as opposed to “uniform”) situation: Here,
the probability that the j'* attribute is blocked (resp., presented incorrectly)
when it is relevant is bounded by p,. (respectively, bounded by p,;); notice that
different attributes can have different probability values here. Similarly, when
the %% attribute is superfluous, its probability of being blocked or incorrect is
bounded by ps. or py;. Clearly the product model is strictly more general than
the uniform model.

The following theorem specifies certain other settings of p’ under which it
is possible to PAC-learn decision trees:

10 1 p
Theorem 2 1. [t is easy to PAC-learn |0 1 and 0 1—p| in either
0 0 0 0
the uniform or product case.
l—=p p
2. Learning decision trees in the| p 1 —p | product model is as hard as
0 0

learning decision trees in the standard model, when p > 1/2.



Knowing What Doesn’t Matter 13

3. For information theoretic reasons, no algorithm can (e, 6)-PAC-learn boolean
l—v 1—v

formulae with n variables in the| 0 0 |product model if v > 6¢/n, even
v v
if the value of v is known, provided v < 1/2 and € < 1/9. (Of course, this
shows the hardness of pac-learning DT ,, with attribute noise.)

4.4 Dealing with Arbitrary DNF Formulae

We can also consider learning other classes of formulae, beyond decision trees.
In particular, consider learning arbitrary DNF formulae when superfluous val-
ues are omitted. Here, each blocked instance is simply an implicant of either
the target formula ¢ or its negation —. However, while decision trees have an
obvious “evaluation procedure” that describes the particular implicant to use,
there are many different ways of specifying which implicant should be returned
when considering DNF formulae. We consider two obvious possibilities, and
for each, discuss whether it allows the class to be learned.

Select Appropriate Term: Consider a particular encoding of the DNF for-
mula, as a particular disjunction of conjunctive terms. Here, when given a
positive instance, a benevolent blocker (think “teacher”) can simply specify
the variables in the first term the instance satisfies; the blocker can return an
arbitrary implicant of = for each negative instance. It is easy to see that this
renders the learner’s task trivial.

Ordering of the Variables: Another model assumes the blocker has ordered
the variables, say (1,...,2,), and given any instance, returns the values of
the smallest initial “prefix” of this ordering that qualifies as an implicant. If
an adversary can specify this ordering, then learning in this model can be
as difficult as learning DNF in the usual “completely-specified tuple” model.
(Here, the adversary can essentially force every variable of a “hard-to-learn
formula” to be specified.)

5 Conclusion

Even though most classification systems perform and record only a small frac-
tion of the set of possible tests to reach a classification, most learning systems
are designed to work best when their training data consists of completely-
specified attribute-value tuples. This report presents learning algorithms de-
signed to deal with exactly the partially-specified instances that classification
systems tend to produce. We show, in particular, that it is easy to “PAC
learn” decision trees in this model — a class of structures that is not known to
be learnable if the learner is given completely-specified tuples. We also show
how this algorithm can be extended to incrementally modify a given initial de-
cision tree, handle “complex attributes”, and also extend this model to handle
various types of “noise” — where the blocker can stochastically omit required
values, or include superfluous values. Finally, we consider the complications
in going beyond decision trees, describing variants of this “superfluous value
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blockers” that pertain to more general classes, such as arbitrary DNF formulae,
and present situations when it is easy, versus difficult, to learn such classes.
These results, when coupled with [SG93, SG94], help to form a comprehensive

description of how learning algorithms should deal with missing data.
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