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Abstract

Many learning systems search through a space
of possible performance elements, seeking an el-
ement with high expected utility. As the task
of finding the globally optimal element is usu-
ally intractable, many practical learning sys-
tems use hill-climbing to find a local optimum.
Unfortunately, even this is difficult, as it de-
pends on the distribution of problems, which
is typically unknown. This paper addresses
the task of approximating this hill-climbing
search when the utility function can only be
estimated by sampling. We present an algo-
rithm that returns an element that is, with
provably high probability, essentially a local op-
timum. We then demonstrate the generality
of this algorithm by sketching three meaning-
ful applications, that respectively find an ele-
ment whose efficiency, accuracy or complete-
ness is nearly optimal. These results suggest
approaches to solving the utility problem from
explanation-based learning, the multiple exten-
sion problem from nonmonotonic reasoning and
the tractability /completeness tradeoff problem
from knowledge representation.

1 Introduction

Many learning tasks can be viewed as a search through
a space of possible performance elements seeking an el-
ement that is optimal, based on some utility measure.
As examples, many inductive systems seek a function
whose classification is optimal, i.e., which labels correctly
as many examples as possible; and many explanation-
based learning [DeJ88, MCK*89] and chunking [LNR87]
systems seek a problem solving system that is opti-
mally efficient [Min88, Gre91]. In each of these cases,
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the utility function used to compare the different ele-
ments is defined as the expected value of a particular
scoring function, averaged over the distribution of sam-
ples (or goals, queries, problems, ...) that will be seen
[Hau88, OG90, GO91].

There are two problems with implementing such a
learning system: First, we need to know the distribution
of samples to determine which element is optimal; un-
fortunately, this information is usually unknown. There
are, of course, standard statistical techniques that use
a set of observed samples to estimate the needed infor-
mation; and several classes of learning systems have in-
corporated these techniques. For example, many “PAC-
learning” systems [Val84] use these estimates to identify
an element that is approximately a global optimum.

This leads to the second problem: unfortunately, the
task of identifying the globally optimal element, even
given the correct distribution information, is intractable
for many spaces of elements [Gre91, Hau88]. A common
response is to build a system that hill-climbs towards
a local optimum. Many well-known inductive learning
systems, including BACKPROP [Hin89] and D3 [Qui86],
use this approach, as do many speedup learning meth-
ods; see especially [GD91]. Unfortunately, few existing
systems guarantee that each hill-climbing step is even
an improvement, meaning the final element is not always
even superior to the initial one, much less an optimum in
the space of elements. Moreover, fewer systems include
a stopping criterion to determine when the learning has
reached a point of diminishing returns.

The work presented here draws ideas from both of
these themes: In particular, it describes a general learn-
ing algorithm, PALO, that hill-climbs to a local optimum,
using a utility metric that is estimated by sampling.
Given any parameters €,6 > 0, PALO efficiently produces
an element whose expected utility is, with probability
greater than 1 — &, an e-local optimal.! Moreover, PALO
can work unobtrusively [MMS85], passively gathering
the statistics it needs by simply watching a performance
element solve problems relevant to a user’s applications.
Here, the incremental cost of PALO’s hill-climbing, over
the cost of simply solving performance problems, can be
very minor.

Theorem 1 below defines both our sense of efficiency, and
“e-local optimality”.



Section 2 motivates the use of “expected utility” as
a quality metric for comparing performance elements.
Section 3 then describes a statistical tool for evaluating
whether the result of a proposed modification is better
(with respect to this metric) than the original perfor-
mance element PE; this tool can be viewed as a mathe-
matically rigorous version of [Min88]’s “utility analysis”.
We use this tool to define the general PALO algorithm,
that incrementally produces a series of performance ele-
ments PEq, ..., PE,, such that each PE;4; is statisti-
cally likely to be an incremental improvement over PE;
and, with high confidence, the performance of the fi-
nal PE,, is a local optimal in the space searched by the
learner. Section 4 demonstrates the generality of this ap-
proach by presenting three different instantiations of the
PALO system, each using its own set of transformations
to find a near-optimal element within various sets of per-
formance elements, where optimality is defined in terms
of efficiency, accuracy, or completeness, respectively.

