Appears in the

Proceedings of the Eleventh ACM Symposium on Principles of Database Systems (PODS92),

San Diego, June 1992.

Learning Efficient Query Processing Strategies

Russell Greiner*
Siemens Corporate Research

Princeton, NJ
greiner@learning.siemens.com

Abstract

A query processor QP uses the rules in a rule base to
reduce a given query to a series of attempted retrievals
from a database of facts. The QP’s expected cost is the
average time it requires to find an answer, averaged over
its anticipated set of queries. This cost depends on the
QP’s strategy, which specifies the order in which it considers
the possible rules and retrievals. This paper provides two
related learning algorithms, PIB and PAO, for improving
the QP’s strategy, ie., for producing new strategies with
lower expected costs. Each algorithm first monitors the QP’s
operations over a set of queries, observing how often each
path of rules leads to a sufficient set of successful retrievals,
and then uses these statistics to suggest a new strategy.
PIB hill-climbs to strategies that are, with high probability,
successively better; and PAO produces a new strategy that
probably is approximately optimal. We describe how to
implement both learning systems unobtrusively, discuss their
inherent time and space complexities, and use methods from
mathematical statistics to prove their correctness. We also
discuss additional applications of these approaches to several
other database tasks.

1 Introduction

A query processor QP uses the rules in a rule base to
reduce a given query to a series of attempted retrievals
from a database of literals. As this can be a very slow

*Much of this work was performed at the Department of
Computer Science in the University of Toronto, where it was
supported by the Institute for Robotics and Intelligent Systems
and by an operating grant from Canada’s Natural Science
and Engineering Research Council. 1 am grateful to Manolis
Koubarakis for his help in writing a preliminary version of this
article, and to Vinay Chaudhri, Igor Jurisica, Alberto Mendelzon
and John Mylopoulos, for their general comments on this research.

08540-6632
(609) 734-3627

process, there has been a great deal of work on query
optimization for knowledge bases [BR86, UlI89, Smi89];
this flurry of research activity has produced a great deal
of theoretical work and a number of prototype systems
(e.g., NAIL! [UlI89], LDL [Zan88], DEDGIN* [LV89]).

In general, these systems attempt to produce a Qp
with a low ezxpected cost, where expected cost measures
the average time QP requires to find an answer, averaged
over its anticipated set of queries. This cost depends
on the QP’s strategy — i.e., on the order in which it
considers performing database retrievals and following
rules to produce new subgoals. Our work focuses on
improvements that modify a QP’s strategy,! producing
a new strategy with a lower expected cost.

This paper offers a new approach to query optimiza-
tion for knowledge bases: in particular, it presents two
methods, PIB and Pa0,? for learning better strategies.
These learning algorithms each monitor a QP as it solves
a set of queries, collecting certain simple statistics. Each
then uses these statistics to modify the Qp’s strat-
egy, producing a new strategy whose performance will,
with provably high probably, be better on subsequent
queries. PIB is an anylime algorithm [BD88, DB88] that
uses these statistics to hill-climb (with high probability)
to successively better strategies; in particular, given any
6 > 0 and set of possible modifications, it selects and
applies a sequence of modifications to a given initial
strategy to produce successive strategies that are, with
probability greater than 1—§, successive improvements.
PAO produces a new strategy that probably is approx-
imately optimal; i.e., given any ¢, 6 > 0, it uses the
statistics from a specified number of samples to identify,
with probability greater than 1—6, a strategy whose cost
is within € of the cost of the optimal strategy. We use

1We can also view this as finding a new QP’ that differs from
the original QP only by using this alternative strategy. For reasons
discussed below, we will freely interchange these two descriptions.

2for “Probably Incrementally Better” and
“Probably Approximately Optimal”. This systems are related
to the work on “Probably Approximately Correct” learning; cf.,
[Valg4].

Rule Base
Rp: instructor(X) :-prof(X).
Rg: instructor(X) :-grad(X).

instructor(k)

(Each R ; represents a rule;)

Each D; represents a retrieval.

Database DB,

prof (russ) ‘
grad(manolis) Dy .

Figure 1: A Rule Base and its associated inference graph G4 + Database DB;

methods from mathematical statistics to prove the cor-
rectness of both learning systems. We also show that
these algorithms are both time- and space- efficient —
i.e., run in polynomial time for many important classes
of knowledge bases, and require very little additional
storage.

Of course, this is not the first use of statistics in
database systems. Existing relational systems (e.g.,
system R [SAC*79]) keep statistics about the database
and use them to determine the costs of different access
methods. They do not, however, keep statistics about
the queries, nor do they use such information to
improve the query processing system. [HC76] presents
a self-adaptive database management system that keeps
query, update and domain selectivity statistics and
utilizes them to automatically adjust the physical
organization of its database. [LN90] uses a similar
statistical method (adaptive sampling) to estimate the
size of queries. However, none of these systems use
statistics to optimize the query processing by modifying
the QP’s strategy.

Section 2 first uses a simple example to motivate and
illustrate our approach. Sections 3 and 4 then present
our main results: the PIB and PA0 algorithms. Section 5
provides general comments about these algorithms,
including a description of their various applications to
database systems.

2 Motivation, Example and Definitions

This work deals with knowledge bases that contain a
collection of ground atomic facts (the database) and a
collection of Datalog rules (the rule base)?; cf., Figure 1.
While our results will generalize, we will assume a query
is an atomic formula within this paper. A query form
is an expression of the form ¢% where ¢ denotes a n-ary
relation and « is an n-tuple from {b, £}", where the i*"
element is b if the query’s i*? argument is bound, and
is £ if this ' argument is free.

The objective of our query optimization is to find an

3Hence, we can represent all of the information as a conjunc-
tion of function-free clauses, where each clause containing exactly
one positive literal.

efficient strategy for executing queries corresponding to
a given query form. As an example, consider using the
inference graph® in Figure 1 to answer to queries of the
form instructor(P) — e.g., “instructor(manolis)?”.
There are two possible top-down strategies: The
strategy ©1 = (R, D,R,D,) follows the R, rule
down to D, , representing the attempted prof(manolis)
database retrieval. If this retrieval succeeds, the query
processor returns “yes” and terminates. If not, ©;
then pursues the other edge of the graph (involving
R, and D,) and returns either “yes” or “no”, based
on the success of the second retrieval, grad(manolis).
An alternative to this strategy, ©2 = (R, D, Ry Dp),
first follows R, to D, and then, if necessary, R, to D,.
Which of the two strategies is better?

