
Performance of Lookahead Control Policies in
the Face of Abstractions and Approximations

Ilya Levner, Vadim Bulitko, Omid Madani, and Russell Greiner

University of Alberta, Edmonton AB, Canada T6G 2E8,
{ilya|bulitko|madani|greiner}@cs.ualberta.ca

Abstract. This paper explores the formulation of image interpreta-
tion as a Markov Decision Process (MDP) problem, highlighting the
important assumptions in the MDP formulation. Furthermore state ab-
straction, value function and action approximations as well as lookahead
search are presented as necessary solution methodologies. We view the
task of image interpretation as a dynamic control problem where the op-
timal vision operator is selected responsively based on the problem solv-
ing state at hand. The control policy, therefore, maps problem-solving
states to operators in an attempt to minimize the total problem-solving
time while reliably interpreting the image. Real world domains, like that
of image interpretation, usually have incredibly large state spaces which
require methods of abstraction in order to be manageable by today’s
information processing systems. In addition an optimal value function
(V ∗) used to evaluate state quality is also generally unavailable requir-
ing approximations to be used in conjunction with state abstraction.
Therefore, the performance of the system is directly related to the types
of abstractions and approximations present.

1 Introduction

Image interpretation is a complex and adaptive task. It is complex in that there
is rarely a one-step mapping from image data to scene interpretation; instead, a
series of transformations is required to bridge the gap between sensory input and
scene description. Examples of these transformations include region segmenta-
tion and labelling, texture filtering, and the construction of 3D depth maps, each
having a multitude of parameter settings. The task is adaptive in the sense that
there is no fixed sequence of actions that will recognize all objects in all settings.
For example, the steps required to locate and identify trees in winter are different
from the steps required to find trees in summer. In general, the most effective
action sequence may depend on many features of a specific image, including
lighting conditions, point of view, and the type, shape, and relative position
of objects present. We therefore view this task as a dynamic control problem
where the optimal vision operator is selected based on the problem solving state
at hand. Thus the control policy maps problem-solving states to operators in an
attempt to minimize the total problem-solving time while reliably interpreting
the image.

S. Koenig and R. Holte (Eds.): SARA 2002, LNAI 2371, pp. 299–307, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

300 I. Levner et al.

This study is motivated by the Forest Inventory Mapping System (FIMS)
[Bulitko et al. 2000] currently under development. Having detailed inventories
of forest resources is of tremendous importance to forest industries, govern-
ments, and researchers. Such a system would aid planning wood logging (plant-
ing and cutting), surveying against illegal activities, and ecosystem and wild-
life research. Given the dynamic nature of forest evolution, the task of forest
mapping is a continuous undertaking, with the objective of re-mapping the esti-
mated 344 million hectares of Canadian forests on a 10-20 year cycle. Remote-
sensing based approaches appear to be the only feasible solution to inventorizing
the estimated 1011 trees. Despite numerous previous attempts [Gougeon 1993,
Larsen, Rudemo 1997,Pollock 1994], no robust forest mapping system exists to
date.

Recent research [Draper et al. 2000] has shown that adaptive control poli-
cies computed by assuming an underlying Markov decision process (MDP) can
outperform hand coded control mechanisms on real-world computer vision tasks.
The MDP framework allows for many potential benefits in addressing the control
problems in image interpretation effectively, as this framework permits general
control models and has a number of successful solution methodologies. In this pa-
per, we present the FIMS system (section 2), which treats object recognition as
a Markov decision process (MDP) control task. Furthermore, we introduce state
abstraction and action approximation and demonstrate their benefits and short-
comings. Section 3 presents the test bed domain used in our experiments. Finally
a lookahead control policy is described and analyzed that operates within the
abstracted MDP space to enable efficient application of vision operators within
the FIMS domain (section 4).

2 Image Interpretation in the FIMS Domain
In the complete FIMS system, image interpretation is composed of several layers
of operators (Figure 1). [Bulitko et al. 2000] explains the benefits of a multi-
layer processing approach in meeting the challenges of the forestry domain. At
each stage or layer, there are two or more competing operators: several feature
extractors, segmenters, labellers, canopy groupers, reconstructors, and renderers.
The final labelling contains information such as the location, type, size, age, and
other attributes for each tree identified within the image. The system is then
able to perform 3D-reconstruction and rendering, enabling FIMS to compute
the similarity between the initial image and the rendered image. This allows the
intermediate layers as well as the final scene interpretation to be evaluated on
their accuracy of interpretation. In each step the control policy (agent) chooses
among applicable operators by selectively envisioning their effects several plies
ahead. It then evaluates the states forecasted using its heuristic value function,
Ṽ ∗ and selects the operator leading to the most promising state