2 Framework

We assume as given a (possibly infinite) set of perfor-
mance elements PE = {PE;}, where each PE € P& is
a system that returns an answer to each given problem
(or query or goal, etc.) ¢; € Q, where Q = {q1,¢2,...}
is the set of all possible queries. We also use the util-
ity function ¢: PE€ x Q@ — R, where ¢(PE, q) measures
how well the element PE does at solving the problem gq.
(Section 4 defines ¢;(PE, ¢), which quantifies the time
PE requires to solve ¢; ¢q(PE, ¢), the accuracy of PE’s
answer; and ¢.(PE, ¢), PE’s categoricity.)

This utility function specifies which PE; is best for
a single problem. Our performance elements, however,
will have to solve an entire ensemble of problems. As we
obviously prefer the element that is best overall, we must
therefore consider the distribution of problems that our
performance elements will encounter. We model this us-
ing a probability function, Pr: Q — [0, 1], where Pr[q;]
denotes the probability that the problem g¢; is selected.?
We then define the ezpected utility of a performance el-
ement:

def

C[PE] = E[¢(PE, q)] = ) Prlq]xc(PE, ¢) (1)

geQ

Our underlying challenge is to find the performance el-
ement whose expected utility is maximal. As mentioned
above, there are two problems: First, the problem distri-
bution, needed to determine which element is optimal,
is usually unknown. Second, even if we knew that distri-
bution information, the task of identifying the optimal
element is often intractable.

3 The PALO Algorithm

This section presents a learning system, paLo (for
“Probably Approximately Locally Optimal”) that side-
steps the above problems by using a set of sample queries

?We assume that |Q| is finite for purely pedagogical rea-
sons, as it allows us to define this probability function. There
are obvious ways of extending this analysis to handle an in-
finite set of problems.

Algorithm PALO( PEg, ¢, 6)
e 71— 0 70
L1: Let S — {} Neigh «— {7(PE;) }&
Amaz = max{ A[PE’, PE,;] | PE’ € Neigh }
L2: Get query ¢ (from the user).
Let S « Su{q} i «— i+ |Neigh|
o If there is some PE’ € Neigh such that
A[PE/, PE;,S] >
A[PE', PE;]1/ 5l (522) (2)

36
then let PE;;q «— PE/,
Return to L1.

o If |S] > 2A§g‘” In (izﬂz) and

J=J+1

36

VPE' € Neigh. A[PE', PE;, 5] < <&

then halt and return as output PE;.

o Otherwise, return to L2.

Figure 1: Code for PALO

to estimate the distribution, and by hill-climbing effi-
ciently from a given initial PEy to one that is, with
high probability, essentially a local optimum. This sec-
tion first states the fundamental theorem that specifies
PALO’s functionality, then summarizes PALO’s code and
sketches a proof of the theorem.

In more detail, PALO takes as arguments an initial PEg
and parameters €,8 > 0. It uses a set of sample problems
drawn at random from the Pr[-] distribution to climb
from the initial PEg to a final PE,,, using a particular
set of possible transformations 7 = {r;}, where each ;
maps one performance element to another; see Section 4.
PALO then returns this final PE,,,. Theorem 1 states our
main theoretical results.?

Theorem 1 The pALO(PEqg, €, §) process incremen-
tally produces a series of performance elements
PEo, PE4, ..., PE,,, staying at a particular PE; for
only a polynomial number of samples before either climb-
ing to PE; 41 or terminating. With probability at least
1 — 6, paLO will terminate. It then returns an element
PE,, whose expecied utility C[ PE,, ] is, with probability
at least 1 — 6, both

1. at least as good as the original PEg; ie.,
C(IPE,] > CIPEy; and

2. an e-local optimum — i.e.,

¥r €T. CPE,] > ([ (PE,)] —¢ O

The basic code for PALO appears in Figure 1. In
essence, PALO will climb from PE; to a new PE;;, if
PE;41 is likely to be better than PE;; ie., if we are
highly confident that C[PE;41] > C[PE;]. To deter-
mine this, define

di = A[PEOM PEﬁan] déf C(PEOM ql) - C(PEﬁa ql)

3This proof, and others, appear in the expanded version
of this paper [Gre92].



to be the difference in cost between using PE, to deal
with the problem ¢;, and using PEg. As each query g¢; is
selected randomly according to some fixed distribution,
these d;s are independent, identically distributed ran-
dom variables whose common mean is y = C[PE,] —
C[PEg]. (Notice PE, is better than PEg if g > 0.)