A good strategy is one that performs well in practice.
As we only consider strategies that are guaranteed to
find an answer to each query, if one exists, all strate-
gies are equally accurate. We can therefore consider the
efficiency of the different strategies. To quantify this,
assume there is a distribution of queries that our QP
will be asked to solve. We can then define a strategy’s
expected cost as the average cost required to find a so-
lution to a query, averaged over this distribution of an-
ticipated queries. This value depends on the computa-
tional cost of each rule reduction and database retrieval,
and on the likelihoods that each particular retrieval will
succeed — 1i.e., on the conditional probability that a
specific requested proposition will be in the knowledge
base, given a query drawn from this distribution. For
the knowledge base in Figure 1, assume that each reduc-
tion (i.e., following a rule from goal to a subgoal) and
each atomic retrieval costs 1 unit, and imagine we knew
that 60% of the queries are instructor(russ), 15%
are instructor (manolis), and the remaining 25% are
instructor(fred). This means the D, retrieval will
succeed 60% of the time and D,, 15%. We can now
compute ©1’s expected cost, C[©1]: it is the cost of the
initial (R, Dy) subpath, plus the probability that this

*We use inference graphs to illustrate top-down query pro-
cessing strategies. Inference graphs are similar in functionality to
other types of graphs used in the literature to describe evaluation
of queries; e.g., rule/goal graphs [UlI89].

path will fail (1—0.15 = 0.85) times the cost of (R, D,);
hence, C[©1] = (14+1)4+(1-0.15)(14+1) = 3.7. In a sim-
ilar way, we see that C[0,] = (14+1)+(1-0.6)(1+1) =
2.8. As (C[O3] < C[O4], we conclude that ©, is the
preferred strategy.

Notice that this analysis depends on the success prob-
abilities; information that is usually not known initially
(e.g., we usually do not know that 60% of the queries
will be instructor(russ), etc.). [Smi89] presents one
way of approximating their values, based on the (ques-
tionable) assumption that these probabilities are cor-
related with the distribution of facts in the database.
For example, assume that the DB, database includes
2,000 facts of the form prof{?) and 500 facts of the form
grad<b). Given any query of the form instructor{?)
e.g., instructor (mark) — that approach assumes that
we are % = 4 times more likely to find the corre-
sponding prof fact (here “prof(mark)”) than the grad
fact (“grad(mark)”). This means [Smi89]’s algorithm
would claim that ©; is the optimal strategy, as it ap-
pears better than ©,, the only other legal candidate.

This, of course, need not be true; i.e., there is no
reason to assume the distribution of the user’s queries
will be correlated with the distribution of facts in the
knowledge base. The user may, for example, only
ask questions that deal with minors — here, none of
the k;s appearing in instructor(k;) queries will be
professors, meaning Q5 is clearly the superior strategy.

What we really need is the conditional probability that
a giwen retrieval will succeed, given that a query of a
particular form s asked — i.e.,

Pr[prof(x;) retrieval succeeds |
query instructor(k;) is asked]

Dprof =

While there is no empirical way of finding such prob-
abilities exactly, there is a meaningful way of estimating
their values, based on the observation that the past can
be a good predictor of the future. This basic observation
is the key insight underlying “explanation-based learn-
ing” systems [DeJ88, MCKT89]. Each of these systems
analyzes the solutions found to certain previous prob-
lems, and many use this information to suggest new
strategies. The following sections presents two learn-
ing systems that use a similar approach for improving
a query processing system; each uses statistics from the
execution of a set of queries to estimate the distribu-
tion of queries, and then uses this information to pro-
duce a new QP’ with improved performance. Section 3
presents the PIB system that produces a series of query
processors, QPy,...QP,,, ... where each QP;; is, with
provable high probability, more efficient than the prior
QP;. Section 4 presents the PAO system that will, with
provable high probability, identify a query processing
strategy that is approximately optimal over the space

of all possible strategies.

While these sections use the above example to illus-
trate their basic ideas, n.b., these ideas and algorithms
apply in much greater generality — i.e., each applies
to a very broad space of possible inference graphs, etc.
We first conclude this section by defining the necessary
terms.

2.1 Definitions

An inference graph G = (N, A, S, f) is based on
the rules (i.e., the non-atomic definite clauses) in the
knowledge base: N is the set of G’s nodes, each
corresponding to an atomic literal; A C N x N is
the set of directed arcs, each corresponding either to
an invocation of a rule or a database retrieval; and
S C N correspond to the “success nodes” | reaching any
such node n € S means the derivation has succeeded.
(Each success node appears as a box in Figure 1.) The
cost function f: A — R maps each of G’s arc to its
positive real valued cost. (Note 4 below describes how
to extend these definitions to deal with more complex
graph structures.)

A query processing strategy © specifies how to
search the inference graph to find an answer to a
query, where that query corresponds to a node in the
graph. We will write each strategy as a sequence of
the elements of A, with the understanding that the
remaining subsequence will be ignored after reaching
a solution; e.g., ©1 ignores (R, D,) if the D, retrieval
was successful. That is, our QP is seeking only a single
solution; this type of search is called a “satisficing
search” [SK75].

(Subsection 5.2 underscores the importance of satis-
ficing search to database systems by listing a variety
of database situations that require this type of process
— including the evaluation of ground and functional
queries, using negation-as-failure, dealing with horizon-
tally segmented distributed databases, etc. That sub-
section also discusses obvious variants of both PIB and
PAO that can be used in yet other, non-satisficing con-
texts.)

Each query processor Qp = (G, ©) can be viewed
as an inference graph and a strategy. As we are
considering way of changing the strategy, but not the
graph, we will often identify each QP = (G, ©) with its
strategy, ©.

A query processing context is a pair I = (¢, DB),
where ¢ is a query corresponding to a node of G and
DB is a database of atomic literals. We let 7 = {I;}
refer to the set of all possible contexts; and assume
that, in practice, these contexts are drawn at random
from a stationary distribution, which we express using
a probability function Pr: Z — [0, 1] that maps each
context to its probability of occurring.

On each execution, a query processor QP = (G, O)
is given a particular context as input; on successive
runs, of course, Qp will deal with different contexts.
(This means the database of atomic literals can vary
from one query processing context to another; the rule
base, encoded as the inference graph G, is static.)
On each run, dealing with a context I = (¢, DB),
QP traverses the inference graph G, beginning at the
node corresponding to ¢, in the order described by O,
searching for a success node s € S. The search is
complicated by the fact that QP cannot always traverse
an arc, as some arcs can be “blocked” in some contexts;
e.g., if a required literal is not in the database. For
example the D, arc is blocked in the context I; =
(instructor(manolis), DB;) as the required literal
prof (manolis) is not in DB;. By contrast, neither
rule-based reductions, R, and R, is blocked, nor is the
D, arc as grad(manolis) is in DB;.

We can use the f function to compute ¢(©, I),
the cost required for the strategy © to process the
context I € Z. For example, assuming each arc costs
1, then ¢(01,;) = 4 and ¢(0©y, ;) = 2. Using
I, = (instructor(russ), DB;), ¢(01, I3) = 2 and
¢(Og, Ir) = 4. The expected cost of a strategy ©
with respect to the distribution of contexts, Pr —
written Cp,[0©] — is the average time required over this
distribution; i.e.,

Cprl@] <

E[c(©,1)]
= average ¢(©,I) = ZPT’(I) x (0, 1) .
Pr, I €T IeT

We will omit the distribution subscript, Pr, when it is
clear from context.

We close this subsection with several comments on
this framework, and a few extensions.

Note 1. The above notation assumes only a finite
number of contexts; there are obvious ways of
extending this analysis to deal with distributions of
an infinite number of contexts, see [GJ92].

