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Abstract

Most learning algorithms work most effectively when their training data contain
completely specified labeled samples. In many diagnostic tasks, however, the data will
include the values of only some of the attributes; we model this as a blocking process
that hides the values of those attributes from the learner. While blockers that remove
the values of critical attributes can handicap a learner, this paper instead focuses on
blockers that remove only conditionally irrelevant attribute values, i.e., values that are
not needed to classify an instance, given the values of the other unblocked attributes.
We first motivate and formalize this model of “superfluous-value blocking,” and then
demonstrate that these omissions can be useful, by proving that certain classes that
seem hard to learn in the general PAC model — wiz., decision trees and DNF formulae
— are trivial to learn in this setting. We then extend this model to deal with (1) theory
revision (i.e., modifying an existing formula); (2) blockers that occasionally include
superfluous values or exclude required values; and (3) other corruptions of the training
data.
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1 Introduction

A diagnostician typically performs only a small fraction of all possible tests; furthermore, the
choice of which tests to perform depends on the results of the tests performed earlier in the
diagnosis session. As an example: Knowing that a certain positive blood test z; is sufficient
to establish that a patient has diseaseX, a doctor can conclude that a patient has diseaseX
after performing only test xy, if that test result is positive. In recording his findings, the
doctor will only record the result of this one test (xy,1) and the diagnosis diseaseX. N.b.,
the doctor does not know, and therefore will not record, whether the patient has symptoms
corresponding to tests xy, z3, ..., x,.

A learner (a medical student, perhaps) may later examine the doctor’s files, trying to learn
the doctor’s diagnostic procedure. These records are quite “incomplete”, in that the values
of many attributes are missing; e.g., they do not include the results of tests x5 through z,, on
this patient. However, within this model, the learner can use the fact that these attributes
are missing to conclude that the missing tests are not required to reach a diagnosis, given
the known values of the other tests. Hence, these omissions reflect the fact that the doctor’s
classifier (which the learner is trying to learn) can establish diseaseX and terminate on
observing only that z; is positive.

This paper addresses the task of learning in this context: when each training sample
specifies the values for only a subset of the attributes, together with that sample’s correct
class, with the understanding that the supplied values are (a minimal set that is) sufficient
to classify this sample. Of course, this framework requires that a helpful “teacher” (e.g.,
the doctor mentioned above) specify the appropriate values for all-and-only the “relevant”
attributes. We will see that this relevance information can be extremely useful, as it greatly
simplifies the learner’s task of correctly identifying the teacher’s classifier.

Having such a helpful teacher is a very strong requirement, but there are situations (such
as this medical example) where it seems fairly plausible. Furthermore, in later sections of
this paper we weaken the basic assumption of a very helpful teacher by allowing for various
“noise” processes, and show that many of the positive results continue to hold. Note also
that missing values are ubiquitious in the “real world” data, and irrelevance is often one of
the factors causing these omissions. Given our results, which demonstrate the huge potential
gains possible for learning systems that can exploit such “meaningful” omissions, it seems
unrealistic to ignore this possible cause, and in effect assume that missing data can only be
harmful. We hope that our initial results will inspire research into yet more realistic and
useful models.

After Section 2 presents our formal model, Section 3 shows how easy it is to learn first
decision trees, and then arbitrary DNF formulae, within this framework. By contrast, neither
of these two well-studied classes is known to be learnable using completely-specified training
samples. Section 4 then presents a variety of extensions to this basic model, to make it both
more general and more robust, dealing with: (1) the theory revision task (i.e., modifying an
existing formula); (2) degradations in the training data (i.e., data which occasionally includes
superfluous values or excludes required values), and (3) other corruption processes, such as
classification noise and attribute noise. The Appendix presents the proofs of all theorems.
We close this section by further motivating our framework and describing how it differs from
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related work on learning from incomplete data.

Motivation and Related Work: Most implemented learning systems tend to work effec-
tively when very few features are missing, and when these missing features are randomly
distributed across the samples. However, recent studies [PBH90, RCJ88] have shown that
many real-world datasets are missing more than half of the feature values! Moreover, these
values are not randomly blocked, but in fact “are missing [blocked] when they are known to
be irrelevant for classification or redundant with features already present in the case descrip-
tion” [PBH90], which is essentially the situation considered in this paper (see Definition 1).
Towards explaining this empirical observation, note that a diagnosis often corresponds to
a single path through an n-node decision tree and so may require only a small number of
tests; the remaining test values are simply irrelevant. Our model of learning can, therefore,
be applicable to many diagnostic tasks, and will be especially useful where the experts are
unavailable or are unable to articulate the classification process they are using.

Turney [Tur95] discusses a model that also assumes that experts intentionally perform
only a subset of the possible tests. His model allows the system to use test-cost to decide
which tests to omit. By contrast, in our model, the environment /teacher uses test-relevance
to decide which tests to present.

While there are several learning systems that can handle incomplete information in the
samples (cf., [BFOS84, Qui92, LR87]), they all appear to be based on a different model
[SGI7, SG94]: after the world produces a completely-specified sample at random, a second
“blocking” process (which also could be “nature”) hides the values of certain attributes at
random. Here, no useful information is conveyed by the fact that an attribute is hidden in
a particular example.

Although the model in this paper also assumes that a random process is generating
complete tuples which are then partially blocked, our model differs by dealing with blocking
processes that (try to) block only “irrelevant” values; i.e., attributes whose values do not
affect the instance’s classification. More specifically, in our model the blocked values are
superfluous or conditionally irrelevant; that is, given the unblocked values we see, the blocked
values are not able to affect the classification. For example, if the doctor would conclude
diseaseX when z; is positive, whether z, is positive or negative, then “z; is superfluous
given that z; is positive”. Of course, if z; is negative, other tests may then be relevant
for the diagnosis; perhaps a negative x; and a positive x5 will be sufficient to establish
diseaseX, etc. John et al. [JKP94] would therefore consider 5 to be “weakly irrelevant”; by
contrast, they say an attribute is “strongly irrelevant” if its value never plays a role in the
classification, under any circumstance (i.e., independent of the values of any other attributes);
cf., [Lit88, Blu92, BHL95]. Our situation differs from these models, as we assume that the
environment explicitly identifies weakly irrelevant (i.e., superfluous) attributes.

Similarly, Russell and others [Rus89, MT94] say a set of attributes X “determine” another
attribute y if any assignment to members of X is sufficient to specify the value for y; i.e.,
all other (non-X) attributes are irrelevant. Our model, however, allows y’s value to be
“determined” by different sets of attributes in different situations.

Our final comments help to place our model within the framework of existing computa-
tional learning results: First, in our model, certain attribute values are omitted; this differs
from the problem of unsupervised learning, in which the class label is omitted [SD90, Chap-
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Figure 1: Blocking Model

ter 3|, and from problems in which some attribute values are changed [SV88, Lit91, GS95].
Second, as our blocker is providing additional information to the learner, its role is similar
to that of a benevolent teacher. However, other teaching models, such as Goldman and
Mathias [GM96], allow the teacher to present arbitrary instances to the learner, without
regard to an underlying real-world distribution. By contrast, our blocker/teacher is forced
to deal with the instances selected by the distribution, but can help the learner by declaring
certain attribute values, within those instances, to be conditionally irrelevant.

2 Framework

Following standard practice, we identify each domain instance with a finite vector of boolean
attributes @ = (x1,...,2,). Let X, = {0,1}" be the set of all possible domain instances.
The learner is trying to learn a concept ¢, which we view as an indicator function ¢: X,, —
{T, F'}, where & is a member of ¢ iff ¢(Z) = T. We assume the learner knows the set
of possible concepts, C.! A “(labeled) example of a concept ¢ € C” is a pair (Z,¢(2)) €
X, x{T, F}. We assume there is a stationary distribution P: X, + [0,1] over the space
of domain instances, from which random labeled instances are drawn independently, both
during training and testing of the learning algorithm.

To continue the earlier example, suppose the first attribute x; in the instance & =
(1,...,x4) corresponds to the blood test and the subsequent attributes x4, 5 and x4 corre-
spond (respectively) to particular tests of the patient’s bile, melancholy and phlegm. Then
the instance (0,1,1,1) corresponds to a patient whose blood test was negative, but whose
bile, melancholy and phlegm tests (x2, x5 and x4) were all positive. Assume that the con-
cept associated with diseaseX corresponds to any tuple (zq,...,z4) where either z; = 1
or both z; = 0 and z3 = 1. Hence labeled examples of the concept diseaseX include
((1,0,1,1),T), ((1,0,0,0),T), ((0,0,1,1),T), and ((0,1,0,0), F'). Further, P(&) specifies
the probability of encountering a patient with the particular set of symptoms specified by

ITo simplify our presentation, we will assume that cach attribute has one of only two distinct values,
{0, 1}, and that there are only two distinct classes, written {7, F'}. Tt is trivial to extend this analysis to
consider a larger (finite) range of possible attribute values, and larger (finite) set of classes.
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#; e.g., P((1,0,1,0)) = 0.01 means 1% of the time we will deal with a patient with positive
blood and melancholy tests, but negative bile and phlegm tests.

In general, a learning algorithm L has access to a source of labeled examples (&, p(%)),
drawn randomly and independently according to the distribution P and labeled by the target
(unknown) concept ¢ € C. (When we consider the computational complexity of a learning
algorithm L, we can assume that L takes constant time to draw each new labeled example.)
L’s output is a hypothesis h : X,, — {7, F'}. In many cases, one does not require that s € C;
it usually suffices that & be evaluable in polynomial time. We discuss below how this model
relates to our model of blocking, and then discuss how we evaluate L.

Model of “Blocked Learning”: In standard learning models, the learning algorithm
gets to see each randomly-drawn labeled instance (&, (%)) “as is”. In this paper we also
consider learning algorithms that only get to see a “blocked version” of (%, (%)), writ-
ten “(B(%),¢(2))”. A blocker g: X, — {0,1,%}" replaces certain attribute values by the
“blocked” (or in our case, “don’t care”) token “*”, but otherwise leaves ¥ and the label
©() intact; see Figure 1.2 Hence, a blocker could map ({1,1,0,1),7T) to (3((1,1,0,1)),T) =
((1,%,%,%), T), or (8((0,1,0,1)), F) = ((*,1,0,*), F'); but no such blocker can map ((1,1,0,1),7")
to any of ((1,0,0,1),7), ((1,1,1,*),T), or ((1,1,0,1),*). Let X* ={0,1,*}" denote the set
of possible instance descriptions.

This paper considers superfluous-value blockers: i.e., blockers that only block attribute
values that do not affect an instance’s classification, given the values of the other unblocked
attribute values. To state this more precisely:

Definition 1 (“Superfluous”) Let ¢ € C be a concept over attributes {x1,...,x,}. Then:

(1) A subset of attributes, say {xms1,..., 2.}, is superfluous given a particular assignment
to the remaining values {x; — vy, ..., T, — v, } iff, for any assignmentl 41 —
Ul + oy Ty 5 Uy !