Let ¥, & LA[PE,, PEs, {g:}{=,] be the sam-
def

ple mean over n samples, where A[PE,, PEg,S] =
qus ¢(PE,, q) — ¢(PEg, ¢) for any set of queries S.
This average tends to the true population mean p as
n — 0o; Le., g = limy.oo Y. Chernoff bounds [Cheb2]
describe the probable rate of convergence: the probabil-
ity that “Y,, is more than g+ 7" goes to 0 exponentially
fast as n increases; and, for a fixed n, exponentially as v
increases. Formally,*

—2n(

)2
)2

where A is the range of possible values of ¢(PE,, ¢;) —
¢(PEg, ¢;). This A = A[PE,, PEg] is also used in both
the specification of A4 under Line L1 and in Equa-
tion 2.

The PALO algorithm uses these equations and the val-
ues of A[PE', PE;, S] to determine both how confident
we should be that C[PE'] > C[PE; ] (Equation 2) and
whether any “7-neighbor” of PE; (1.e., any 7,(PE;)) is
more than € better than PE; (Equation 3).

PrlY, > p+7]
PrlY, <u—7]

€

>R =R

<
S 6—2n(

We close this section with some general comments on
the PALO framework and algorithm.

N-PALO1. The samples that PALO uses may be pro-
duced by a user of the performance system, who is
simply asking questions relevant to his current appli-
cations; here, PALO is unobtrusively gathering statis-
tics as the user is solving his own problems [MMS85].
This means that the total cost of the overall system,
that both solves performance problems and “learns”
by hill-climbing to successive performance elements,
can be only marginally more than the cost of only
running the performance element to simply solve the
performance problems.

We are using these user-provided samples as our
objective is to approximate the average utility values
of the elements, over the distribution of problems that
the performance element will actually address. This
“average case analysis” differs from several other ap-
proaches as, for example, we do not assume that this
distribution of problems will be uniform [Gol79], nor
that it will necessarily correspond to any particular
collection of “benchmark challenge problems” [Kel87].

N-PALO2. All three ¢, (PE, ¢) functions discussed in
this paper are “bounded”; i.e., satisfy

VPEePE qge Q. ¢y < ¢o(PE, ¢q) < s+ A

*See [Bol85, p. 12]. N.b., these inequalities holds for essen-
tially arbetrary distributions, not just normal distributions,
subject only to the minor constraint that the random vari-

ables {d;} is bounded.

for some constants ¢, € R and A € RT. Here, we
can guarantee that A[PE,,PEg] < A. For certain
transformations 7, we can find yet smaller values for
Al (PE), PE]; see [GJ92].

N-PALO3. Although Theorem 1 bounds the number
of samples per iteration, it is impossible to bound
the number of iterations of the overall pALO algo-
rithm without making additional assumptions about
the search space defined by the 7 transformations.
The theorem’s guarantee that PALO will terminate
with probability at least 1 — é requires that the space
of performance elements be finite; this is true in all
three situations considered in this paper.

N-PALO4. Notice that a “0-local optimum” corre-
sponds exactly to the standard notion of local op-
timum; hence our “e-local optimum” generalizes lo-
cal optimality. Notice that PALO’s output, PE,,, will
(probably) be a real local optimum if the difference in
cost between every two distinct performance elements,
PE and 7(PE), is always larger than e. Thus, for suf-
ficiently small values of ¢, PALO will always produce a
bona fide local optimum.

N-PALOS5. We can view PALO as a variant on anytime
algorithms [BD88, DB88] as, at any time, PALO pro-
vides a usable result (here, the performance element
produced at the j** iteration, PE;), with the property
that later systems are (probably) better than earlier
ones; i.e., 1 > j means C[PE;] > C[PE;] with high
probability. PaLO differs from standard anytime algo-
rithms by terminating on reaching a point of dimin-
ishing returns.