Note 2. While there can be an infinite number of
contexts, they can be partitioned into a large but
finite set of equivalence classes, where all members
of an equivalence classes have the same cost for each
strategy. This follows from the observation that the
cost of using a strategy to address a context depends
only on which arcs are blocked, meaning we can
identify each context I = (¢, DB) with the subset of
arcs that can are not blocked for the query ¢, based on
the database DB. For example, we can identify the
context I; = (instructor(manolis), DB;) with

the arc-set {R,, Ry, Dy}.

Note 3. We can view each strategy as a sequence of
paths, where each path is a sequence of arcs that
descend from some already-visited node down to a
retrieval; e.g., ©1 ~ ((Rp, Dp), (Ry; Dy)). As a less
trivial illustration, the ©@spcp strategy shown in
Equation 4 (associated with the Gp inference graph
shown in Figure 2) can also be expressed as

((Rga Da), (Rys Ry Dy), (Rst Ric De), (Ria Da))

The expected cost of a strategy is the weighted sum
of the costs of its paths, weighted by the probability
that we will need to pursue this path, i.e., that none of
the prior paths succeeded [Smi89, GO91]. (Of course,

the cost of a path is the sum of the cost of its arcs.)

Note 4. The above definitions are sufficient for the
class of simple “disjunctive inference graphs”, which
consist only of rules whose antecedents each include a
single literal. To deal with more general rules, whose
antecedents are conjunctions of more than one literal
(e.g., “A4 := B, C.”), we must use directed hyper-
graphs, where each “hyper-arc” descends from one
node to a set of children nodes, where the conjunction
of these nodes logically imply their common parent.
We would also define S to be a set of subsets of N,
where the query processor would have to reach each
member of some s € S for the derivation to succeed.
This extension leads to additional complications in
specifying strategies; see [GO91, Appendix A]. For
pedagogical reasons, however, this paper uses only
the simple (not hyper) graph notation, in which a
simple arc connects a node to but a single child, etc.

Also, the algorithms presented in this paper can
accommodate more complicated f(-) cost functions,
which can allow the cost of traversing an arc to
depend on other factors — e.g., the success or failure
of that traversal, which other arcs have already been

traversed, etc. See [OG90].

Note 5. We will later need a few other definitions.
The f*: A — RT function maps each arc a € A
to the sum of the costs of the arcs including and
below a — hence, f*(R,) = f(R,) + f(D,) and
F(Ry) = f(Ry) + f(Dy). (This definition of f*(-)
applies when the reduction subgraph under R; is tree;
[GJ92] deals with the complexities that arise in more
general graphs.)

Second, the F,: A +— Rt function maps each
arc a € A to the the total cost of the arcs on the
paths other than the path on which this a appears.
As examples, for the inference graph G4, FL[D,] =
f(Rp) + F(Dyp) and FL[D,] = f(Ry) + f(Dy).

Finally, we say that an inference graph is “tree
shaped” iff there is a unique path of arcs from the

root node down to each retrieval. Hence, Figure 1’s
G 4 and Figure 2’s G are each tree shaped, but the
graph associated with the rule set

{ &

is not, as there are two distinct paths from C to A. We
define AOT to be the set of all tree shaped inference
graphs.

:- B. B :-C. A:-cC. }

3 The pPiB Algorithm

For pedagogical reasons, Subsection 3.1 first presents
the stripped down pPiB; algorithm; Subsection 3.2 then
describes the more comprehensive PIB system.

3.1 Simple PIB; System

We view the PIB; system as a module that can in-
corporated within a general query optimizer, such as
DEDGIN*, and used as a smart filter. In general, the
overall optimizer will propose some particular transfor-
mation, that would produce a new query processor; for
example, it may consider modifying the Qqp; = (G4, ©1)
query processor by interchanging (R, D,) and (R, D,),
forming a new QP, = (G4, ©2). PIB; will then permit
this transformation only if the resulting query processor
s statistically likely to be an tmprovement over the ini-
tial query processor; that is, if QpP5’s expected cost is less
than the cost of the original Qpy; i.e., if C[©2] < C[©4].

Stated more precisely and more generally, PIB; takes
as input a specific QP = (G, ©) and confidence
parameter § > 0, together with two of G’s arcs,
r1,ry that descend from a common node (e.g., R,
and R, descending from Ga’s root), and uses an
oracle that produces contexts drawn randomly from the
distribution. (This oracle could simply be the system’s
user, who is posing queries to the query processor that
are relevant to one of his applications.) Let ©' be the
strategy that differs from © only by interchanging r;
(and its descendents) with ro (and its descendents).
(E.g., Oy differs from ©; by interchanging R, and its
descendent D, with R, and its descendent D,.) PIB;
allows the overall optimizer to switch to the query
process based on @ if, with confidence at least 1—§, this
©’ is better than the original ©; otherwise we continue
to use original query processor, based on ©.

This task would be trivial if we knew the distribution
of contexts; we could then simply compute and compare
the exact values of C[O] and C[©']. Unfortunately,
this distribution is not known a priori, and the only
empirical way of determining whether C'[©] is less than
C[O] is to time how long each system requires to solve
the entire distribution of contexts; a most impractical
approach.

Fortunately, however, we can approximate this differ-
ence by observing the performance of these two query

processors over some small sampling of the contexts,
and using this to derive estimates of expected cost. We
can then use statistical techniques to bound our confi-
dence in these estimates.

In particular, we will want to approximate the value
of D[©, 0] = C[O©]—C[0] based on a particular (fixed
but unknown) distribution of contexts. Notice that ©’
is strictly better than © iff D[©,0'] > 0. We define the
variables

Ai = A[@, @l, Iz] = C(@, Iz) - C(@l, Iz)

to be the difference of the costs of using © to find a
solution to the context I; € Z, and the corresponding
cost of using ©'. As each context is selected randomly
according to a fixed distribution, these A;s are inde-
pendent identically distributed random variables whose
common mean is y = C[@] — C[®'] = D[O,0]. We
extend the A function by

n def
A[eaela{ji}izl] =

n n
YA, e, 5] = > A
i=1 i=1
and use this to define ¥, LA[0,0, {I;}11,] to be
the sample mean of n samples.

We know, of course, that this average will tend to
the true population mean, y = D[O,0'], as n — o0;
ie, g = limy oo Yy, Chernoff bounds [Che52] describe
the probable rate of convergence: the probability that
“Y, is more than p + B goes to 0 exponentially fast
as n increases; and, for a fixed n, exponentially as (3
increases. Formally,®

Pr(Y, > pu+ 3] —2n(%)°
) (1)

Pr[Y, <pu-— 3]

< e
S 6—2n(

> e

where A is the range of possible A; values; e.g., for ©;
and O3, A = f*(R,) + f*(Ry), as —f*(Ry) < A; <
*(R,).° Hence, the probability that %A[@, o' {L}]
D[O,0]+ § is over 1 — e~2n(R)",

By simple algebra, we see that we can be at least 1 -6
confident that D[O©,©’] > 0, and hence that ©' is better
than ©, whenever we observe that

A6, 0 {L}] > A\/gln% @)

This equation gives us an a posterior: way of com-
paring two strategies: first construct the new @' and

5See [Bol85, p. 12]. N.b., these inequalities holds for essentially
arbitrary distributions, not just normal distributions, subject only
to the minor constraint that the sequence {A;} has a finite second
moment.