O(V1, . Uy ey ) = (V1,000 0,,0,...,0)

That is, the values given to the superfluous variables do not affect the classification.

(2) A function 5: X, — X is a superfluous value blocker if it only blocks superflu-
ous attributes; i.e., whenever B((vi,...,v,)) = (V1,..., U, *, ..., %) then the attributes
{Tms1, ..., 2.} are superfluous given the partial assignment { x1 — vy, ..., Ty — vy}

For example, 3((1,0,1,1)) = (x,0,1,%) is allowed only if all four instances (0,0, 1,0),
(0,0,1,1), (1,0,1,0), and (1,0,1,1) have the same classification.

Note that there is a difference between being superfluous and being redundant. If an
attribute is redundant — meaning that its value is determined once certain other attributes’
values are specified — then it is also superfluous given these other values. Note, however,
that the converse is not necessarily true.

2This is a slight abuse of notation, as # may be stochastic; see the discussion in Section 3.2. This caveat
also applies to Definition 1.
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While Definition 1 allows “blockers” that never blocks any attribute values, we will see
later that the interesting results in this paper apply only to cases in which a large subset of
the possible superfluous attributes are blocked.

To motivate our model, consider the behavior of a classifier d; using a standard decision
tree, a la CART [BFOS84] or 4.5 [Qui92]. Here, given any instance, d; will perform (and
record) only the tests on a single path through the tree. The other variables, corresponding to
tests that do not label nodes on this path, do not matter: d; will reach the same conclusion
no matter how we adjust their values. Similar claims hold for many other classification
structures, including decision lists and the rule sets produced by c4.5. Section 3.2 extends
this idea to general DNF formulae.

Performance Criterion: To specify how we will evaluate the learner, we first define the
error of the hypothesis h returned by the learner (for a given set of samples drawn from
distribution P over X" and labeled according to concept @) as Frr(h) = P(& : (%) # h(2));
i.e., the probability that A will misclassify an instance & drawn from P.

We use the standard “Probably Approximately Correct” (PAC) criterion [Val84, KLPV87]

to specify the desired performance of our learners.

Definition 2 (PAC-learning) A learning algorithm L PAC-learns a set of concepts C if,
for some polynomial function p(---), for all target concepts ¢ € C, distributions P over X,
and error parameters €,6 > 0, L runs in time at most p(L, %, |¢|), and oulputs a hypothesis
h whose error is, with probability at least 1 — &, less than €; i.e.,

VP € “distributions on X,,”, ¢ €C, ¢,6 >0, P(Err(h)<e) > 1-6.

In this definition, |p¢| is the “size” of the concept ¢ (defined below). To understand the
condition involving “P(Err(h) < €)”, recall that a learning algorithm, by definition, has
access to labeled training examples drawn randomly according to P. Thus the output, A, of
L is typically probabilistic, with a distribution induced from P because it depends on the
particular training examples that were seen. So by allowing L to return a “bad” hypothesis
with probability § we allow for cases in which L happens to see an unrepresentative training
sample. Next, note that the number of instances seen by L can be at most L’s running time,

1 1 and |¢|. Finally, notice that the learner is expected to

and thus is also polynomial in 2, 3
acquire a classifier that has high accuracy on completely specified instances, even if it was
trained on blocked values. This is reasonable, as we are assuming that, after learning, the
classifier (read “doctor”) is in a position to specify the tests to be performed. (Of course, such
a complete-value classifier can trivially classify any instance whose superfluous values were
removed: As these attributes are irrelevant, the classifier can simply replace each omitted
attribute with, say, 0.)

We later consider a stronger learning model, called mistake-bound learning [Lit88], which
is used to evaluate learning algorithms that are used in an on-line fashion. Here, the learner
successively draws random wunlabeled samples and must guess the correct label; it is then
told the right label. If we can bound the total number of incorrect guesses made, over any
sequence of drawn examples, then the algorithm is said to exhibit an (absolute) mistake
bound. We will provide mistake bounds for some of our algorithms. Note however that this
on-line model seems rather unnatural in our setting, as it seems unlikely that we would get
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the relevance information for each instance, but not its class label. (E.g., in our motivating
example of a medical student examining doctor’s records, why would the doctor, who is
blocking each instance appropriately, not supply the label?)

Notation: The concept classes of most interest to us are decision trees and disjunctive
normal form (DNF) formulae.> We use DT, ; to denote the set of decision trees defined over
the n boolean variables zy,...,z,, with at most s leaf nodes;* further, DT ,, = U, DT . is
the set of all decision trees over zi,...,z,. For any decision tree d € DT ,, we let |d| be
the number of leaf nodes in d. Let DN'F,, ; be the set of DNF formulae, over the n boolean
variables z1,...,z,, with at most s terms, and let DN'F,, = U, DN F, s be the set of all
DNF formulae over 1, ..., z,. For any DNF formula ¢ € DN F,, |¢| is the number of terms
in . Finally, for constant k, &-DN F, is the class of DNF formulae whose terms include
at most k literals. Similarly, a formula in (clogn)-DN F, is a disjunction of terms, each of
which has at most clogn literals.

3 Learning Decision Trees and DNFs: Simple Cases

This section discusses the challenge of learning two standard classes of concepts within our
“superfluous blocking model”, decision trees (Subsection 3.1) and DNF formulae (Subsec-
tion 3.2). Section 4 later presents several extensions and variations of these situations.

3.1 Learning Decision Trees

In this section, we suppose that a learning algorithm is given training samples that are both
labeled and blocked using a target decision tree d;; the learner’s task, then, is to recover
d;. To be specific, we assume that the blocking process 34, does the following: Given a
complete instance ¥ = (z1,...,x,), B4, traverses the decision tree d; from the root down,
recording all (and only!) the tests that were performed in this traversal, as well as the
final classification from {7, F'}. Thus, the reported tests correspond exactly to some path
through d;. All attributes not on the path are blocked, and so are reported as “x”. We
consider below learning decision trees under this particular blocking model, which we call
the “BPT) learning model”.

For example, imagine that a doctor was using the dy decision tree shown in Figure 2,
in which he descends to a node’s right child if the node’s test is positive, and goes to the
left child otherwise. Given the complete instance (xy, xa, 3, 24, x5, x6) = (0,1,1,0,0,0), the
doctor (using do) will first perform test z; and as it fails, descend to the left, to the node
labeled x5. As this x5 test succeeds, dy reaches a leaf node, labeled F'. Here, the learner will
see

<ﬁd0(<0717170707070>)7 d0(<0717170707070>)> = <<0717*7*7*7*>7 F>'

3A DNF formula is a disjunction of terms, where cach term is a conjunction of literals, where cach literal
is either positive (z) or negative (Z); e.g., ¢ = (x122) V (x22425) V (z9) is a DNF formula.

*Throughout this paper, we restrict attention to decision trees in which each internal node tests a single
variable, branching according to whether the variable has value 0 or 1.
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Figure 2: Decision Tree, dy

Alternatively, given the instance (1,1,0,0,1,0), the learner will see (84,((1,1,0,0,1,0)),
do({1,1,0,0,1,0))) = ((1,1,%,0,%,%),T"). Note that two trees can be logically equivalent
(i.e., encode the same classification function), but produce different blocking behavior.

There is currently no known algorithm capable of learning decision trees in the standard
PAC model.’ There is, however, a simple algorithm that can learn decision trees from these
blocked instances in the B(PT) model. If the target decision tree is believed to consist of no
more than s leaves, the LEARN-DT(n, s, €, §) algorithm first draws a sample of

P A

MDTm,s = ! <5 In(8n) + In l) (1)

€ 1)
random (blocked and labeled) training examples, and then calls the BUILD-DT algorithm
(shown in Figure 3), which builds a decision tree that correctly classifies this sample. BUILD-
DT first selects as the root any attribute value that is never blocked, then splits on this
attribute, calling itself recursively. To understand why BUILD-DT works, observe that
(1) the root of the target tree can never be blocked and (i) any variable that is never
blocked appears on the path to every leaf reached by the sample and hence can be placed at
the root without penalty.

Theorem 1°¢ LEARN-DT(n,s,¢,8) PAC-learns decision lrees in DT, , under the BPT)
blocking model. That is, for any d € DT, s, any values of €,6 € (0,1) and any distri-
bution over instances P, LEARN-DT(n, s, €,0) will return a tree d' € DT, whose error
(on unblocked, unlabeled instances) is, with probability at least 1 — 6, at most €. Moreover,
LEARN-DT requires O(*1In %) blocked labeled samples and returns a tree of size |d'| < |d].
When used in an on-line fashion, LEARN-DT ezhibils a mistake bound of s.

While this algorithm is parameterized by the size of the tree s, it is possible to use the
standard technique of repeated attempts, with successively doubled estimates of s [HKLW91],
to produce an algorithm that does not have to know s in advance. Here, the learning
algorithm LEARN-DT first draws a set of samples based on the assumption that s = 1,

5The most general known algorithms run in pseudo-polynomial time, i.e., they learn an s-leaf decision
tree in time polynomial in s2(°8%) [EH89, Riv87].
6All proofs are in the Appendix.
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Algorithm BUILD-DT( S: set_of_labeled blocked samples ): DT_Type
/* Builds a tree using labeled blocked samples S */
Let NT be a new tree
If (S is empty) Then
NT.LeafLabel = F
Return( NT )
If (all samples in S are labeled with same label, £) Then
NT.LeafLabel = ¢
Return( NT )
Let z; be any variable that is unblocked for every sample in S.
Let S° = { (3., ) } | (&,0) €S, 7 =0}
st = { (@, 0 } | (@, 0es, 3;,=1}
/* Le. to form S°: Assemble the instances in S such that x; = 0; and project out x;.
(Here, z_; denotes the tuple & with the i’th component removed.)
st is constructed analogously, from those instances with z; = 1. */
Let NT.InternalNodelLabel = z;
NT.If0 = Buip-DT( s?)
NT.If1 = Bump-DT( s' )
Return( NT )
End BuiLD-DT
Figure 3: BUILD-DT Algorithm for learning decision trees, in B"T) Model

then calls BUILD-DT on this set. The resulting tree is accepted if it has 1 leaf; otherwise,
LEARN-DT’ draws a set of samples based on s = 2, calls BUILD-DT, and accepts the tree
if it has at most 2 leaves. If not, it successively tries s = 4, s = 8, s = 16, ..., until it
succeeds. An argument similar to the one given in the proof of Theorem 1 shows that (with
high probability) LEARN-DT’ will succeed once s is large enough.”

3.2 Learning DNF Formulae

This subsection considers learning arbitrary DNF formulae (a class that significantly gen-
eralizes decision trees®) when superfluous values are omitted. Here, each blocked positive
instance is simply an implicant of the target formula ¢, and each blocked negative instance
is an implicant of the target’s negation —p. However, while decision trees have an obvi-
ous “evaluation procedure” which describes the particular implicant to use, there are many
different ways of specifying which implicant should be returned when considering DNF for-
mulae. For now, we focus on the model that most closely resembles the BPT) model for
decision trees.