Notice finally that paLo will (probably) process
more samples using later elements than using the ear-
lier ones, as its tests (Equations 2 and 3) are increas-
ingly more difficult to pass. This behaviour is desir-
able, as it means that the overall system is dealing
with increasing numbers of samples using later, and
therefore better, elements.

4 Instantiations of the PALO Algorithm

This section demonstrates the generality of the pALO
algorithm by presenting three different instantiations
of this framework. For each instantiation, we spec-
ify (1) the set of possible performance elements PE =
{PE;}, (2) the set of transformations 7 used in the hill-
climbing process, and (3) the scoring function ¢(-, -) used
to specify the expected utility. We will also discuss how
to obtain the values of A[r(PE), PE]. (The instantia-
tions of these parameters are also summarized in Ta-
ble 1.) For pedagogical reasons, each subsection begins
with a quick simplistic description of the application, and
then provides notes that describe how to build a more
comprehensive system.

4.1 TImproving Efficiency

Many derivation processes can be viewed as a satisfic-
ing search [SK75] through a given graph structure. As
an example, notice that using the information shown in
Figure 2 to find an answer to the hep(x) query, for some
ground individual &, corresponds naturally to a search



Rule Set

Ry: hep(X) :- jaun(X).
Ry hep(X) :- badB(X).
R3: badB(X) :- bt#1(X).
R3: badB(X) :- bt#2(X).
ag: (Attempt: jaun(x))
Fact Set

jaun(b2), jaun(b3), jaun(bs), ...
bt#1(b1), bt#1(b3), bt#1(b5), ...
bt#2(b6), ...

aq: (rule Ry)

Ny: jaun(x)

ap: (Attempt: bt#l(K)L L

az: (rule Rg)

aq: (rule R3)

‘N4: bt#1(k) ‘

ag: (rule Rg)

‘N6: bt#2(k) ‘

a7: (Attempt: bt#2(x))

Figure 2: “Inference Graph” G4, used by ©y and ©,

through the G4 inference graph (formed from a given
set of rules) seeking a successful database retrieval.® A
strategy specifies the order in which to perform the var-
ious rule-based reductions (e.g., the a; arc reduces the
Np: hep(k) goal to the N1 : jaun(k) subgoal, based on
the rule R;) and the database retrievals (e.g., the ay arc
from Nj to N corresponds to the attempted database
retrieval jaun(x)). We can express each strategy as a
sequence of G 4’s arcs; e.g., the strategy

O = (a1, as, as, as, as, ag, a7)

corresponds to the obvious depth-first left-to-right
traversal, with the understanding that the performance
element using this strategy will stop whenever it reaches
a “success node” (e.g., if the ag retrieval succeeds, then
O reaches the success node N3 and so stops with suc-
cess), or has exhausted all of its reductions. (Fig-
ure 2 doubly-boxes G 4’s success nodes, Na, N5 and N7.)
There are many other possible strategies, including

61 — <a3a a4, A5, g, A7, A1, Cl2>,

as well as non—depth-first strategies, etc.

Each strategy will find an answer, if one exists. As this
is a satisficing search, all answers are equally acceptable
[SK75], which means that all strategies are equally accu-
rate. We can therefore consider the costs of the strate-
gies, preferring the one whose expected cost is minimal.

Letting f; € R be the positive cost of traversing the
a;, we can compute the ¢,(0, ¢q), the cost of using strat-
egy O to find an answer to the query q. For example,
¢s(Oo, hep(b2)) = fi+ f2, cs(Oo, hep(bl)) = fi+
fot+fas+fat+fs, and c(O1, hep(bl)) = fa+fa+fs.
(These different strategies have different costs for a given
query as each stops as soon as it finds an answer.) The
expected cost, of course, depends on the distribution of
queries; 1.e., on how often the query will be hep(b1),
versus hep(b2), etc. Moreover, the task of finding the
globally optimal strategy is NP-hard [Gre91].

“Here, hep(y) means y has hepatitis, jaun(y) means y is
jaundiced, and badB(y) means y has “bad blood”, bt#i(y)
means Y tests positive for blood test #i.