6The f*(-) function is defined in Note 5 above.

IN

then time both it, and the original ©, solving a partic-
ular set of queries. We can then determine whether the
observed difference is large enough, as a function of the
number of samples. (In the simulation vernacular, this
corresponds to the “paired-t confidence” [LK82].)

We are looking, however, for an efficient a prior: way
of deciding whether ©’ is better than ©, without first
building this ®’. Once again, consider answering queries
of form instructor(P). We show below how to under-
estimate the value of each A;, call it A;, by examining
the results of ©; alone; n.b., without building ©5. For
our purposes, it suffices to show that this under-estimate
is sufficiently greater than 0.

Suppose first that there is no solution to I; =
(instructor(x;), DB;) in the subgraph under R, but
there is a solution under R, (i.e., grad(x;) is in DB;
but prof (k;) isnot). O3 is clearly better than ©; in this
context, as ©; will first follow R, to the unsuccessful
database retrieval D,, before following R, to the
successful D,, meaning its cost is f*(R,) over the cost
of using ©,; hence, here A; = f*(R,). Alternatively, if
there is no solution under either R, or R,, then both
©; and Oy will search the entire graph, meaning their
costs are the same, and so A; = 0. Finally, if there is a
solution under R,, then A; > Ay = —f* (Rg). (Proof:
The real value of A; for I; = (instructor(k;), DB;)
depends on whether grad(x;) isin DB;. If not, then the
(unbuilt) ©®2 would have to search through the subgraph
under R,, unsuccessfully, before trying the successful
prof (x;). By contrast, ©; would only have to search
through the latter subgraph, meaning A; = —f*(R,)
in this case. Otherwise, if grad(x;) is in DB;, then
O3y’s cost ¢(O2, I) would be less, meaning the value of
A; = (01, I;) — ¢(©3, I;) would be larger. Hence, in
either case, A; > —f*(R,), as claimed.) N.b., in all
cases, we can determine an appropriate estimate A, for
A;’s value by simply observing ©;.

Now consider running ©; for the m contexts, S =
{(instructor(k;), DB;}}>,, and imagine it finds a
solution under R, (i.e., prof(x;) € DB;) k, times, and
a solution under R, but not under R, k, times (i.e.,
prof(x;) ¢ DB; and grad(x;) € DB;). We then have

AlG,0,5] >
Al0, 0,51 = [k x [T(Rp) = kp x [1(Ry)]

From Equation 2, we can be at least 1 — ¢ confident that
D(0©1, ©3) is above zero, and so ©3 is better than Oy,
if
(kg x f*(Rp) — kp x [*(Ry)] >
[F*(Rp) + F*(Ry)ly/ 5 In 5

We can now describe how the overall 1-shot learning
system will operate:

(3)

As QP; is answering queries,

Figure 2: More Complicated Inference Graph, Gp

PIB; will maintain the three counters that record the
total number of samples considered (m), and of these,
how often a success node was found under R, (kp),
and how often under R, but not under R, (k).
At some point, perhaps after observing that D, has
succeeded and D, has failed, the general optimizer may
consider transforming ©; into ©,. PiB; would allow this
transformation only if it is confident that ©, is better
than ©y; i.e., if Equation 3 holds.

Notice PIB; has very modest space and computational
requirements: only maintaining the three counters and
computing Equation 3.

3.2 Anytime PIB Algorithm

The piB; algorithm discussed above considers only a
single modification — perhaps switching from ©; to
O, — and is only allowed to consider this modification
once. The pIB algorithm is more general, in that it can
consider several modifications at a time, and can also
consider these various modifications several times, not
just once.

To motivate why this is useful, consider the inference
graph shown in Figure 2, and assume the initial Qpg =
(GB,Oapcp) is using the strategy that traverses these
arcs in depth-first, left-to-right order

OaBcp = <Rga D, Rgs Ry Dy Ryt Ry D Ryq Dd) .
(4)
If we observe that the retrievals D,, Dy and D, all
fail, but Dy succeeds, we might then consider various
modifications: perhaps moving R;4 and Dy to be before
R;. and D., leading to

OaBpC = <Rga D, Rgs Ry Dy Ry th Dc):

alternatively, we could move everything below R,; to be
before R, leading to

OacpB = <Rga D, Rgs Ry Ry D Ryqg Dy ‘Rsb Db)a

or swap Ry, with Ry; etc. Clearly each of these
alternative strategies, and others, will cost less for this
particular context. There may be yet other strategies
that are good in other contexts.

The general PIB system is parameterized by a set of
transformations 7 = {7;}, where each 7; maps one
strategy to another, perhaps by re-ordering a particular
pair of arcs that descend from a common node. (E.g.,
74, would rearrange the order of the R;q and R
arcs, which each descend from the 7" node. Hence,
74:(Qapcp) = Oappc.) The set

70) = {70)|7eT}

defines the set of possible “neighbors” of a given ©. The
PIB algorithm will “climb” to one of these neighbors
© € 7(©) if it is statistically confident that that
neighbor © is an improvement over the given 0.

PIB reaches this decision using essentially the same
approach that PiB; used: it first runs © 4 pop, collecting
the statistics needed to estimate of the values of
Al©4Bcp,Oappc,S], AlO@apep,Oacps,S], ete. In
particular, for each context I; and each proposed
© € T(Oapcp), PIB computes an under-estimate,
A[®apcp, ©', I;], satisfying

A@apcp,®, ;] < Al@apcp,©,1;] .

As before, we can accurately determine the cost ¢(@apcp,
I;) of running ©4pcp in context I;; the difficulty is
in estimating ¢(©’, I;), the cost of running © in Lj;.
Here again we may not have the information needed to
compute this value exactly, as ¢(©', I;) may depend on
the success of various retrievals which were not even
attempted by the © pcp process. To illustrate this
difficulty, consider running ©@ sp¢cp in the context I., in
which the first solution found by the strategy @ apcp is
D.. While we do know that D, and D; are blocked in I,
and D, is not, we do not know whether Dy is blocked.
Now consider estimating A[@apcp,Oaspc, I.] in this
context. Depending on whether Dy is blocked, the value
will be either

Al®4aBcp,Ouappc,] =

{ J*(Ree) — " (Rea)
—f* (Rea)

As our goal is to under-estimate this value, we chose
the smaller of this pair; hence A[@apcp,Oaspc,] =
—f*(Ryq), which corresponds to the value of A[@4pcp,
©aspc, I.] under the assumption that D, is blocked in
I..

This idea holds in general: the value of the under-

if D4 is not blocked
if Dy 1s blocked

estimate A[G), ©', I;] corresponds to the value of A[©, ©', I;]

under the assumption that all of the arcs in the unex-
plored part of the inference graph will be blocked.