Blocking Model: Given any decision tree ¢, a logically-equivalent DNF formula ¢, contains,
as terms, the “conditions” of the paths (from the root) to each T-labeled leaf node n,, where

7Actually, LEARN-DT’ will have to request slightly more than Equation 1’s MmpT.n,s samples when con-
sidering each value of s, as it has to consider the possibility of making a mistake on any of the log(2") = n
values of s; see [HKLW91].

8].e., every poly-sized decision tree is logically equivalent to a poly-sized DNF formula, but not vice versa.
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the “condition” of the path (nq,...,ny) is the conjunction of the variables of the nodes n;,
whose sign (either z; or z;) is determined by whether n,41 is n;’s +-child or —-child. For
example, a DNF formula corresponding to Figure 2’s dj is

Pdo = T1T2T3 V T1T4T2 V T1T4T¢q .

Notice that, given any positive instance, the 34, blocker would leave unblocked the variables
of exactly one of these terms.

In general, given an arbitrary target DNF formula ¢ = 4, V- -V, we define a 3, blocker
as any blocker that acts in the following way:

e Given a positive instance (#,7"), (3, leaves unblocked exactly the variables of one of
the terms in ¢ that & satisfies (i.e., 8,(%) returns some ¢; such that ¢; evaluates to true
under 7).

e Given a negative instance (&, F'), 5,(%) is an implicant of =¢ constructed from #. That
is, for each t;, there is at least one unblocked variable from & in 3,(%) that appears
with the opposite sign in ¢;.

We let the term “BPNF) Jearning model” refer to learning DNF concepts ¢, under f3,,
blocking. Although the notation suggests that (3, is functional, there might be several
distinct terms ¢; that the blocker could return for a given positive instance Z, whenever
is implied by several terms in . None of our later results change if the blocker chooses
among the possibilities stochastically, so long as the choice process is stationary for positive
instances. For negative instances we do not even require stationarity.

Of course, many blockers are deterministic. For example, the natural blocker for a
decision tree (which is a special case of DNF formula) deterministically returns the conditions
of the unique path traversed evaluating an instance. It is easy to extend this idea to define
a deterministic blocker for any DNF formula. For instance, consider a blocker that imposes
a specific order on the terms in the given DNF formula, and also an order on the literals
within each term. Then given a positive instance z, this blocker examines the DNF terms
in the given order until finding one that is satisfied, and then returns this term. For each
negative example Z, this blocker collects literals by walking through the terms, and for each
term, including the first variable that occurs with opposite sign to its appearance in z.
This particular blocker has the property that, given any s-term DNF formula, it will leave
unblocked at most s literals for each negative example. We will see that our results hold
even if the blocker returns “too many” unblocked literals on negative examples.

Learning DNF Formulae, under Blocking: There is a trivial algorithm, called “LEARN-
DNF”, that can PAC-learn s-term DNF formulae in this BPNF) model. LEARN-DNF
simply requests

4s . s

MDNF:n,s - —In —
e 0

samples, then forms a DNF formula by disjoining the observed positive samples.? Hence:

9Notice that this approach resembles simple “table learning”, and so can be considered related to
case-based and nearest-neighbor algorithms. It differs, of course, in that each of the training examples
(a.k.a. “cases”, “neighbors”) is given to us in an appropriately generalized form, which means that we can
use simple subsumption to decide whether each such training example “covers” a test instance.
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Theorem 2 LEARN-DNF(n, s, ¢, §) PAC-learns DN'F, , under the BPPNF) blocking model.
That is, for any ¢ € DN'F, s, any values of €,6 € (0,1) and any distribution over instances
P, LEARN-DNF(n,s,¢,68) will return a DNF formula ¢’ € DNF, s whose error (on un-
blocked, unlabeled instances) is, with probability at least 1 — &, at most €. Moreover, LEARN-
DNF requires O(%1n ) blocked labeled samples, and will return a DNF formula with al most
lp| terms. Notice also LEARN-DNF' uses only positive samples. When used in an on-line
fashion, LEARN-DNF exhibits a mistake bound of s.

By contrast, learning arbitrary DNF formulae in the standard model is one of the major
open challenges of PAC-learning in general [Ang92].

Many learnability results are expressed in terms of the size of the smallest DNF formula
for a concept. However, our result deals explicitly with the specific formula that the environ-
ment (a.k.a. “teacher”) is using, and hence our results are of the form “the computational
cost is polynomial in the size of the formula considered”. Unfortunately, this formula could
be exponentially larger than the smallest equivalent DNF formula. Also, while LEARN-DNF
(and Theorem 2) require a bound s on the size of the target formula, we can avoid this by
using the already-mentioned technique of successively doubling estimates of s.

Other blocking models: We close this section by noting that BPNF) is not the only
natural blocking model that might be considered for DNF formulae. We earlier mentioned
a particular type of B(PNF) blocker that examines the terms of a DNF formula one-by-
one in some fixed order, stopping when it finds a term that satisfies the given instance. For
example, such a blocker for the concept ¢ = Z129 V 2523 V z324 V 237576, given the instance
T1T9x3T4T5T¢, would return xzzy. Imagine, however, a doctor was actually evaluating this
formula by considering its terms in this order. To evaluate x5, he would test z;, and
finding that z; = 1, reject the first term. On the second term, he would first test x5, and as
x5 = 1, proceed to examine x,. As x5 = 1, he would then reject the second term and reach
the third term. On confirming that z3 = 1 and 4 = 1, he would return T'. As the doctor has
now performed the tests {zq,zy, x3, x4, x5}, it may make sense for him to record all of this
information, even though only a subset was actually necessary for the final classification. In
contrast, our BPNF) blocks more: here, it would return just z3 = 1 and z4 = 1, as these
reasons (attributes) are sufficient to support the positive classification. Hence, our model is

appropriate if the doctor is required only to provide the evidence that justifies his decision.

Some apparently different blocking models actually fit within our framework. For exam-
ple, imagine there are several different “teachers”, each with his own (syntactically) distinct,
but logically equivalent, DNF formula, and each example is blocked according to one of these
formulae (perhaps chosen at random). While this may appear to be a different notion of
DNF) blocking, albeit with a formula

formed by disjoining the experts’ individual formulae. While the learner may produce a

blocking, we can treat it as an ordinary instance of B

formula that is unnecessarily long (because it is learning from redundant sources), no other
special treatment is required. We can similarly use this technique to handle multiple decision
trees, although we will learn a DNF formula rather than a decision tree.

Another case where the standard B(PNF) blocker turns out to be sufficient occurs with
certain blockers that block even more than the BPNF) model does. Consider a blocker that
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presents a minimal amount of information needed to determine the label; i.e., by presenting
the learner with just prime implicants. (An implicant is prime if no proper subset of its
literals is an implicant.) Such a blocker might first select a suitable term from the target
DNF formula ¢, and then remove from the term some literals that are not essential for the
classification, and finally returning the resulting prime implicant. For example, given the
target formula ¢ = 2122 V 2179, and instance & = (1,0), such a blocker could just return
(1,%) because the value of x5 is, in fact, irrelevant here. Notice that a term in ¢ may be
subsumed by many different prime implicants — in fact, exponentially many.'® Even if the
blocker gets to choose among these prime implicants, possibly returning a different prime
implicant every time an instance satisfies a particular term, the learning task remains easy.
In fact, exactly the same LEARN-DNF algorithm and the same Theorem 2 bound remain
valid, as the formula produced in this case is subsumed by ¢, and it will clearly subsume the
formula produced using the standard 3, blocker, for the same set of training samples.

4 Extensions: Theory Revision, Degradation, Noise

This section presents a variety of extensions to our basic “superfluous value” model, to make
it both more general and more robust. Subsection 4.1 first considers the situation where the
learner begins with an initial classifier, which it modifies in light of new examples. The other
subsections discuss ways to make our model more robust to “teacher error”. Subsection 4.2
models “degraded blockers” that occasionally exclude certain required attribute values, or
include some superfluous values, and then provides algorithms that can cope with certain
ranges of such corruptions; Subsection 4.3 similarly analyzes classification and attribute noise
within our framework.

4.1 Theory Revision: Improving a given Initial Classifier

In many situations, we may already have an initial theory @;,;: (which may be either a
decision tree or a DNF formula) that is considered quite accurate, but not perfect. This
subsection describes ways of using a set of labeled samples to improve @;,;; i.e., to form
a new theory @perer that is similar to @;n;, but is (with high probability) more accurate.
We let B(T%NF) refer to this model (for DNF formulae) where the T'R designates “Theory
Revision”, corresponding to the many existing systems that perform essentially the same
task, albeit in the framework of Horn-clause based reasoning systems; ¢f., [Tow91, WP93,
MBS88, OM90, LDRGY94]. After this, we consider theory revision for decision trees, B(T%T).
There are several obvious advantages to theory revision over the “grow from scratch”
approach discussed in the previous section. First, notice from Theorem 2 that the number
of samples required to build a DNF formula is proportional to the size of the final formula,
which can be exponential in the number of attributes. So, given only a small number of

labeled samples, we may be unable to reliably produce an adequate theory, much less the

9For example, consider ¢ = /i, (zi¥i VZ;iy;) V (Ai—; ziy;), and notice that the final term is subsumed
by any of the 2 prime implicants of the form A?_, {z; or y;}, where each “{z; or y;}” denotes a single literal
which is either z; xor y;.
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Algorithm MoDIFY-DNF( ¢;;s : DNF_Type; n,r: N; a,¢,6 € (0,1) ): DNF_Type
Draw m, = %ln%r training (blocked, labeled) samples
/* Alternatively, if « is not known a priori, we can instead collect 4?7” In %7” samples

that @ini does not label correctly (i.e., either mislabels, or is unable to label'') */

Let St = positive samples that ¢;,;; either can’t classify or classifies as F;
ST = negative samples that ¢;,; either can’t classify or classifies as T.

Let T=51TU Oingt -

/* Le., T includes both un- and mis-classified positive examples, and the terms from @i,z

Remove from 7T any term that is consistent with some term in S™.
/* E.g., the negative example x1z9 € S~ will remove from T the terms x1 and T3xs,
but not zyzs5. */
Return disjunction of terms in 7.
End MobDIFY-DNI

Figure 4: The MoDIFY-DNF algorithm for modifying an initial DNF formula

Y/

optimal one. We show below that this same set of samples may, however, be sufficient to
specify how to improve a given initial theory.