This looks like a job for PALO.5 We first define the set
of reordering transformations 779 = {Ta1,a2}, Where
each 7,1 42 maps one strategy to another by moving the
subgraph under the al arc to before a2 and its sub-
graph. For example, 7,4, 4,(©0) = O1, and 74, 4,(00) =
(a1, as, a3,, a4,as). PALO also needs to compute
A[7(©4), ©,]; these values are bounded by ¢(G) = >, fi,
the sum of the costs of all of the arcs in the inference
graph G see Note 2 below.

N-Eff1. This class of performance elements corresponds
to many standard problem solvers, including PrROLOG
[CM81]; see also [GN87]. We can also use these in-
ference graphs to describe operators working in state
spaces; here each internal arc of the inference graph
corresponds to an operator invocation and each leaf
arc to a general “probabilistic experiment”. Using G 4,
for example, az could encode the “take some blood”
operator, and as, the experiment that succeeds if the
patient tests positive on bt#1, etc.

N-Eff2. The companion paper [GJ92] provides more
formal descriptions of inference graphs and strate-
gies. That article also presents an efficient ana-
lytic way of computing upper and lower bounds of
AlTa1,02(0;5), ©;, S] (which can be used in Equa-
tion 2 and 3, respectively), based only on running
©;; this provides a way of obtaining good estimates
of Al7a1,42(0;), ©;, S| without first constructing and
then executing each 741 42(0©;) over all S = {¢;}
queries. It also presents empirical evidence that a sys-
tem that uses those estimates can still work effectively.

That paper also discusses how this instantiation
of the pALO algorithm fits into the framework of
“explanation-based learning” systems, and in partic-
ular, argues that it provides a mathematical basis for
[Min88]’s “utility analysis”.

50f course, all of the signs in Figure 1 should be flipped,
as we are here measuring cost rather than utility, and so
prefer the element with minimal, rather than maximal, cost.
Note also that we are viewing each strategy as a performance
element.



4.2 Improving Accuracy

A nonmonotonic system can be ambiguous, in that it
can produce many individually plausible but collectively
incompatible solutions to certain queries [Rei87]. Un-
fortunately, only (at most) one of these solutions is cor-
rect; the challenge then is to determine which one. This
is the essence of the “multiple extension problem” in
knowledge representation [Rei87, HM86, Mor87], and
corresponds to the “bias problem” in machine learning
[Mit80, Utg84, RG87, Hau88]. This subsection addresses
this problem by seeking a credulous system, related to
the given initial nonmonotonic system, that is “optimally
correct”; i.e., which produces the correct answer most of-
ten.

In more detail, we assume there is a correct answer to
each query ¢, denoted O[q]; hence O[2+ 2 = ?x] =
Yes[?x ~ 4]. Each correct answer is either “Yes” (pos-
sibly with a binding list, as shown here) or “No”. Using
PE(q) to represent the answer returned by the credu-
lous performance element PE, we can define the utility

function
def +1 if PE(q) = O[q]
co(PE, q) = 0 if PE(¢q) = IDK (4)

-1 otherwise

where IDK represents “I don’t know”.

We focus on stratified THEORIST-style performance el-
ements [PGA86] [Prz87, Bre89, vA90], where each el-
ement PE = (F, M, ©) corresponds to a set of fac-
tual information F, a set of allowed hypotheses H (each
a simple type of default [Rei87]) and a specific order-
ing of the hypotheses. As a specific example, consider

PE4 = (Fo, Ho, YTa), where”

Vz. E(z) & Np(z) = S(z, G)

Va. A(z) & Na(z) = S(z, W) (5)
Ve, =S(z, G) V =S(z, W)

A(Z), E(@D),

Fo =

is the fact set;
_ hi: Ng(z)
Ho = { hy: Na(z)

is the hypothesis set, and T4 = (hy, ha) is the hypothesis
ordering.