If PIB is considering switching from © to one of k
different new strategies, 7(0) = {©;}f_;, it would
maintain the k values of A[©, ©;, 5] for each ©; for the
sample S = {I;}?_,; and would swap to some ©; only if

S|k
> A[©,0] 151, &

5 ns ()
where A[O, ©;] is the range of values of A[©, ©;, I;] over
all possible I;s, which is never more than the sum of the
costs of the arcs under the node where © deviates from
©;. (Hence, A[@apcp,Oapep] = [*(Rie) + [*(Ria),
and A[GABCD; GACDB] = f* (Rsb) + f* (Rst), etc.) The
extra k = |7(0)| in the radical of Equation 5 is used
to keep below 6 the probability of a false positive —
here switching to any ©; when D(0,0;) < 0. (If we
simply used Equation 2 for each ©;, we would only
know that the probability of a false positive is below
k x &, which is unacceptably high.) Of course, we can
express each such Equation 5 as a simple computation
involving easily-obtained statistics, a la Equation 3.

Al0,0;,5]

The other way in which PIB extends PIB; is by
allowing sequential tests. To explain this, consider
the K B; shown in Figure 1: after running ©; for m;
samples, we can use Equation 3 to determine whether
to switch to the new strategy, ©s. If Equation 3 does
not hold, we might want to continue running ©; for
more msy samples, and then ask, again, whether O,
seems to be superior to ©;. Notice we cannot simply
use Equation 3, based on the total statistics gathered
during all m = m; + my samples, as we only know that
the chance of a false positive is only below § + 6, which
is not acceptable.

To deal with multiple sequential tests, based on
successive sets of samples, PIB uses a modified version of
Equation 3. For the i'? test, it replaces the confidence
parameter 6 with the value of the form §; = Z%f—z. Here
the probability of a false positive is bounded above by
Sy 6 = 6532 L = 6, as desired.

The PIB system embodies both of these extensions.
As shown in Figure 3 (and illustrated by Figure 4), p1B
will observe a query processing system QP = (G, Og)
solve a set of queries. After QP; solves each query ¢,
pIB will update its statistics of the success rate of each
attempted database retrieval, and use these statistics to
update the values of A[®’, Oq, {¢}], for each ©’ € T[O).
If none of these quantities satisfy Equation 6, then QP
will continue using ©g, and will process the next input,
gm+1. Otherwise, PIB instructs the query processor
to switch to the associated new strategy, ©'. This is
one hill-climbing step, to ®; «— ©’. PIB then collects
statistics as this ©; system solves queries, and will hill-
climb to some O, if appropriate, etc.

(queries) (solutions)

%\ / p

QP PIB(@0,)
. Transformations: 7 = {r;}
Graph: f ’

N\

') Observations B

If Ale;,0,5 >
J A[0;,0/ L (In 522)
0, ~ 041 Then ©;4; — O
Strategy: < Je—g+1,...

Figure 4: Basic Architecture of the Overall PIB System

It is trivial to see that this algorithm will seldom make
a mistake:

Theorem 1 (Correctness of piB Algorithm) The PIB
algorithm, shown in Figure 3, will successively consider
the strategies ©g,01,...,0;,.... The probability that
PIB will make a mistake — i.e., decide to move from ©;

to Oj41 when in fact C[Oj41] > C[O;] — is below é:

Algorithm PIB(©q, 6)

Prl3jcejl>Cle)]] < 6 0
e Letz — 0. %% 1 is total number of trials
7« 0. %% Currently using j" strategy
L1: Let S — {}. %% S is set of samples for current ©, The above theorem justified our view that this PIB

process is an anytime algorithm [BD88, DB88] as, at any

L2: Get text 1 . . .
b comex time, it provides a strategy (here, the strategy produced

%Jetd ‘Zg ZE;I} for all © € T(6 at the *" iteration) with the property that the longer
pdate A[©;, ©',5] fora € 7(9y) we wait, the better the strategy; i.e., j > i means ©; is,
o Let 1 — 14 |7(9;)|. with high probability, better than ©;.

If there i ©'ecT(O h that) . .
cre 18 solne (6;) suc ¢ We close this section with a few final comments

Al0;,©',5] > A®,,0] ﬂln <z'2 7r2) (6) about the piB algorithm: First, the algorithm shown in
2 66 Figure 3 performs the Equation 6 test after processing
then %% Tell query processor to use strategy © ;41 .each indiv.idual query. Theorem 1 continues to hold
let ©,41 — 0O, je—j+1. if we modify PIB to perform this tests less frequently,
perhaps after processing each successive sequence of

k > 1 queries.
Second, as mentioned above, the PIB system can
Figure 3: Code for PIB be viewed as “hill-climbing” using a specific set of
possible transformations as operators [Nil80]; here each
transformation exchanges the order of some particular
pair of “sibling” arcs. The general pPIB system can
use (almost) arbitrary sets of transformations to hill-
climb; e.g.; perhaps using a set of transformations that
each add some macro-operator [MKKC86] or chunk
[LNR87, LNR86] to the rule base. See [GJ92] for more

details.

Return to L1.

o Otherwise, return to L2.

Third, [CG91] describes a related learning algorithm
called PaLO (for “Probably Approximately Locally
Optimal”). Like PIB, PALO uses a set of possible
transformations to hill-climb in a situation where the
worth of each strategy can only be estimated by
sampling. While PIB will continue collecting samples
and potentially moving to new strategies indefinitely,
PALO will stop when it reaches an “e-local optimal” —
i.e., when it reaches a ©,, with the property that

VO € T(0,,) C[O] > ClOn]—¢

See [CGI1, GJ92] for more details.

4 The PAO Algorithm

PAO’s task is to identify a new strategy whose cost
is, with high probability, very close to the cost of the
optimal strategy. That is, let ©,,; be a strategy whose
expected cost is minimal — i.e., VO C[O,,;] < C[O].
Given any ¢,6 > 0, pao will return a strategy, ©pq4,
whose cost is, with probability at least 1 — é§, no more
than € over C[O,p] — i.e.,
Pr[Cl0pw0] < ClOp] +e¢] > 1 —06.

Once again, this task would be relatively easy if
we knew the distribution of contexts, as there are
algorithms Yg(G, p) that take a graph G in the class
G (e.g., the G4 graph shown in Figure 1, in the
class AQOT of tree shaped inference graphs’) and
a vector of the success probabilities of the relevant
retrievals p (e.g., p = (pp, py) = (0.2,0.6), where
pp = Pr[prof | instructor | and p, = Pr| grad |
instructor |) and produce the optimal strategy for
that graph (here, ©2).% In particular, we will focus on
T ps07, which deals with arbitrary tree shaped inference
graphs. Unfortunately, as we do not initially know
this distribution, we must once again first use sampling
techniques to approximate it, before we can hand this
approximation to T 407.

The pAO algorithm takes, as input, a specific inference
graph G, an error term € > 0 and a confidence
parameter 6 > 0. It first computes a vector of
values M = (my,...,my,) that specify the number
of trials m; required for each database retrieval d;.
PAO then collects statistics as an “adaptive query
processor” QP# (described in Subsection 4.1 below)
solves a sufficient set of contexts to insure that each
database retrieval d; is sampled at least m; times. This
produces a list of frequency values p = (p1,...pn);

7See Note 5 above

8These Yg functions all assume that the success probabilities
of the various retrievals are independent of one another. As there
are O(2") dependencies possible among n retrievals, it would
require exponential time simply to express these dependencies.