Stated more precisely, we assume our initial theory ¢;,;; € DN F, has classification error
a = Pr( @init A @eor ), where ., is the correct target theory and

S‘QinitASOcor = { T | (@th(i’) A _'@cor(:%)) \ (_'SOMM‘(;%) A @cor(i')) }

is the symmetric set difference between instances satisfied by ;. versus ... Our goal
is to produce a new theory ¢’ € DN F, whose error is, with probability at least 1 — §, at
most ¢ X a. We want to do this using a number of samples that is polynomial in 1/a, 1/¢,
In(1/6) and in some measure of the “difference” between our current theory and ¢.,.. For
this purpose, we use the measure:

T(S‘ocora Soznzt) = |S‘900r - Soznzt| + |S‘92n2t - S‘QCOT|

which is the syntactic difference between ;,;; and ., — i.e., the total number of terms that

must be either added to, or removed from, @;,;; to form the desired ¢.... (Of course, this

“Oeor — @init” is the set-difference between the set of terms in ., and the set in ¢;,;:.) Here,

we assume that each complete sample is drawn at random from a stationary distribution,

then blocked according to the 3, blocker (i.e., the blocker based on the target .., formula).
We can achieve this task using the MODIFY-DNF algorithm shown in Figure 4:

Theorem 3 Given any target s-term DNF formula ¢.,, € DN'F, s, let pini € DN'F, be an
initial formula whose syntactic difference is 1 = r(©cor, Pinit) and whose classification error
is @ = Pr(@ewr Ainit) > 0. Then, for any values of ¢,6 € (0,1) and any distribution
P, under the BPNF) model using the 3 blocker, MODIFY-DNF (init, n, 7, v, €,8) will

Peor

For example, notice the initial concept ;n;; = 125 is unable to label the blocked instance (1, %, %), as
it would label the (1,1,7) extension “T”, and the (1,0, 7) extension “F”. This (1, %, %) instance could be the
result of blocking the (1,1, 0) instance using the blocker for the target concept @eor = 21 V 23.



Knowing What Doesn’t Matter 14

return a formula ¢’ € DN F, sir, whose error (on unblocked, unlabeled instances) is, with
probability al least 1 -6, at most o x e. Moreover, MODIFY-DNF requires O(-1n %) blocked
labeled samples.

This resulting ' formula agrees with each training sample seen; i.e., if MODIFY-DNF
used the sample (2,7, then ¢'(Z) = T, and if MODIFY-DNF used (&, F'), then /() = F.

Note that MODIFY-DNEF’s sample complexity does not depend on s, but rather on r,
which could be much smaller than s. On the other hand, MODIFY-DNF’s computational
complexity does depend on s, as it has to consider all of ¢;,;;’s terms, and there could be as
many as s + r of these.

If we did not know r in advance, we can use the standard iterative doubling technique
to find an appropriate value. If so, it may make sense to run this MODIFY-DNF algorithm
in parallel with LEARN-DNF, and stop as soon as either algorithm finds an acceptable
candidate theory. The sample complexity of the resulting pair-of-algorithms is linear in
min{r, s}, which could be a big advantage if, for example, r was exponentially larger than s
(which would happen if ¢;,;; includes an exponential number of terms, and ¢, includes only
a polynomial number). This would allow us to avoid wasting (many) samples “unlearning”
Pinit-

Our sample complexity has the same O(ZInr) form that Mooney provides in [Moo94],
for revising a theory using completely specified training examples (i.e., his theory revision
system does not have access to our very-helpful teacher, which provides the “relevance”
information). His result, however, deals with the task of finding a distance-r theory (i.e.,
a theory within a syntactic distance of r from the current theory) whose error is under e,
assuming there is a O-error distance-r theory. By contrast, we address the harder task of
finding a distance-r theory whose error is only ae < € (i.e., which is multiplicatively reduced
from the error of the current theory). The analysis in [Gre95] also considers revising a theory
using complete examples; it however considers the “agnostic” setting [KSS92] — i.e., it does
not assume there is a O-error distance-r theory. It proves that O(%Inr) complete training
examples are sufficient to identify a theory whose error is within € of the best distance-r
theory. (This best theory may not have 0 error.) Notice that neither [Mo094] nor [Gre95]
explicitly deals with the error of the initial theory.

Greiner [Gre95] also considers the computational challenge of finding this near-optimal
theory given these samples, proving that it is NP-hard to find a theory whose error is even
close to (i.e., within a small polynomial of) the optimal distance-r theory. By contrast, note
the MODIFY-DNF algorithm is able to solve a harder task (i.e., finding a theory whose error
is ae < €) in polynomial-time; this suggests a further advantage of using the given relevance
information.

Theorem 3 assumes that each instance is blocked by 3,..,. To motivate a slightly different
blocker, imagine the only way to determine the value of each attribute is to perform an
expensive test. We would then perform only the tests deemed essential by the best available
authority, namely @;,.;:, unless @i led us astray. Here, we would call upon a human expert,
who would use his ¢, to extract a new set of appropriate attribute values. That is, we
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da

Figure 5: MODIFY-DT applied to dy (from Fig. 2), using ({0, %, 1, %, %, %), F)

would use the blocker

Buz) = {5%”(57) it init(2) = Poor(2)

B B (T) otherwise

Notice a system using this blocker will tell the learner both (1) of the tests 3, ,, considered
superfluous, which were really relevant; and (2) of the tests (3, ,, considered relevant, which
were really superfluous. It is easy to see that that MODIFY-DNF algorithm also works if we
use this 3, blocker.!?

Modifying Decision Trees: There is a trivial way to use the MODIFY-DNF algorithm
to modify a theory encoded as a decision tree: First express the decision tree ¢ as the DNF
formula @;, and then use a set of samples to learn a new DNF formula. Unfortunately, the
formula produced need not correspond to a small decision tree. For this situation, we use the
MOoDIFY-DT procedure which, given an initial decision tree d;,;;, together with parameters
specified below, first collects an (appropriately sized) set of blocked-and-labeled samples,
and then passes these samples, along with d;,;;, to BUILDDT’. This BUILDDT’ algorithm
differs from BUILD-DT only in its termination condition. Recall from Figure 3 that BUILD-
DT terminates when all remaining samples have the same label, or when this set is empty.
BUILDDT’, however, continues to grow the tree even when all samples have the same label,
until there are no more variables left to test. Using the empty set {} to denote an empty
tuple (where all variables are either , or have been projected away) we can write the new

121n fact, this research project was originally motivated by exactly this task; wiz., revising an existing
diagnostic theory where each training sample contains only the information used to reach a specific conclusion,
from a particular faulty knowledge base. Langley et al. [LDRG94] describes our implementation, together
with a corpus of experiments, within this model.
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termination condition as:

If (every entry in S is ({}, T) )

Then NT.LeaflLabel = T
Return( NT )

If (every entry in S is ({}, F) )

Then NT.LeaflLabel = F
Return( NT )

If (S is empty)

Then Let NT = “diminished version of initial d;,; tree”
Return( NT )

Here, each “diminished subtree of d;,;;” corresponds to the parts of the initial d;,;; that were

not eliminated in the path to that leaf. An equivalent way of thinking about the last step
is that we first append an exact copy of d;,; to such leaves. However, d;,;; may test some
variables that were already tested in the path above where d;,;; was appended. Thus, we
can simplify (“diminish”) the appended copy of d;,i+ by removing these repeated tests.

As an example, suppose MODIFY-DT, working on the initial tree dy (from Figure 2),
received only the labeled instance a = ((*,0,%,%,1,%), F'). It would then produce the dj
tree shown in Figure 5. (In this figure, the arcs shown as double lines point to (diminished)
versions of d;,;.) The labeled instance a corresponds to the path from zy to x5 (i.e., down
zy’s left-child), and then from that x5 to its right child (labeled with ) Now observe
the two other subtrees, which correspond to the o = 1 and x5 = 0-and-z5 = 0 situations;
here MODIFY-DT places diminished versions of dg, which correspond to the {z; — 1} and
{zy — 0, x5 — 0} assignments. For pedagogical reasons, Figure 5 includes “phantom nodes”,
shown as “@” which correspond to where x; and x5 were in the original dy tree. Of course
the “diminishing” process (simplification) removes these nodes, because they correspond to
tests that were made higher in the tree.

To understand why MODIFY-DT works, note that we can view its output as consisting
of an initial “prefix” subtree, which we call dg, some of whose “leaves” point to versions of
do. If we present dg with one of the examples in S, i.e., one of the examples in the training
set, we reach a leaf of dg labeled correctly for s (i.e., T' or F'); for each such s, we never reach
a leaf of dg which points to a version of dy. Thus, MODIFY-DT’s result classifies the training
data correctly. Now consider an instance that does not match one of the training examples.
When dg is presented with this instance, it will always reach one of the leaves to which a
version of dg was appended. Thus, on such examples, MODIFY-DT’s result will produce the
same label that dy would have produced. To summarize: MODIFY-DT produces a tree that
will return the correct label for each training instance; but, in every other situation, it will
produce the same label that dy had returned.

To state the result more precisely, we first need to define the syntactic difference between
the decision trees d,e € DT ,: Let d) = {dﬁ“, e ,dgf)} (resp., d7) = {d(l_), . ,d((z_)}) be
the set of conditions of the paths in d that lead to leaf nodes labeled T (resp., labeled F); we
similarly define et) = {e(1+), ce egj)} and el-) = {e(l_), cee 6((5;_)} for the e tree. (Hence, for

R A ) ) - ’
Figure 2’'s dy, dy’ = { Z1Z923, 1%4%q, v12476 and dy ' = { T129T3, T122, T1T4T2, T1T4T6 }.)
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Algorithm MoDIFY-DTC( d;ui: : DT-Type; r,n: N; «a,¢,8 € (0,1) ): DT _Type
Draw m, = %lnm—” training (blocked, labeled) samples, S
/* Alternatively, if « is not known a priori, we can instead collect 2{ In % samples
that d;n;; does not label correctly (i.e., either mislabels, or is unable to label) */
Let doyt = BUILD-DT'(S, dipnit)
Return d,,;
End MoDIFY-DT

Figure 6: The MopIFY-DT algorithm for modifying an initial Decision Tree

Figure 7: Simple Decision Trees

We then define
rpor(d,e) = |d(+) _€(+)| + |€(+) _d(+)| + |d(—) _e(—)| + |e(—) _d(—)|

as the set difference between the corresponding sets. We can also define o = Pr(dAe) to
be the probability that d will label an instance differently than e. With these definitions, we
can prove:

Theorem 4 For any given s-leaf target decision tree de,, € DT, 5, let diniy € DT, be an
initial decision tree whose syntactic difference is r = rpr(deor, dinit) and whose classification
error is & = Pr(d.o Adinie) > 0. Then, for any values of €,6 € (0,1) and any distribution
P, under the BPT) model using the Bq,, blocker, MODIFY-DT(dinis, n, 7, v, ¢, 8) will return
a tree d' € DT, (r4s)r, whose error (on unblocked, unlabeled instances) is, with probability
at least 1 — 6, at most o x e¢. Moreover, MODIFY-DT requires O(LIn %) blocked labeled
samples.