To explain how PE4 would process a query, imagine
we want to know the color of Zelda — i.e., we want to
find a binding for ?c such that ¢ = “S(Z, ?c)” holds.
PE 4 would first try to prove o from the factual infor-
mation Fy alone. This would fail, as we do not know
if Zelda is a normal elephant or if she is a normal al-
bino (i.e., whether Ng(Z) or N4(Z) holds, respectively).
PE 4 then considers using some hypothesis — i.e., it may
assert an instantiation of some element of Hy if that
proposition is both consistent with the known facts Fy
and if it allows us to reach a conclusion to the query

"Here Z refers to Zelda, A(x) means y is an albino, E(y)
means Y is an elephant, and S(y, ¢) means x’s color is ¢.
The first three clauses in Equation 5 state that normal ele-
phants are gray, normal albinos are white, and (in effect) that
S is a function.

posed. Here, PE4 could consider asserting either Ng(Z)
(meaning that Zelda is a “normal” elephant and hence is
colored Gray) or N4(Z) (meaning that Zelda is a “nor-
mal” albino and hence is colored White). Notice that
either of these options, individually, is consistent with
everything we know, as encoded by Fy. Unfortunately,
we cannot assume both options, as the resulting theory
FoU{Ng(Z), Na(Z)} is inconsistent.

We must, therefore, decide amongst these options.
PE4’s hypothesis ordering T4 specifies the priority
of the hypotheses. Here T4 = (h1, hy) means that
hy : Ng(z) takes priority over hy : N4(z), which
means that PE4 will return the conclusion associated
with Ng(Z) — i.e., Gray, encoded by Yes[?¢c — (], as
FoU{Ng(Z)} Es(z, 6)8

Now consider the PEg = (Fy, Ho, TB) element, which
differs from PE4 only in terms of its ordering: As PEp’s
YTp = (ha, h1) considers the hypotheses in the oppo-
site order, it will return the answer Yes[?c — W] to this
query; Le., it would claim that Zelda is white.

Which of these two elements is better? If we are only
concerned with this single Zelda query, then the better
(read “more accurate”) PE; is the one with the larger
value for ¢,(PE;, s(Z, 7¢)); ie., the PE; for which
PE;(s(Z, ?7¢)) = O[s(Z, ?¢)]. In general, however,
we will have to consider a less trivial distribution of
queries. To illustrate this, imagine Equation 5’s “...
corresponds  to {A(Z1), E(Z1),...,4(Z100), E(Z100) },
stating that each Z; is an albino elephant; and that the
queries are of the form “S(Z;, ?c¢)”, for various Z;s.

The best PE; now depends on the distribution
of queries (i.e., how often each “S(Z;, ?¢)” query
is posed) and also on the correct answers (i.e., for
which Z;s O[S(Z;, ?¢c)] = Yes[?c+— W] as opposed to
0O[s(Z;, ?c)] = Yes[?c— G], or some other answer).
That is, it depends on the expected accuracy of each sys-
tem C,[ PE;], which is defined by plugging Equation 4’s
¢q(+, -) function into Equation 1. We would then select
the PE; system with the larger C,[-] value.

In general, PE = (F,H, T) can include a much larger
set of hypotheses H = {h1, ... h,}. As before, each
ordering T = (hr(1), ... hr(n)) 15 a sequence of H’s
elements. PE’s uses this information when answering
queries: Let ¢ be the smallest index such that F U {h;}
is consistent and F U {h;} = ¢/A; for some answer A;;
here PE returns this A;. If there are no such i’s, then
PE returns IDK.

Our goal is identifying the ordering that is accurate
most often. Unfortunately, the task of identifying this
optimal ordering of the hypotheses is NP-complete even
for the simplistic situation we have been considering
(where every derivation involves exactly one hypothesis,
etc.); see [Gre92].

Once again, PALO is designed to deal with this
situation. ~ We first define the set of transforma-
tions T4 = {7ij }i,j, where each 7;; moves the gth
term in the ordering to just before the i** term
— e, given any ordering T = (hy,ha, ..., hy),

8 This uses the instantiation S(Z, G) =
S(Z, ?c)/Yes[?c +— G]. We will also view “g/No” as “—q¢”.
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Figure 3: Flow Diagram of PE(S, W) addressing |: o

TZ']'(T) = (hl, . -~,hi—1,ﬂ, hi, ...,hj_l, hj+1, . ,hn>
We can compute the value of A[7;;(Yy), Ti, S] for each

7;; transformation and each set of queries S based on
?

whether F U {h,} = ¢/O[q] for each hypothesis h,.
(Hence, each step of the overall PALO computation is
efficient if this test is polynomial time, e.g., if we are
dealing with propositional Horn theories, etc.) Observe

finally that A[PE,, PEg] < 2 for all PE,, PEs.