PAO hands these values, together with the graph G, to
the appropriate Tg function, which returns a strategy
Opao = TQ(Gaﬁ)'

To illustrate this process, consider again the G4
graph shown in Figure 1, and assume that the query for
each context is of the form instructor(’). Here, pao
first computes the vector M = (m,, m,) = (30, 20),
based on some ¢ and § values. PAO then watches QP4
solve problems until it has observed 30 trials of it trying
the D, retrieval (each of the form prof(x;)) and 20
involving the D, retrieval (each of the form grad(x;)).
Assume D, succeeds 18 times of its 30 trials, and Dy, 10
times of its 20 trials. PAO then passes G4 and the vector
p= (%, %) to the T 407 function, which computes the
strategy Y407 (Ga,p) — here, ©1. PaO then returns
this strategy.

Notice this strategy would be the optimal one if those
frequency values were really the true probability values;
Le., if p = p. In general, let ©5 be the strategy whose
cost is minimal based on the estimate p; i.e., ©; =
Y07 (G, p). Lemma 1 in Subsection 4.1° performs
a sensitivity analysis of the Y 07(G,p) function to
bound how much the cost of this strategy can differ
from the cost of the optimal strategy ©, = T 407 (G, p)
when each p; in p is close to the corresponding p; in p
— le., showing that |C[©;]— C[©,]| is small whenever
each |p; — p;| is small.

The only remaining challenge is to determine the
number of samples required to be confident that |p; —p;|
is small; this requires a few simple applications of
Chernoff bounds (Equation 1). The resulting sample
complexity appears below:

Theorem 2 (adapted from [GO91]) Let e, 6 > 0 be
gwen positive constants, and G € AOT be any tree
shaped inference graph with database retrievals {d; }?_,.
Let P = (P1,-..,Dn) be the probability estimates
obtained after sampling each retrieval d; at least

m(d;) = [2 <%[d])2 In 27"1 (7)

times,*® and let ©pqo = TAOT(G,P) be the strategy
that s optimal, based on these estimates. Then, with

probability at least 1 — 6,
C[eptw] < C[eom] +¢

where Oopy = Y ao7(G, P) is the optimal strategy based
on the correct probability values P. a

This theorem assumes that it is easy to obtain trials
of each retrieval; the next subsection states why this can

9We delay presenting that lemma until we define various
necessary terms.
10The F.[] function is defined in Note 5 above.

be problematic, and presents a more general solution to
this task of obtaining the required samples.

Computational Efficiency: It is easy to see that the
computational time of overall PAO algorithm is polyno-
mial in the obvious parameters whenever the inference
graph is non-recursive and its final step (involving the
Tg algorithm) can be performed efficiently. Unfortu-
nately, this latter task is NP-hard for general graphs G;
see [Gre9l].

Fortunately, however, Tg is efficient for some sub-
classes G. For example, [Smi89] presents an efficient
algorithm Yo7 for the class of simple disjunctive tree
shaped inference graphs (see Note 4 and Note 5). More-
over, there are polynomial time Tg functions that can
produce near optimal strategies for some classes G for
which Tg is intractable; ¢f., [GO91, Appendix B]. That
article also shows how to use these efficient approxima-
tion algorithms to build a variant of PAO that is efficient
for such inference graphs.

4.1 Obtaining enough samples for pao

The pPao algorithm requires estimates of the success
probability of each retrieval; this subsection discusses
how to obtain a sufficient number of samples of each
retrieval. Notice we cannot always obtain the needed
statistical information by simply watching a query
processor that uses a fized strategy solve a set of
problems. Consider for example simply using ©; for
G 4. If the D, retrieval always succeeds (i.e., prof(x;) €
DB; always holds), then ©; would never continue
beyond that retrieval, and so PAO would not obtain any
samples of the grad(x;) retrieval.

This argument applies to any query processor that
follows a fized strategy. We must therefore use an
“adaptive query processor” (designated qP# above)
that can follow different strategies over time. In
particular, QP4 can adjust its strategy on each sample
to make sure it will observe each retrieval a sufficient
number of times. Hence, if (m,,m,) = (30,20), qp4
may use O for the first 30 contexts; this guarantees that
we will have enough samples of D,. QP4 will then use
©; for the next (at most) 20 contexts, to obtain the 20
samples needed for D,. (Of course, the data collection
work can stop as soon as PAO has found the needed
20 samples. In the above example, as 18 of the 30 D,
retrievals succeeded, PAO would already have obtained
30—18 = 12 samples of D,, meaning it would only need
an addition 20 — 12 = 8 more samples, run using the ©,
strategy.)

This QP4 process could be implemented by maintain-
ing a set of counters (c1, ..., ¢,), one per retrieval, which
are each initialized to the proper ¢; — m(d;) value (from
Equation 7). We would decrement the ¢; counter each
time the d; retrieval is attempted. The QP4 strategy

would always begin with the retrieval whose current
counter value is largest; and the sampling phase would
be over when all counters fall below 0. Hence, the total
number of samples required is at most)", m(d;), which
is clearly polynomial in the various parameters.

There is another more subtle issue that complicates
the task of finding enough samples of each retrieval: In a
general inference graph, one cannot always reach some
arcs in certain contexts. As an example, imagine our
rule base also included the rule

grad(fred) :- admitted(fred, X).

Notice we can follow this rule only if the initial
query is instructor(fred). Otherwise, the arc from
grad(x)-to-admitted(fred, X) will be blocked, which
will prevent our PAO system from obtaining a sample
of the admitted(fred, X) retrieval. Of course, if we
cannot obtain any samples of this retrieval, we will be
unable to produce the needed estimates of its success
probability.

Fortunately, the number of samples required for each
retrieval d; depends on the probability of reaching that
retrieval, designated “p(d;)” and defined in Definition 2
below. Lemma 1 below shows that the smaller the value
of p(d;), the less sensitive T go7 is to the value of d;’s
success probability p; = P(d;), meaning (via Chernoff
bounds) we need fewer samples of d;. In the limit, if
there is no chance of reaching d; (i.e., if p(d;) = 0), then
we will need no samples of d;, as T 407 will produce
arbitrarily good strategies using any estimate p; of d;’s
success probability, even as large as |p; — pi| = 1.

Theorem 2 above used the fact that p(d;) is bounded
by 1 to obtain a generous bound on the number of
trials required for d;. As explained above, we may
not be able to obtain this many samples of d; when
p(d;) < 1. Fortunately, fewer examples are required in
this situation. Unfortunately, it is difficult to determine
this smaller sample complexity as it is based on the value
of p(d;), which depends on the unknown distribution.

Fortunately, we can approximate the value of p(d;)
as we are obtaining the estimate of p;. In essense, we
need only “aim for d;” a certain number of times; each
time we reach d;, we can obtain another sample towards
estimating d;’s success probability, and each time our
path to d; is blocked, we can obtain a better estimate
of the failure probability of p(d;).

Theorem 3 below quantifies this argument. Notice it
deals with “probabilistic experiments” in general, which
includes all blockable arcs, both database retrievals and
rule-based reductions. In general, determining which
strategy is optimal depends on the success probabilities
of all of these experiments, not just retrievals. Of course,
we need to extend the “inference graphs” defined above

10

to accomodate these internal probabilistic experiments;
the “search structures” defined in [OG90] are sufficient.
We first require the following definition:

Definition 1 (Aiming for an experiment) Let e be
any arc of G € AOT, which is a tree shaped inference
graph; and let T(e) be the sequence of G’s arcs that
descend from G’s root down to, bul not including,
e. We say that an adaptive query processor QP4 has
“attempted to reach e on a context I” if it followed the
path 1I(e) as far as it could, either reaching e or being
blocked by an arc in II(e) before reaching e.