Notice the boolean function produced by MODIFY-DT is not the same as the function
produced by first converting dy to a DNF formula, and then calling MoODIFY-DNF: While
MODIFY-DNF ruthlessly removes any term that is consistent with any negative instance,
the gentler, more conservative MODIFY-D'T instead tries hard to preserve as much of the
original dy as possible. As a simple example, consider the d decision tree shown on the left
side of Figure 7, and assume we receive the negative sample (x4, F'). Here, MODIFY-DT
would return the d’' decision tree shown in Figure 7’s right side, which corresponds to the
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boolean function “z;z,”. Notice this function is reasonable, as (1) d' will label negatively
any instance that is subsumed by x5, and (2) of the remaining space (i.e., where x5 = 0), d’'
returns the same label that d would: which is T iff z; = 0.

On the other hand, notice the original d encodes the boolean function z; V xyz5. Here,
on seeing (2, '), MODIFY-DNF would remove both terms (as each is consistent with ),
leaving only the constant “F” function.

One might consider defining a MODIFY-DNF" algorithm that resembles MODIFY-DT
by “preserving as much of the initial ¢;,;; as possible”. That is, instead of simply removing
any term in ;,; that is consistent with some negative example, we might replace it with
a weakened version that is inconsistent with all negative examples. So given (x2Z3, F') as
an example, we might replace ©1 € ;,;; by 179 and zix3. Although this is analogous to
MoDIFY-DT, it is problematic. The difference is that a target DNF formula ¢.,,., unlike a
target decision tree, might generate exponentially many negative examples. Unless we have
seen almost all of these, the error could still be large. Suppose that, in the above example,
x1 1s in fact completely irrelevant to the target formula. Then all terms in ¢;,;; involving x;
risk false positives. In fact, the algorithm’s hypothesis will not be sufficiently correct until it
has seen enough negative examples that the terms involving x; have either vanished, or have
very small coverage. Unfortunately, this could require very many samples, and furthermore,
lead to a very lengthy hypothesis.

4.2 Degradation of the Training Data

So far our BPT) and B(PNF) models have assumed that the blocker removes all-and-only
the superfluous attribute values. There may, however, be situations where the environ-
ment /teacher reports an irrelevant value, or fails to report a relevant one. In general, we can
model this by assuming that a “degradation module” can interfere with the blocked data,
degrading it before presenting it to the learner; see Figure 8. This subsection presents a
range of results that deal with several types of degradation processes. In all these results,
we assume blocking is done with the standard B°N¥) model. Furthermore, we continue to
use the PAC criterion for evaluating learning algorithms. In particular, we judge success by
performance on complete (unblocked, undegraded) instances even though training is done

with blocked and possibly degraded samples.

4.2.1 Attribute Degradation

The ’yllzf} degrader randomly degrades each blocked training instance, on an attribute-by-
attribute basis: If the blocker passes unblocked the attribute z; (i.e., it is relevant), then the
’y}:f} degrader will, with probability u;, set x;’s value to *; and with probability 1 — p;, simply
pass the correct value. Similarly, if the blocker has set attribute z; to * (i.e., found z; to
be irrelevant), the fyf{f} degrader will, with probability v;, reset z; to its original unblocked
value; otherwise, with probability 1 — v;, it will simply pass z; = *. Notice the values of y;
can differ for different i’s, as can the values of v;. (Hence, this is “non-uniform” attribute
degradation.)
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(T, p(2)) (B(2), p(2)) (7(8(2)), ¢(2))
“RealWorld” Blocker > Degrader > Learner
P(+) ((1100), 7) 06 ({1 % x0), T) Y ((x1 % 0), T) K

Y

Classifier

Figure 8: Blocking, then Degradation, Model

For any p,v € [0,1], we say a learning algorithm can PAC-learn with (p,v) attribute
degradation if it can PAC-learn given any ’yllzf} degrader, where each p; < g and v; < w.

The previous sections all implicitly used the ’yéjgl
with y = v = 0. It is easy to show that there are some upper bounds on the amount of

degradation we can tolerate.

degrader, to show that we can learn

Proposition 5

1. PAC-learning DN'F, , with (0, 1) attribute degradation is as hard as PAC-learning
DN F, s in the standard model (with complete atiributes).

2. It is impossible to PAC-learn DN'F,, s with (1, 0) attribute degradation.

3. PAC-learning DN F, s with (%, %) attribute degradation is as hard as learning DN'F,,

in the standard model.

Parts 1 and 2 are immediate: (0, 1)-degradation simply presents all attribute values,
which is the standard model; and under (1, 0) degradation, each training instance is simply
a list of #’s. If (p,v) = (3, 1) then we have lost all information about relevance, which
means a * is as likely to indicate relevance as not, and so we are clearly in a no better
situation (and perhaps much worse off) than learning DNFs in the standard model. (To be
more precise: Imagine we had an algorithm Ly, 1/, that could PAC-learn given (1/2, 1/2)-
degradation. It would then be trivial to PAC-learn given all attribute values: Given any
completely specified instance, randomly change 1/2 of the values to *, and then pass the

resulting partially-specified instance to Ly/5,1/2.)

There are, however, algorithms that can learn with small amounts of degradation. First,
it is relatively easy to learn from positive examples alone, with up to O(Inn/n) degradation
of either single type. The idea in each case is that we can expect to see most important
terms in the DNF formula at least once, and identify them as such (rather than as degraded
terms). In the following two results, we consider g and v less than min{kInn/n, 0.5} for
some constant k.
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Algorithm LEARN-DNFY( n, s, k:N; €€ (0,1) ): DNF_Type
Draw m, = @lng training (blocked, degraded and labeled) samples
Let ST be the positive samples.
Let T be the set of “smallest” terms in ST.
/* For example, if ST includes both v x5 and x x923, then T includes only z125. */
Return disjunction of terms in 7.

End LEARN-DNF¥

Figure 9: The LEARN-DNE" algorithm for (0, kln (n)/n)) attribute degradation

Algorithm LEARN-DNF*( n,s,k:N; €€ (0,1) ): DNF_Type

Draw m, = Mln % training (blocked, degraded and labeled) samples

Let ST be the positive samples.
Let T be the set of “largest” terms in ST.

/* For example, if ST includes both x1x9 and xyx9x3, then T includes only xixy23 */
Let T, be set of terms in T that occur at least 6517135—6 times in ST.

Return disjunction of terms in 7.
End LEARN-DNI#

Figure 10: The LEARN-DNE"* algorithm for (kInn/n, 0) attribute degradation

Theorem 6 The LEARN-DNF” algorithm, shown in Figure 9, can PAC-learn DN F,, s with

(0, klnT” ) attribute degradation, using O(ﬁ In %) examples, and using only positive examples.

Theorem 7 The LEARN-DNF* algorithm, shown in Figure 10, can PAC-learn DN F, s
with (klnT”, 0) attribute degradation, using O(@ln 2) examples, and using only posilive
examples.

The situation is even better for (clogn)-DNF,, ; formula under (i, 0) degradation. Here, as
each term has only clogn variables, we are much more likely to see an undegraded example
of each term in any sample set. As a corollary of Theorem 7, we can prove:

Theorem 8 The LEARN-DNF* algorithm can PAC-learn (clogn)-DNF, s with (1,0) at-
tribute degradation, using positive examples alone, for any (known) value of p bounded away
from 1. To achieve this, we call LEARN-DNF#(n, s, cln(1 —p)/2, ¢, 6§).

Finally, we can also learn with both types of degradation. To see this result in its
best light, 1t is useful to distinguish between the degradation rate for positive instances

and negative instances. In particular, the ’y/];(i‘; ) 70 50 degradation model will apply

(), 74) attribute degradation to each positive instance, and apply (ji(), 7(7)) degradation
to negative instances. Hence, given an instance ((1,0,x*,1),T), it will change z; = 1 to *

with probability ,u(1+), and change x3 = * to (say) 1 with probability 1/:())+). But given the
(-)

instance ((1,0,%,0), F'), it will change z; = 1 to * with probability y; ’, and change x5 = *
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Algorithm LEARN-DNF*”( n, s, k: N; €€ (0,1) ): DNF_Type
Draw my, = % (log })(221n 42)?¥+! training (blocked, degraded and labeled) samples
Let ST be the first, at most %ln %, positive samples seen.
Let S~ be all the negative samples seen.

Let C be set of all 2k-element subsets of ST.

Initialize 7" = {}.
For each c= {cM,..., M} ¢ C:
/* Propose a candidate t = (t1,...,t,) by component-wise voting */

For each 1 =1...n
For x € {1,0,%*}
Let num(c, y) = |[{c) : ng) = X"}
Let t; = argmax{ num;(c,y) :y € {1,0,*} }
/* Decide whether to accept term t = (t1,...,t,) */

|57

e of the terms in S,

If { contradicts at least
Add t to T.
Return the disjunction of terms in 7.

End LEARN-DNF#

Figure 11: The LEARN-DNF*” algorithm for (n='/*/8 n='/*/8 ¢/(8m,,), 1) degradation.

to (say) 1 with probability A7) As we see shortly, ji(-) degradation can be very disruptive.
In contrast, our next result is unaffected by arbitrary (=) degradation. In fact, allowing
(DNF) model already
allows the blocker to reveal extra attributes in negative examples; thus #(=) is included only
for completeness.

Here, we can deal with positive degradation of order O(n_%), for arbitrary k. This

degradation is sufficiently large that we may not ever see an entirely correct (i.e., completely

for =) degradation is somewhat redundant, as our definition of the B

undegraded) term, within polynomially many samples. Thus, the basic strategy used in the
earlier results does not apply. However, we can recover terms by collecting (all) subsets of
2k positive samples, and “voting” (for use of a similar technique, see [KMR*94]). That is,
we construct a term from the subsample by considering each variable z; in turn, and setting
it to 0, 1, or * according to which value is given most often to z; in the subsample (ties
can be broken in an arbitrary fashion). Even if a term is unlikely to ever appear without
any degradation, this voting procedure can recover it. The reason is that, by looking at all
subsets of 2k positive samples, we expect to include sets of samples that are all degradations
of the same term. Although a relevant attribute might be missing from any given instance in
such a set, it is likely to be present in several of the others. Similarly, although an irrelevant
attribute might be revealed in one sample, the attribute is unlikely to appear in very many
others. Thus, “voting” in such a subsample can be expected to identify the truly relevant
attributes with high probability. Of course, the procedure will also look at many subsets of
2k positive samples that are not all degradations of a common term. Voting in such subsets
will tend to produce spurious terms, which should not be included in the learner’s hypothesis.
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We use the negative examples to filter out these inappropriate terms.!> Unfortunately, we
can tolerate much less degradation for negative examples. The following result requires
p7) < ¢/(8m,,), where m,, is the (polynomial size) quantity given in Figure 11.

Theorem 9 The LEARN-DNF* algorithm, shown in Figure 11, can PAC-learn DN'F,, s
with (n_%/& n_%/& €/(8my,), 1) altribute degradation, using O((In %)(fln%)%ﬂ) ex-
amples.