N-Accl. In many situations, we may want to consider
each hypothesis to be the conjunction of a set of sub-
hypotheses, which must all collectively be asserted to
reach a conclusion. Here, we can view H = P[H] as
the power set of some set of “sub-hypotheses”, H.

N-Acc2. Our descriptions have assumed that every or-
dering of hypotheses is meaningful. In some contexts,
there may already be a meaningful partial ordering of
the hypotheses, perhaps based on specificity or some
other criteria [Gro91]. Here, we can still use PALO to
complete the partial ordering, by determining the rel-
ative priorities of the initially incomparable elements.

N-Acc3. The motivation underlying this work is similar
to the research of [Sha89] and others, who also use
probabilistic information to order the various default
rules. Our work differs by providing a way of obtaining
the relevant statistics, rather than assume that they
are known a priori.

4.3 Improving Categoricity

The task of determining whether a query is entailed by a
theory is known to be intractable if the theory is a gen-
eral propositional theory. It can, however, be performed
efficiently if the theory contains only Horn clauses. Sel-
man and Kautz [SK91] use this observation to define
a particular “knowledge compilation” method: Given a
general propositional theory X their compiler computes
a pair of “bracketing” Horn theories S and W, with the
property S = X | W.° The resulting “compiled sys-
tem” PE = PE(S,W) uses these bracketing theories

?We call each such S a “Strengthening” of the initial the-
ory, and each such W an “Weakening”. This subsection deal
with clausal theories; each such theory is a set (conjunction)
of clauses, where each clause is a set (disjunction) of atomic
literals, each either positive or negative. A theory is Horn if

to determine whether a query o follows from 3, as shown
in Figure 3: If W |E o, PE terminates with “yes”; oth-
erwise, if S [£ o, then PE terminates with “no”. (Notice
that these are the correct answers, in that W = ¢ guar-
antees that ¥ = o, and S [£ o guarantees that ¥ [~ o.
Moreover, these tests are linear in the sizes of o and S
(respectively, o and W) [DG84].) Otherwise, if W £ o
and S |= o, PE returns IDK. Notice this compiled sys-
tem is usually tractable,!® yet can deal with an arbitrary
propositional theory. It may, however, no longer be com-
pletely categoric; hence, we have (potentially) sacrificed
complete accuracy for tractability [SK91].

We of course would like to find an approximation
(S, W) that minimizes the probability that the associ-
ated PE(S, W) system will return IDK. To state this
more precisely: Given any approximation (S, W) and

query o, let c.((S, W), o) L d(W, o) + (1 —d(S, 7))

where
d(s, o) def {1 if SEo

0 otherwise .

Hence, ¢.((S, W), o) = 1 if ¢ is “covered” by (S, W),
in that either W | o or S £ o. Using Equation 1,
we can then define C;[(S, W)] to be the expected value
of e.({S, W), -). Our goal is to determine the approxi-
mation (S, W) with the largest C.[-] value. As before,
this task is NP-hard (see [Gre92]) and depends on the
distribution, suggesting yet again that we use the PALO
system.

Observe that the set of queries covered by a strength-
ening and a weakening are disjoint — i.e., for any ap-
proximation (S, W}, there is no query o such that both
W |E o and S £ 0. This means an approximation
(Si, Wj) is, with probability at least 1 — 6, within € of a
local optimum if S; (resp., W;) is within €/2 of a locally
optimal strengthening (resp., weakening) with probabil-
ity at least 1 — 6/2. We can therefore decouple the task
of finding a good strengthening from that of finding a
good weakening, and handle each separately. This pa-
per discusses only how to finding a good strengthening;
[Gre92] merges this with the algorithm that computes a
good weakening.

We are seeking a strengthening Sop: whose D[ Sopt ]
value is minimal, where D[Sop¢] = E[d(S, )] is the
expected value of d(S, -). (Recall we want Sop = o to
fail for as many queries as possible.) It is easy to see
that this S,,; should be a weakest strengthening; i.e.,
satisfy OptS(X, Sopt) where

OptS(%,S) <= S EX & Horn(S) &
[3T. [SETEX & Horn(S) & S #£1T]

To compute these OptSs: Define a “horn-strengthening”
of the clause v = {ay,...,ar, —b1,...,—be} to be any
maximal clause that is a subset of 4 and is Horn —
i.e., each horn-strengthening is formed by simply dis-
carding all but one of 7’s positive literals. Here, there
are k horn-strengthenings of v, each of the form 7; =

{aja _'bla . 'a_'bﬁ}'

each clause includes at most one positive literal.
19Note 2 below explains this caveat.