Theorem 3 Let ¢,6 > 0 be given positive constants,
and G € AOT be any tree shaped inference graph with
probabilistic experiments {e;}?_,. For each experiment
e;, assume that an adaptive query processor QP* has
attempted to reach e; on at least

, _ 2e -~ 4n
m'(e;) = f?(m-{-l—l) hl?] (8)

conterts.! Assume QP has reached each e; k(e;)
times, and of these, found that e; was not blocked n(e;)
times. Let P = (p1,...,Dn) be the success frequencies

where p; = ’;(23 or p; = 0.5 if k(e;) = 0; and let

Opao = TAOT(G,P) be the optimal strategy, based on
these estimates. Then, with probability at least 1 — 6,

C[GMO] < C[@om] +€

where Oopy = Y ao7(G, P) is the optimal strategy based
on the correct probability values P.

Proof sketch: Assume that Qp# has attempted to
reach e m = m'(e;) times, and has succeeded in
reaching e; a total of k of these attempts. Using
Chernoff bounds, with probability at least 1 — %,

k 1 2n
. < — ——|n —
pled) < + 2m . 6

m

and also, with probability at least 1 — -,

R < Zn —
|pz pz| S]{,‘ln s

We can bound p(e;) x |p;i — pi| by first defining

—mlﬂ{l 4 2m1n2”}xm1n{l \/111174”}

and then, using g() , observe that

2
1 1 4n 1
B < [—+4—m2) _=
g(k) < (2+ 2mn5) 1

11 The leading term of an asymptotic expansion on m’(e;) by n

2
is 2 (nF_'T[e’]) In 47", which is very close to the formula given in

Equation 7.

for all k between 0 and m. Hence, plugging in the value
of m = m/(e;) from Equation 8, with probability at least
(1 - %)2 Z I %;

€

plei) x |pi—pi| < TnTolel] 9)

With probability at least (1 — %)” > 1— 46, Equation 9
holds for each of the n experiments, which, using
Lemma 1, means that C[Opq,] < C[O,p:]+e, as desired.
(This proof appears in full in [GO92].) O

Definition 2 (Reaching an Experiment) Given any
tree shaped inference graph G, any distribution P and
any strategy © defined on G, define py(e;, ©) to be the
probability that the strategy © will reach the experiment
e;; and define

def
poles) = maxp,(e;,0)
to the largest probability, over all strategies.
When the distribution p is clear from context, we will
simply write “p(e;)”.

Hence, in any tree shaped inference graph, p(e;) is at
most the product of the success probabilities of the arcs
on the path II(e;) from the root to €;.12

Lemma 1 (Sensitivity Analysis of T 07) Let G €
AOT be any tree shaped inference graph with experi-
ments {e;}7_,; and let P = {(p1,...pi,...pn) € [0,1]"
and P = (P1,-.-Pi,.--Dn) € [0,1]" be two probability
vectors, where p; (resp., p;) is the success probability
of the i'" experiment, e;. Let ©, = Y407 (G, p) (resp.,
05 = Tao1(G, p)) be the strategy that is optimal, given
the distribution p (resp., p). Then

2 Z FL[ei] x ples) %

where p(e;) is the probability of reaching e;, based on the
P distribution.

Cp[ep]—CP[@P] < |p: — pil

Proof Sketch: Given the vectors P and P, let P(¥) =
(P1, .-, PisPit1,- -, Pn), and as special cases, P(®) = P
and P(") = P. [GOY2] proves that aca[l < plei) x

F_[e;]; using the mean-value theorem, this means that,
for any strategy O,

|Cp[0] —

and so

Cpa-n[O]| < plei) x I (&) %

|pi — pil

—Cplell < 3 plen) x Fa(e) x 1pi = pil

i=1

|Cp[O]

12We are continuing to insist that success probabilities of the
experiments are independent of each other.

11

The lemma follows immediately from the observation
that

Cp[®©p] — Cp[Op]
= Cp[@p]—C*[@p] + CA[@IE,]—C}%[@P]

as CP[GP]SCP[OP]. O

5 Conclusions

5.1 General comments about PIB and PAO

Both PiB and PAO were designed to work unobtrusively
— each basically monitors a query processor as it
deals with queries; and only occasionally suggests
modifications. Each requires some initial information,
including a description of the underlying inference graph
and certain parameters: § and possibly €. In addition,
each also requires certain statistical information. N.b.,
this information can be obtained trivially, by simply
recording (at most) the number of times a query
processor attempts each database retrieval and how
often that retrieval succeeds. Hence, the time and
space requirements for the data-collection part of these
algorithms is extremely minor: only maintaining one or
two counters per retrieval.

The overall computational cost of the PIB processes is
always minor: simply evaluating Equation 6 as often as
requested. The overall computational cost of the pao
process depends on the efficiency of the Tg function
used: PAO is tractable iff the inference graph is acyclic
and the Tg function is tractable.

Finally, we can list the assumptions underlying the
PIB and PAO algorithms: [1] each strategy ©; must
be static and deterministic, meaning it will return the
same answer each time it is run on a given context;
[2] each ©; performs a “satisficing” search, meaning that
it returns the first success node that it finds; and [3] the
distribution of problem contexts is stationary, meaning
that the success probabilities of the various retrievals do
not change over time.

Each of these processes is defined for arbitrary classes
of inference graphs, and can apply even if the success
probabilities of different retrievals are dependent on
one another. However, the PAO process is not always
computationally efficient in such situations.

5.2 DataBase Applications of PIB and PAO

There are many database applications for the piB and
PAO systems. The previous sections discussed how they
can be used to improve a system that is performing
satisficing searches. As such, they can clearly help to
reduce the cost of performing both ground queries and
and existentially quantified queries (i.e., queries asking

for only one answer), which include “non-deterministic
queries” [AV88], and “existential queries” [RBKSS].
Such searches are also relevant to any system that uses
negation as failure: Consider the rule

pauper(X) :- not(owns(X,Y)).

and observe that we can determine whether some
individual is, or is not, a pauper by finding a single
item that he owns; n.b., we do not have to find each of
his multitude of possessions.

Our PIB and PAO techniques can apply to yet other
tasks that fit into this “satisficing” framework. One
obvious additional database application is deciding
on the order in which to scan a set of horizontally
segmented distributed databases [Des90, p. 673]. For
example, imagine we have several physical files that each
store the same types of facts about people. Given a
query like age(russ, X), we would like to scan these
files in the appropriate order — hoping to find the file
dealing with russ facts as early as possible.

Finally, there are obvious variants of these algorithms
that can be used in related situations. For example, one
set of variants seek the first & answers to a query, for
some fixed k£ > 1. This can be useful in situations where
we know that there can be only & answers to some query;
e.g., parent (x,Y) will only yield two bindings for Y for
any fixed x, as will senator(x,Y), etc.