4.2.2 Adversarial Degradation

The previous section considered probabilistic degradation, of the sort that might arise from
a noisy communication channel. Even at best, such models will only approximate the “real”
degradation process in a particular task, and in other cases these simple probabilistic models
will be completely inappropriate. Thus it is useful to consider a broad variety of other
degradation models. In particular, another commonly studied class of models are those
which regard the degradation process as a malicious adversary, who knows the DNF formula,
the sample distribution, the blocker and even our specific learning algorithm, and has some
(limited) power to alter examples in an arbitrary fashion.

We consider first the ’yl(CA’imSt) adversary that can change up to k variables on each
instance, for some constant k. For any k& € {0,...,n}, we say a learning algorithm can PAC-
learn with k/instance degradation if it can PAC-learn in the presence of such a fy,(CA’imSt)
degrader. (Here, we regard # as simply another value that the degradation process can

change a value from, or to.) In general, such an adversary can prevent learning, even if

kE=1:

Proposition 10 [t is impossible to PAC-learn DN F,, s with 1 /instance degradation, ’yfA’imSt).

To see this, consider the two simple DNF formulae ¢; = x; and ¢, = z;, and notice it is

critical to see the value of z; to distinguish between these two different functions. Here,
however, a 'yfA’iMSt) degrader can simply conceal this attribute in all samples.

However, we can consider less powerful adversaries, such as the fy,(CA’ Finst) (resp., ’y,(CA’ _imt))
degraders, which can only degrade positive (resp., negative) samples. In each case, learning

is sometimes possible. The result for ’y,(CA’ =5 follows immediately from the fact that we can

learn DNF formula from undegraded positive samples alone; see Theorem 2. For fy](CA’Hmt),
we need only enumerate all the terms from which the degraded positive examples might have
come (note there are polynomially many of these), and then filter using negative examples.

This is an application of the idea of polynomial explainability [KR93].

13 Another way of filtering out some inappropriate terms is to consider only terms that are voted for “over-
whelmingly” by some size-2k subset; i.e., to retain the term generated by a subset only if max{num;(c,x)}
is at least some minimal value for each attribute. However, negative examples are still needed as a final
filter. Such a refinement requires essentially the same number of samples — i.e., it would only improve on
the original LEARN-DNF#” algorithm by a constant factor.
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Theorem 11 [t is possible to PAC-learn DN F,, s with k /positive-instance degradation ’y,(CA’Hmt),

for any constant k. This holds even in the presense of(n_%/& n_%/S, €/(8myy), 1) attribute
degradation. '

It is possible to PAC-learn DN F, s with k/negative-instance degradatlion fyl(cA’_mSt), for
any constant k. This holds even in the presence of (0, O(Inn/n), 1, 1) attribute degradation.

A quite different type of degradation occurs if an adversary can arbitrarily change in-
stances [KL93]. However, we assume that the adversary has to pass a certain fraction of
instances unchanged: i.e., on each instance the adversary will, with probability 1 — 7, show
the learner exactly the appropriate blocked instance. However, with probability 5, the adver-
sary can replace the instance with anything else, as long as the same class label is unchanged.
(E.g., if the target concept is ¢ = z129 and the blocked labeled instance is (xy29, T), the
adversary may replace this instance with say (ziz9, T'), even though the correct label for
T12zg is not T. It cannot, however, replace this (z1x2, T) with (Z;x9, F), nor even with
(129, F).)

We call this 77(7A’+5“mp) (resp., fy?(f"_samp), ygA’isamp)) degradation if the adversary has the
power to change positive (resp., negative, any) examples in this fashion. It is easy to show
that an analogue to Theorem 11 holds. That is, we can tolerate 77(7A’+5amp) for any fixed
n < 1. The idea is that, by drawing O(1/n) times as many positive examples as we would
if there were no ’y?(f""'s“mp) degradation, we should see “enough” undegraded examples (and,
if we use negative examples to filter, the presence of the other corrupted examples cannot
harm us). In contrast, we can tolerate nontrivial {4 =*™?) degradation only in settings

n
where negative examples are unnecessary anyway.

Proposition 12 [t is possible to PAC-learn DN'F,, s with 77(7A’+5“mp) degradation for con-

stant n < 1. This holds even in the presence of (n_%/& n_%/& ¢/(8myy), 1) attribute degra-
dation.

It is possible to PAC-learn DN'F,, s with ygA’_samp) for any n. This holds even in the
presence of (0,0(Inn/n),1,1) attribute degradation.

Note that yéA’isamp) degradation is even harder, as is the (very similar) model in which
the adversary can corrupt only positive examples but gets to change the class label. In either
case, we cannot trust negative examples enough to use them as a filter for unwanted positive
terms.

4.3 Classification and Attribute Noise

For the reasons hinted in the previous section, classification noise — where a positive example
may be reported as negative, or vice versa — tends to be problematic when it occurs together
with other forms of degradation. However, if classification noise is all we have to worry about,
things are much better. In the following, let a be the fixed probability that an example is
mislabelled.

The basic idea is simply to collect a somewhat larger sample, so that most important
terms in the DNF formula (or paths in the decision tree) are likely to have been seen many
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times. Any term might have been seen labeled both 7" and F', but we can assume that the
correct label is the one occurring more often. If the sample size is large enough, this will
only have a small probability of leading to error.

Theorem 13 [t is possible to PAC-learn DN F, s wilth any classification noise o < 0.5.
This holds even in the presense of (0,0(Inn/n),0,1) attribute degradation.

Essentially the same ideas also show:

Theorem 14 [t is possible to PAC-learn DT ,, s with classification noise oo < 0.5.

The final corruption process we consider is attribute noise. By this, we refer to a process
that can probabilistically change the value of an attribute to any value in {0,1,%}. This
differs from attribute degradation by allowing more: for instance, z; = 1 can be changed
to £y = 0. The probability of each change can depend on the particular attribute being
changed (e.g., 1 or x3) and the type of change (e.g., 1 to 0, or 0 to 1); in the following we
use p simply as an upper bound on these probabilities.

In some contexts, the difference between attribute noise and degradation is important.
However, an examination of the proof of Theorem 9 shows that this difference is not impor-
tant here. Hence:

Proposition 15 [t is possible to PAC-learn DN F,, s with atlribule noise p < n_%/lfi. This
holds even in the presense of (n_%/lfi, n_%/16, €/(16m,,), 1) attribute degradation.

We close this section by noting that it would be interesting to develop algorithms that
can tolerate many different types of corruption simultaneously. However, we expect that
the connection between missing data and “irrelevance” will typically be imperfect, and will
furthermore lack any obvious, clean, formalization. If we nevertheless wish to make use
of the information implied by the missing information — the goal of this work — it will
be important to tolerate as much, and as many different types of, corruption as possible.
Proposition 15 is a good step in this direction, although there is no reason to suppose that
more cannot be achieved.

5 Conclusion

Most learning systems are designed to work best when the training data consists of completely
specified attribute-value tuples. To the extent that the issue has been considered, missing
attribute values have generally been regarded as extremely undesirable. The main point of
this paper is that sometimes the opposite is true. Sometimes the fact that an attribute is
missing is very informative: it tells us about relevance. This information can be so useful
that very hard problems can become trivial.

Moreover, this exact situation, where missing information can be useful, can occur in
practice. Most classification systems perform and record only a small fraction of the set
of possible tests to reach a classification. So if training data has been produced by such
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a system — as in our motivating example of a student examining medical records — our
model of superfluous value blocking seems very appropriate.

This paper provides several specific learning algorithms that can deal with the partially-
specified instances that such classification systems tend to produce. We show, in particular,
that it can be very easy to “PAC learn” decision trees and DNF formulae in this model
— classes that, despite intense study, are not known to be learnable if the learner is given
completely-specified tuples. We then show how these algorithms can be extended to incre-
mentally modify a given initial decision tree or DNF formula, and finally extend our model
to handle various types of “corruption” in the blocking process (so that a missing value is
not a reliable indicator of irrelevance), as well as noise.

A Proofs

Many of the following proofs use the following well-known form of the Chernoff bound [Che52]:

Proposition. Given m Bernoulli trials with probability of success p, the number of successes
S satisfies:

Pr( S > < e

Pr(S < (1—y)ymp) < e /)

forany 0 <~ <1. 1

(DT)

We begin by proving the result that decision trees can be learned under the B model.

Proof of Theorem 1: Given that samples were in fact generated from some tree d;,
and then blocked by 34, (i.e., blocked according to the BPT) model), we can make the
following claim about BUILD-DT: BUILD-DT terminates having constructed a tree d of size
at most |d,|, that classifies all the examples in S correctly. Correctness (given termination)
is obvious by the nature of the algorithm. For termination, note that the only possible
obstacle to termination occurs when BUILD-DT must find a variable z; that is unblocked in
a (sub-)sample S. But BUILD-DT recursively constructs subsamples by grouping samples
that agree on values of some common variables. The samples in S correspond to paths in
the d;, and there must have been some node in the d; at which they began to diverge from
each other. (Since we know some samples in S are distinct, they must diverge somewhere.)
The variable labeling the first such node must appear in all samples in S, and so would be
a suitable candidate for z;.

Next we prove the size bound. BUILD-DT has a (potentially) nondeterministic step when
it chooses a variable that is unblocked in every sample. It is easy to see that BUILD-DT
can in fact always construct a subtree of d; (although to do this it would need to make
the right choices). However, we now show that the size of the tree BUILD-DT constructs is
independent of the choices it makes, and from these two claims it follows that the constructed
tree is never larger than |d;|. The proof of the second claim is by induction on the number
of variables. If n = 1 the result is immediate. Now consider a set of samples S over n + 1
variables, and suppose z; and z; are two of the variables that BUILD-DT can choose for the
root (which means that they each appear unblocked in all the samples in S). Let d; be the
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tree BUILD-DT would construct if it were to choose z; as the root. When BUILD-DT is
constructing the left and right subtrees of d;, it may again have to choose among possible
root variables. But z; will be among the candidate roots for both subtrees (because the
subtrees are constructed using subsets of S, and so x; will be unblocked for all samples
in each subset). Since these subtrees are over n variables we can appeal to the inductive
hypothesis, which says that the size of the subtrees is not affected by the choice we make. We
can therefore assume that z; is chosen as the root of each subtree. That is, we can suppose
that d; consists of x; at the root, followed by z; at both level 2 nodes in the tree. However,
we can argue analogously for the tree d; which has z; as the root: we can assume that z;
is always tested immediately after z;. But now if we compare the four 3rd-level subtrees of
d; and d; we see that they are both constructed by partitioning S according to the values
of z; and z; and then recursively calling BUILD-DT. Thus they should in fact be the same
in both trees (although in a different order). Thus the claim is true for n 4+ 1 and so the
inductive argument is complete.