Efficiency

Accuracy Categoricity

Performance Elements P&

C(" )
Tranformations 7

A[+(PE), PE]

Utility function computation time

reorder arcs

Range < ¢(G)

satisficing strategies

hypothesis orderings
PE(¢) = O[¢]

reorder priority
<2 <1

Horn-strengthenings
?
SkEq

change 1 clause

Table 1: Summary of Applications

Now write X = Yy U X, where X is the subset
of ¥ that are Horn and Yy = {y*}7, is its non-Horn
subset. [SK91] proves that each optimal strengthening
is of the form S, = Xy U XY, where each 4" € XY is a
horn-strengthening of some v € Xy. By identifying each
Horn-strengthened theory with the “index” of the posi-
tive literal used (i.e., '/j = {aj», b, ﬁbé(i)}), we can
consider any Horn-strengthened theory to be a set of the
form Sg;(1),j(2),....i(m) = Xz U {7;(1),7]2(2), Y my )

We can navigate about this space of Horn-
strengthened theories by incrementing or decrement-
ing the index of a specific non-Horn clause: That
is, define the set of 2m transformations 7P =
{r}, 77}, where each 7 (resp., 7,) is a func-
tion that maps one strengthening to another, by in-
crementing (resp., decrementing) the “index” of k"

clause — e.g., T:(S(:«;’gp“’ik’,,,j)) = 5(3,9,..ix+1,...5)
and Ti_(S(3797"'7ik7"'75)) = S<3797“‘7ik_17“‘75)' (Of course,
the addition and subtraction operations wrap around.)

This instantiation of the PALO process starts with any
given Horn-strengthened theory (perhaps S 1. 1))
and hill-climbs in the space of Horn-strengthened the-
ories, using this set of 7P transformations. As
A[E(Si), S, o] depends only on whether 75(S;) = o
and S; | o, it can be answered efficiently, as S; and all
7E(S;) are Horn. (In fact, this process can also use the
support of o from S; to further improve its efficiency.)
Notice finally that A[T,;t(SZ-), S;] € 1 for all strengthen-

ings S; and all T];t eTIP.

N-Catl. The PE(S;, W;) systems discussed here each
return IDK if W [£ o and S | 0. [Gre92] proposes
several other options for this situation — e.g., perhaps
the PE should “guess” at an answer here, or perhaps

?

spend as long as necessary to compute whether & |: o,
etc. — and discusses their relative advantages.

N-Cat2. [Gre92] also presents an algorithm that finds
a good weakening. For subtle reasons, that process is
slightly different from PALO, and computes a W, that
is close to the global optimal, with high probability.

(Unfortunately, the size of the optimal weakening
can be exponential in the size of the initial theory,
meaning the linear bounds mentioned above are not
meaningful. [Gre92] considers ways of finding weak-
enings that are good with respect to a utility metric
that combines both categoricity and efficiency [GE91],
to produce a polynomially-sized weakening.)

5 Conclusion

This paper first poses two of the problems that can
arise in learning systems that seek a performance ele-
ment whose expected utility is optimal [Hau90, Vap82]:
viz., that the distribution information (which is required
to determine which element is optimal) is usually un-
known, and that finding a globally optimal performance
element can be intractable. It then presents the PALO
algorithm that side-steps these shortcomings by using
statistical techniques to approximate the distribution,
and by hill-climbing to produce a near locally optimal
element. After defining this algorithm and specifying
its behaviour, we demonstrate its generality by showing
how it can be used to find a near-optimal element in
three very different settings, based on different spaces of
performance elements and different criteria for optimal-
ity: efficiency, accuracy and categoricity. (See Table 1.)
These results suggest approaches to solving the utility
problem from explanation-based learning, the multiple
extension problem from nonmonotonic reasoning and the
tractability /completeness tradeoff problem from knowl-
edge representation.
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