5.3 Contributions

The view that query processing corresponds to search-
ing through a graph [Vie89, Smi89] suggests one form
of query optimization: finding an efficient graph search
strategy. This paper describes two learning algorithms
that can find good strategies; each first monitors a query
processor as it solves a set of queries, collecting relevant
statistics about the queries posed by the user, then uses
this information to improve the system’s performance
on subsequent queries — that is, to produce a QpP’ whose
performance will, with high probability, be good.

The first improvement method, PIB, use these col-
lected statistics to hill-climb to successive strategies that
are, with high probability, successively better. This ap-
proach is quite general: it can be used efficiently with
arbitrary inference graphs, and does not require that the
success probabilities of the retrievals be independent.
However, PIB can climb to a “local minimum”, and so is
not guaranteed to produce a strategy that is even close
to a globally optimal strategy. The second method, PAO,
avoids this problem by using the obtained statistical in-
formation to identify a strategy whose cost is, with high
probability, close to the global optimum. Unfortunately,
it is computationally efficient only for certain classes of
inference graphs, and only if the success probabilities
are independent. We close by commenting that both

12

of these techniques apply in many other situations as
well — in fact, in any situation that involves perform-
ing a set of probabilistic experiments until reaching a
satisfying configuration of successes and failures where
the cost of performing the experiments depends on the
order chosen [OG90]; Subsection 5.2 lists many other
applications that are relevant to database systems.

References

[AVSS]

[BDSS]

[Bol85]

[BRS6]

[CGY1]

[Cheb2]

[DBSS]

[Del88]

[Des90]

[GI92]

[GOY1]

Serge Abiteboul and Victor Vianu. Proce-
dural and declarative database update lan-
guages. In Proc. of 7th Symposium on Prin-
ciples of Database Systems, pages 240-50,
Austin, TX, March 1988.

Mark Boddy and Thomas Dean. Solving
time dependent planning problems. Techni-
cal report, Brown University, 1988.

B. Bollobas.
Press, 1985.

Random Graphs. Academic

F. Bancilhon and R. Ra-
makrishnan. An Amateur’s Introduction to
Recursive Query-Processing Strategies. In
Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data,

pages 1-49, 1986.

William Cohen and Russell Greiner. Prob-
abilistic hill climbing. In Proceedings of
CLNL-91, Berkeley, September 1991.

Herman Chernoff. A measure of asymptotic
efficiency for tests of a hypothesis based
on the sums of observations. Annals of
Mathematical Statistics, 23:493-507, 1952.

Thomas Dean and Mark Boddy. An anal-
ysis of time-dependent planning. In AAAI-
88, pages 49-54, August 1988.

Gerald Delong. AAAT workshop on
Explanation-Based Learning. Sponsored by
AAAI, 1988.

Bipin C. Desai. An Introduction to Database
Systems. West Publishing Company, NY,
1990.

Russell Greiner and Igor Jurisica. EBL sys-
tems that (almost) always improve perfor-
mance. Technical report, Siemens Corpo-
rate Research, 1992.

Russell Greiner and Pekka Orponen. Prob-

ably approximately optimal derivation

[GOY2]

[Gre9l]

[HCT6]

[LK82]

[LN9O]

[LNRS6]

[LNRS7]

[LV89]

[MCK+89]

strategies. In J.A. Allen, R. Fikes, and
E. Sandewall, editors, Principles of Knowl-
edge Representation and Reasoning: Pro-
ceedings of the Second International Con-
ference, San Mateo, CA, April 1991. Mor-
gan Kaufmann.

Russell Greiner and Pekka Orponen. Prob-
ably approximately optimal satisficing
strategies. Technical report, Siemens Cor-
porate Research, 1992.

Russell Greiner. Finding the optimal deriva-
tion strategy in a redundant knowledge
base. Artificial Intelligence, 50(1):95-116,
1991.

Michael Hammer and Arvola Chan. Index
Selection in a Self-Adaptive Data Base
Management System. In Proceedings of the
ACM SIGMOD International Conference
on Management of Data, pages 1-8, 1976.

Averill M. Law and W. David Kelton. Simu-
lation Modeling and Analysis. McGraw-Hill
Book Company, Toronto, 1982.

R.J. Lipton and J.F. Naughton. Query size
estimation by adaptive sampling. In Pro-
ceedings of ACM SIGACT/SIGMOD Sym-
posium on Principles of Database Systems,

pages 40-46, 1990.

John E. Laird, Allan Newell, and Paul S.
Rosenbloom. Chunking in SOAR: The
anatomy of a general learning mechanism.
Machine Learning, 1(1):11-46, 1986.

John E. Laird, Allan Newell, and Paul S.
Rosenbloom. SOAR: An architecture of
general intelligence. Artificial Intelligence,

33(3), 1987.

A. Lefebvre and L. Vieille. On Deductive
Query Evaluation in the DedGin* System.
In Proceedings of the 1st International Con-
ference on Deductive and Object-Oriented
Databases, pages 225-244, Kyoto, Japan,
1989.

Steven Minton, Jaime Carbonell, C.A.
Knoblock, D.R. Kuokka, Oren Etzioni, and
Y. Gil. Explanation-based learning: A
problem solving perspective. Artificial In-

telligence, 40(1-3):63-119, September 1989.

13

[MKKC86] Thomas M. Mitchell, Richard M. Keller,

[Nil80]

[0GY0]

[RBKSS]

[SAC*79]

[SK75]

[Smi8Y)]

[U1189]

[Val84]

[Vie89]

[Zan88]

and Smadar T. Kedar-Cabelli. Example-
based generalization: A unifying view.
Machine Learning, 1(1):47-80, 1986.

Nils J. Nilsson. Principles of Artifical
Intelligence. Tioga Press, Palo Alto, 1980.

Pekka Orponen and Russell Greiner. On the
sample complexity of finding good search
strategies. In Proceedings of COLT-90,
pages 352-58, Rochester, August 1990.

R. Ramakrishman, C. Beeri, and R. Krish-
namurthy. Optimizing existential datalog
queries. In Proc. of 7th Symposium on Prin-
ciples of Database Systems, pages 89-102,
Austin, TX, March 1988.

P.G. Selinger, M.M. Astrahan, D. D. Cham-
berlin, R.A. Lorie, and T.G. Price. Ac-
cess Path Selection in a Relational Data
Base Management System. In Proceedings
of the ACM SIGMOD International Con-
ference on Management of Data, pages 23—
34, 1979.

H. A. Simon and J. B. Kadane. Opti-
mal problem-solving search: All-or-none so-
lutions. Artificial Intelligence, 6:235-247,
1975.

David E. Smith. Controlling backward
inference. Artificial Intelligence, 39(2):145—
208, June 1989.

J. Ullman. Principles of Data Base and
Knowledge Base Systems, volume 2. Ad-
dison Wesley, 1989.

Leslie G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134—
42, 1984.

L. Vieille. Recursive Query Processing:
The Power of Logic. Theoretical Computer
Science, 68(2), 1989.

Carlo Zaniolo. Design and Implementation
of a Logic Based Language for Data In-
tensive Applications. In Proceedings of the
5th International Conference on Logic Pro-
gramming, 1988.

14