The second part of the proof concerns the sample size needed. Note that if a tree ¢
has error more than ¢, the probability that ¢ correctly classifies all of m samples is less
than (1 — €)™. Let r5(¢) be the number of trees (of size s) that have at least € error, and
note that xs(e) is bounded by the total number of distinct trees of size s, which is at most
(8n)® [EH89]. Then the probability that any tree with error more than e will be entirely
correct on m examples is at most

ks(e) x (1 —¢)™ < Bn)x(1—¢™ < (8n)e ™.

This is smaller than ¢ if
m > (sIln(8n)—1Ind)/e (2)

Any tree of size s or less that is completely correct on this many samples is thus likely to
have error at most €. Since the tree constructed by BUILD-DT meets this description, we
are done. The mistake bound is immediate, because in fact each example we see corresponds
to a leaf in the target tree; thus we see at most s distinct examples. It follows from the
construction of BUILD-DT that it cannot repeat a mistake.

We close by noting that a different analysis of the sample size can be given, which uses
the representation of a s-leaf decision tree as an s-term DNF formula and Theorem 2. The
latter result, proved below, shows that we can expect to see “enough” positive samples when
m = O((s/€)In(s/d)). This bound may be a better or worse bound than Equation 2, de-
pending on the size of s relative to n. This approach also shows that we can learn decision
trees using only positive samples. 1

Before giving the proofs concerning DNF formulae, it is useful to establish some notation
and a useful lemma. We will use the convention that a conjunctive term over n variables can
be identified with a vector in {0,1,*}", in the natural way: if z; € ¢ the vector’s component
is 1, z; becomes 0, and otherwise the component is *. For example, if n = 5 we identify
x1 A T3 A zq with (1,%,0,1,%). There is a natural partial ordering over {0, 1,*} according to
specificity: ¢ < ¢" if ¢ is identical to ¢ except that some components that are 0 or 1 in ¢ may
be * in ¢'. If ¢ < ' we say that ¢ subsumes t'.
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Recall that we write the s-term DNF formula ¢ to be learned as ¢ = ¢4 V --- V {5,
and we use P to denote the (unknown) underlying distribution over domain instances (i.e.,
over X,,). This distribution, together with the concept ¢ and the blocker 3, induce the
following two useful measures. First, for ¢ < s, we define the coverage of the term ¢; as
c(t;) = P({%]| (&) and B(&) = t;}); i.e., the probability that the blocker will produce ¢;
from a positive instance (prior to any degradation). Second, for any term ¢, we define
P?~(t) to be the probability that ¢ is true but ¢ is false, i.e., P({Z| t(¥) and —¢(Z)} ). Note
that P¢~(t) is 0 for any term t; € ¢, and also for any term subsumed by some ;.

All our algorithms for learning DNF formulae produce a hypothesis which is itself in
DN F,, although possibly with more than s terms. The following easy lemma gives sufficient
conditions for such a hypothesis ¢’ to have error less than e.

Lemma. Let p =t V---Visand ¢' =] V--- V. Let s’ < s be the number of terms in ¢
but not in ¢’, and let v’ < r be the number of terms in ¢’ but not ¢. Then P(pAp’') < €
if

1. Each t; with ¢(t;) > €/(2s') is included in ¢’, and
2. Foralli <r, P () < €/(2r).

Proof: Let U C {t1,1q,...,t5} be the s’ terms in  that are not in ¢'. By Condition 1,
these all have small coverage. Now if & satisfies ¢ but not ¢’, then 3(#) must be in U (or
else ¢'(%) would be true). Thus

Prien=¢') = ZP({i‘I p(2) A= (2) A B(E) = t})

€
< )y < U= = §—= = ~=.
= ;Uc() < Wigg * 2 2
Error is also possible if ¢'(Z) holds but not ¢(#). However, using Condition 2, the
probability of this occurring is bounded by

€

r— = -
2r! 2

Pri~gNg') < Y Phent) = Y PU() <
i=1 i=1
where the penultimate step (introducing r') follows because at most ' of the terms in ¢’ do
not occur in ¢, and only these terms can have nonzero P¥~(t!).
Combining the two parts shows that the total probability of error is at most €, as re-
quired. 1

We use this lemma in each of the following results. With two exceptions, we always use
it in a slightly weaker form with r’ replaced by r and s’ by s. We call any ¢; € ¢ such that
c(t;) > €/(2s) a heavy term. Note also that, even though coverage (and hence, heaviness), is
defined with respect to a specific blocker, a term may well lead to a correct classification of
more terms than its coverage suggests.

Recall that our first result for DNF formulae concerns the case where there is no degra-
dation.
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Proof of Theorem 2: Because there is no degradation, every positive instance we see is
in fact a term of , and so the disjunction of these instances trivially satisfies condition 2 of
the lemma.

It remains to verify that we will see, and so include, all heavy terms. If ¢; is such a term,
the expected number of occurrences in m samples is at least me/(2s). Using the Chernoff
bounds (here with v = 1) the probability of never seeing ¢; is at most e=™</(42)
at most s such terms ¢;, and so the probability that there is any such term which fails to be
seen is at most se=™/ () This is less than & if m > In (s/8)4s/e. If our sample exceeds this
size, we will recover all the heavy terms with probability at least 1 — §, as required.

. There are

The mistake bound is immediate. Each positive example we see corresponds to a term in
the target formula, and once we see such a term we never make a mistake on it again. Thus
we make at most s mistakes on positive examples. It is easy to see that LEARN-DNF never
makes mistakes on negative examples. 1

Our next results concern Theory Revision:

Proof of Theorem 3: Let sq be the number of terms in ¢, but not ;,;;, and ro count
the terms in @, but not ... (Of course, ro+ so = r(Yeor, Pinit ).)

Arguing exactly as in the proof of Theorem 2, if we consider m > In(2sq/d)4ro/(ce)
samples then, with probability at least 1 — §/2, we can expect to see all terms in ., that
have coverage at least ae/(2s0).

Now consider the (at most ro) terms ¢’ in @;,;+ such that P97~ (t') > ae/(2rq). A similar
Chernoff bound analysis shows that we can expect to see at least one negative example
contradicting each such ¢’ if we examine a sample of size at least In (2r¢/d)4rq /().

So suppose we examine a sample of size In(2r(@eor, Yinit)/6)4r(Veor, Pinit)/(c€), and
apply MODIFY-DNF to produce a hypothesis ¢! . From the above arguments, ¢ .,
should contain all terms from .., with coverage more than ae/(2sg), and no terms ¢’ with
Peeor=(t") > ae/(2rg). Now we can apply the lemma in its original (strong) form to ¢, and
¢! . Noting that r’ and s’ as used in the lemma necessarily satisfy " < rg and s’ < s,
we see that both conditions of the lemma are satisfied. Thus ¢!, ,, has error at most e, as
required. I

Proof of Theorem 4: Recall that we can regard BUILD-DT’ as producing a “prefix” tree
ds built from examples S that d;,; did not, or could not, classify correctly. There are two
types of leaf nodes in dg: those corresponding to examples in S, and “default” nodes which
are replaced by a diminished version of d;,;;.

For now, ignore the default nodes (e.g., imagine that each such leaf is labeled F', rather
than with a diminished tree). Let F be the event, on the original sample space X,,, that
an instance cannot be classified correctly by d;,;; after d.,. blocking. Note that d;,; might,
in fact, be able to classify some (unblocked) instances in F correctly — but membership in
FE is determined by what happens after d.,. blocking, which might block enough attributes
that d;,; is unable to decide upon a definite classification.

The tree dg is learned using examples that come from instances in E. In fact, dg is a tree
learned for the concept d.,,, except under a new domain distribution P’, where P’ is equal to
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the original distribution P conditioned on the event K. Let v be the (unknown) probability
of E. By Theorem 1, for any €, ds will have an error of at most ¢ (with probability at
least 1 — §/2) under P’ if S has size at least (r/€¢')In(16n/5). (We can use r, rather than
s, here because there are at most r leaves of d,. that are relevant to examples in E.) It is
easy to see that the labeling of default nodes by diminished trees rather than by F' does not
affect this result. For S to contain this many samples, we should expect to have to draw
about 1/v times as many samples from P; a simple Chernoff bound analysis shows that
(2r/(€'y))In (16n/d) suffices (for r > 3) to guarantee this with probability at least 1 — §/2.
Thus, after this many samples, we expect ds to have error at most ¢ under P’. So the
probability that an instance comes from F and that ds misclassifies this instance, under the
original distribution P, is at most €'y.

Now notice that if an instance does not come from F then d;,; classifies it correctly.
(Proof: As non-default leaves correspond to samples in £, each such instance will be classified
using a default leaf in dg. Furthermore, anything classified by a default leaf is given the
same label that d;,;; itself would give. Thus, instances that are not in £ are always classified
correctly by ds.) It follows that €+ in fact bounds the total error, under P, over all of X,,.
The result follows by substituting ¢ = a¢/~ in the bounds of the previous paragraph.

We close by bounding the size of d,,;. Fach path in ds (d,u’s prefix) corresponds to a
path in d.,., and so there are at most s = |d.,,.| of them. Some of these dg leaves are then
replaced by diminished versions of d;,,;;, which have at most |d;,;1| < s+ r leaves. Thus, the
resulting d,,; tree has at most s(s 4 r) leaves. 1§

Our remaining results all deal with various types of degradation. When there is v-
degradation with v = O(lnn/n), we may need a sample size larger than was needed for
v = 0, to be sure of seeing all the heavy terms. However, this is essentially the only change
required to the proof of Theorem 2.

Proof of Theorem 6: Consider any heavy term ¢;. By definition, the blocker will produce
t; with probability at least ¢/2s. However, {; may not survive degradation intact. Suppose
v < min{klnn/n,0.5}. If {; contains [ < n *’s, the probability that none of these *’s degrade
is at least (1 — v)", which is more than (1 — kInn/n)". The extremely conservative lower
bound, (1 —A/n)" > e=? for any A < 1/2, yields a lower bound of 1/n?* for any n > 1. (As
(1—klnn/n)" ~ e7*n" = 1/n* for large enough n, the exponent can in practice be reduced
to simply k.)

Thus, the probability of seeing ¢; is at least €/(2sn**). The Chernoff bound argument
used in Theorem 2 now applies, but using this probability rather than ¢/(2s). It follows that
a sample size of m > (Ins/§)4sn?*/c is enough so that, with probability at least 1 — §, we

Qk)

see every heavy term undegraded at least once.

Because of the v-degradation, we also see terms other than the ¢;. But since any such
term ¢ is subsumed by some t; € ¢, we know that P¢~(¢{) = 0 and thus such terms are
harmless. If we wish to obtain a shorter hypothesis we can discard any subsumed terms.
However, even after removing subsumed terms, the result is not necessary a subset of the
terms in . It is true that any degradation of a heavy term ¢; will be removed, because ¢; itself
will be present. However, we may see degradations of non-heavy terms without seeing the



Knowing What Doesn’t Matter 30

(undegraded) terms themselves, and these degradations cannot be filtered by subsumption. 11

Our next result permits p-degradation of at most O(Inn/n), but no v-degradation. This
case is not simply a symmetric variant of the previous result, as p-degradation can pro-
duce such terms ¢ for which P¢~(¢) can be large. (By contrast, the terms produced by
v-degradation are subsumed by some t; € ¢ and so are harmless, as P¢~(¢) = 0.) We must
therefore identify and remove such degraded terms.

Proof of Theorem 7: Recall that Algorithm LEARN-DNF* keeps all terms that occur
more than me/(4sn**) times in a sample of size m, and which furthermore do not subsume
any other instance in the sample. We can, without loss of generality, assume that the DNF
formula ¢ is irredundant in the sense that for no ¢;,¢; do we have t; < ¢; (for otherwise, we
could remove t;). It follows that if we see any ¢; from ¢, it can never subsume any other
instance in the sample.

The algorithm will be correct if we choose the sample size m large enough to ensure that
(with probability at least 1 — §/3 each) the following three conditions hold:

First, m must be large enough so that all heavy terms are seen more than me/(4sn?¥)
times, where u < klnn/n. By the argument in the first paragraph, if we do see a heavy term
it will never subsume any other instance, and so this will be enough to show that all the
heavy terms are included in our hypothesis. But, arguing as in the proof of Theorem 6, the
expected number of undegraded occurrences of a heavy term is at least me/(2sn?*). Using
Chernoff bounds, the probability of seeing the term fewer than half this many times, is at
most e~/ (1657°%) Qo it suffices to have m > In (3s/8)165n%* /e.

Our second requirement is that each term ¢; such that c(¢;) > ¢/(8s*n?*) should be seen
at least once. Using Chernoff bounds as in Theorem 2, it suffices that m > In (3s/3)16s%n?".
This means that any term which is a degraded version of such a ¢; will not be included in
our hypothesis, no matter how many times we see it, because it subsumes ¢; and we expect
to see t; at least once.

Thus the only terms which might be incorrectly included in our hypothesis are degra-
dations of terms ¢; for which c(¢;) < ¢/(8s?n**). But the blocker produces such terms very
infrequently. Even if every single occurrence of such a term was degraded into the same
“bad” term t;, the expected number of occurrences of ¢, will be less than mse/(8s%n?*)
= me/8sn?*. Using Chernoff bounds, we bound the probability that the actual number
of occurrences due to these “very light” ¢; exceeds me/4sn?*, by e=me/ (24sn%F) Here, then,
m > 24sn** 1n (3/§) /e suffices.

Combining the three parts of the proof, we see that if m > In(3s/§)24s2n% /¢, our hy-
pothesis will almost certainly include all heavy terms, and is very unlikely to include anything
else. 1

Proof of Theorem 8: If {; contains only clnn terms, the probability of an instance of
which, for fixed p and ¢, is

{; being seen undegraded is at least (1 — p)°" = pen(-x)

polynomial in n. Examining the previous proof, we see that it carries through if we substi-
tute n°mU=# (the new lower bound on a term being undegraded) for n?* (the old bound)
throughout. The result follows. 1
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Our final result about probabilistic degradation permits both p and v degradation, but
requires negative examples.

Proof of Theorem 9: The proof has two steps. First, we show that we can use the
positive examples to construct a “small” (i.e., polynomial size) set of candidate terms C' =
{1, 1, ..., 1.} that is very likely to include all the heavy ¢;. We then show how to use negative
examples, to filter out all terms with P¥~(t}) > ¢/2r.

We begin with the generation of candidate terms. Recall that LEARN-DNF*”considers
all subsets of 2k positive examples, and for each subset constructs a candidate term using a
component-wise “vote”. Suppose we could be assured that some subset of 2k instances were
all degradations of the same heavy term ¢;. What is the probability that this subset “votes”
for exactly ¢;7 Consider any variable z. Each instance gives the variable a different value
from t; with probability at most v, where v = max{u*), {+)}. As the correct value will win
the vote unless at least half of the sample votes for something other than the correct value,
we need to bound the probability that & or more of the 2k instances give the wrong value,

which is at most (2;) 7% < (47)* (using the observation that the number of subsets of size k,

(Qkk), is under the total number of subsets, 2%*). Hence, the probability that any attribute

will be given the wrong value is at most n(4y)*, which is less than 1/2 if v < (1/2n)* /4.
For this, v < n~'/%/8 suffices, which is an assumption of the theorem.

So if we were to have d disjoint size-2k subsamples that come from ¢;, the probability
that none of these vote for ¢; is less than 1/2¢. If we have d such subsets for each heavy ¢,
the probability that any term is not voted for at least once is at most s/2? (as there are at
most s such heavy terms). This is less than §/4 if

d > <1n%8)/1n(2). (3)

(The entire proof will require 4 distinct conditions to hold, which is why we ensure that each
fails with probability at most §/4, rather than just §.)

We can thus be confident that C' contains each heavy ¢; so long as we get to see at least
2kd (degraded) examples of each such term. An easy Chernoff bound argument shows that
m* > max{(81n (4s/d), 8kd)}/e suffices, which (after substituting the Equation 3 bound on
d) holds if m* > In (4s/8)8ks/e. Of course, we would generally not wish to use many more
examples than this, because the number of candidates grows as (m*)2.

The second part of the proof uses a general technique which shows that if u{=) < ¢/(2r),
then using O(In (4r/d)r/€) negative examples one can (with probability at least 1 — §/4)
filter any set of r candidate terms so as to ensure property 2 of the lemma, and yet not
discard any terms ¢; € ¢ among the candidates.

First note that if ¢; € ¢, then every example ¢t~ produced by the negative blocker (before
degradation) will contradict ¢;. That is, ¢~ and ¢; disagree on the value (0 or 1) of at least
one variable, x say. However ¢t~ might be degraded, to ¢’ say. But ¢’ and ¢; will still be
contradictory unless z was degraded to * in ¢’. This happens with probability at most u{=).
It follows that the number of negative examples we see that do not contradict ¢; is expected
to be at most u{~)m~ where m~ is the number of negative samples.
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Now consider a term ¢, & ¢ such that P9~ (#) > €¢/(2r). By the definition of P¥¢~(-),
this means that, with probability at least ¢/(2r), a negative instance is consistent with ¢s.
Clearly neither blocking nor degradation can make such an example inconsistent with ;.
Thus, we expect to see at least em™/(2r) negative examples consistent with ¢s.

Recall that our algorithm considers m™ negative examples and keeps only those candidate
terms that are consistent with fewer than em™/(4r) of them. Using Chernoff bounds and
1) < ¢/(8r), the probability of a term #; being incorrectly rejected is at most e /(247),
and if ¢(t) > ¢/(2r) the probability of ¢, being kept is at most e /(167) Thus, it suffices
to have m™ > 2;ﬁln 47’".

Note that, using the positive sample size m* suggested above, r < (In (4s/8)8ks/¢)** and
so (very conservatively) m~ can be 24(log 1/8)(In (4s/8)8ks/€)?*+!.

The final question concerns whether we can expect to see enough of both positive and
negative examples. But if negative examples occur less than € often, then “true” (i.e., a tau-
tological concept) will be an acceptable hypothesis. Similarly, if positive examples are rare,
“false” can be used. Otherwise, if both positive and negative examples have rates more than
€, we expect to see at least me positive instances, and me negative instances, in a sample
of size m. It it is easy to show that we will (with probability at least 1 — §/4) see enough

instances of both positive and negative samples if m > 2m~ /e. The result follows. 11

Proof of Theorem 11: First, consider fy,(CA’—I_mSt) k/positive-instance degradation for any

constant k. Note that any observed positive example can be an adversarially degraded form
of one of only 2F (Z) = poly(n) “uncorrupted” terms. (These uncorrupted terms may have
(p,v) attribute degradation, but no adversarial degradation.) Thus, given any polynomial
sample of positive instances, we can construct another larger sample (but still of polynomial
size) that is sure to contain all the uncorrupted terms from which the examples were derived.
If we use this larger sample in place of the original positive sample, it is easy to verify that
the proof of Theorem 9 continues to hold, with few changes. In particular, we will be able
to reconstruct all the original terms by voting, and then can use negative examples to filter
out all the unwanted terms.

The case of ’y](CA’ ~inst) k/negative-instance degradation in the presence of (0, O(Inn/n),1,1)
attribute degradation is an immediate corollary of Theorem 6, because the latter result never
used negative instances anyway. |

Proof of Theorem 13: We begin with the case where there is no v-degradation. The
algorithm we use is to collect my samples and report the disjunction of all terms that appear,
with either label, £ or more times and which are labeled 7" more often than they are labeled
F. We specify below the appropriate values of m; and k.
To begin, we should choose m;, large enough so that we expect to see each heavy term
at least k& times. A fairly routine Chernoff bound analysis shows that
2s

2s
mp = - <2k‘—|—81n F) (4)

suffices. (The proof is to show that given this sample size we: (1) expect to see each heavy
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term 2k or more times, and (2) will almost certainly see any heavy term at least half its
expectation.)

Now suppose our sample includes & > k occurrences of a term ¢. We expect the term to
be classified correctly at least (1 — )& times. Using Chernoff bounds, with v = (1 —2a)/(2—
2a), the probability that the sample actually includes £'/2 or more misclassifications is at
most e~ (1-22)%/(8(1-0a))

In a sample of size my there may be many samples occurring k£ or more times, but a
(very!) conservative bound is 3", the number of terms. (Using the apparently much tighter
bound of my/k leads to a substantially more complex analysis, for little ultimate gain.) The
probability that any of these is misclassified by more than half its instances is thus at most

3" exp (—k<1_2a)2 ), which is less than §/2 if

8(l—a)

k> ﬁ(l.ln + 1n§) (5)

Hence, if we examine O( ﬁ In 275 ) samples, we can expect to see all heavy terms k
or more times, each of these terms will be labeled T" more often than not, and no negative
terms will mistakenly be identified as being positive. The result follows.

The case for v = O(Inn/n) degradation uses an extremely similar argument; see the
proof of Theorem 6 for the required modifications. 1

Proof of Theorem 14: PAC-learning decision trees in the presence of classification
noise follows from the techniques of the previous theorem. Namely, first let & > 8/(1 —
2a)? In(2s/6) (which improves on Equation 5, using the observation that there can be at
most s blocked instances in an s-leaf tree) and my > (2s)/e (2k + 81In(2s/4§)) from Equa-
tion 4. Then after mj samples, we expect to see all “heavy” leaves of d.,, at least k& times,
and to be able to correctly identify each of these leaves’ classification. (Here we say that a
leaf is heavy if it has coverage more than €/(2s), whether or not it is labeled T or F'). We
can then pass just the leaves that occur k or more times in the original sample, together with
the appropriate classification, to BUILD-DT. This will construct a tree whose only error is
attributable to the non-heavy leaves that our sub-sample omitted. But the total error this
can cause is at most €. 1
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