In the FIMS system, a sequence of operators is required in order to produce
a 3D interpretation from raw images, and they have to be selected dynamically
based on the state observed. By viewing the operators as actions and their re-
spective data inputs and outputs as states we can formulate the task of image

Performance of Lookahead Control Policies 301

Fig. 1. The layers (phases) of image interpretation in FIMS.

interpretation as a Markov Decision Process [Sutton, Barto 2000]. Therefore,
FIMS can be viewed as an extension of the classical MDP framework along
the following directions: (i) feature functions for state space reduction, (ii) ap-
proximation of value function (Ṽ ∗) and domain model (δ̃) via machine learning
methods, and (iii) explicit accuracy/efficiency tradeoff for performance evalua-
tion.

2.1 Indeterminate Goal States

In FIMS, the goal state contains a geo-referenced 3D forest map with the min-
imum possible amount of error. Unfortunately, such a state is impossible to
recognize since the sought forest maps are typically unknown. The lack of recog-
nizable goal states means that we cannot use standard goal-searching algorithms
such as A*, IDA*, RBFS, etc. [Korf 1990]. As mentioned previously, the renderer
enables the 3D scene description to be transformed back into pixel level data
thereby allowing for comparison between the input and final output. Currently
this is the only way to determine how close the derived image interpretation
matches the underlying pixel data.

302 I. Levner et al.

2.2 Partial State Observability

Raw states are often enormous in size – FIMS requires on the order of 107 bytes
to describe a single problem-solving state and furthermore the state space is
composed of billions of these megabyte sized states. Thus, the raw state space
is infeasible to handle. A common remedy is to employ a state abstraction func-
tion F that maps large raw states to smaller abstracted states specified via
extracted feature values. ADORE [Draper et al. 2000] uses feature functions to
reduce multi-megabyte raw images to a handful of real-valued parameters such
as the average image brightness or edge curvature. As a result, the control policy
operates over the abstracted state space usually recasting the entire problem as a
Partially Observable Markov Decision Process (POMDP) [Sutton, Barto 2000].

2.3 Value Function Inaccuracies

In order to help select an operator to apply we use a value function that maps
each problem-solving state to a numeric score, thereby setting a preference re-
lation over the set of reachable states. It is typically defined as the reward the
system would get from that state on by acting optimally. If the control pol-
icy had access to the actual optimal value function V ∗, [Sutton, Barto 2000] it
would be able to act optimally in a simple greedy fashion, i.e. take actions leading
to states (s) with the highest expected V ∗(s) score. Unfortunately, as the true
value function is usually unavailable, we use an approximation Ṽ ∗ (denoted with
a tilde). Various inaccuracies in the approximate V ∗ often lead to sub-optimal
action choices and force back-tracking, as noted in [Draper et al. 2000].

Two main sources of inaccuracies are present in the Ṽ ∗. The first source is
state abstraction via the use of feature extraction function F(s), which can map
several distinct states to one abstracted state or tile. Formally, there may be
distinct states si, sj within our state space S, such that si, sj ∈ S & si �= sj

& F(si) = F(sj). Therefore, Ṽ ∗(F(si)) = Ṽ ∗(F(sj)). The second source of
errors is noise due to machine learning. Since the optimal value function is being
approximated via machine learning techniques, errors are inevitable. Even if the
feature function did not combine two distinct raw states into one abstracted
state, due to machine learning the two distinct abstracted states may still be
mapped to the same value, ie Ṽ ∗(F(si)) = Ṽ ∗(F(sj)), while F(si) �= F(sj).

To offset the value function inaccuracies we employ a lookahead con-
trol policy, to envision future states. The motivation for using search is de-
rived from the domain of games such as chess [Hsu et al. 1995] and checkers
[Schaeffer et al. 1992] where search is the method of choice in overcoming in-
accuracies present in the state valuation function. Unlike the games domain,
where one would like to search as deep as possible, the FIMS domain has further
inaccuracies (described next) prohibiting the use of deep lookahead.

2.4 Inaccurate Domain Models

Individual computer vision operators can take hours to compute on large im-
ages. Combined with the exponential number of operator applications needed

Performance of Lookahead Control Policies 303

for the lookahead long running times make the actual operators unusable for
envisionment. Thus, approximate versions of such operators comprising the do-
main model δ̃ are employed within the lookahead. Consequently, such simplified
models are inaccurate and, therefore, unable to foresee future states precisely.
Sequential noisy predictions introduce compounded errors into envisioned states
and thus into Ṽ ∗ values which offset the benefits of deep lookahead searches.

2.5 Solution Strategy

FIMS clearly exemplifies the typical problems commonly encountered in real
world domains. The need for state abstraction to reduce the state space, the ex-
istence of value functions inaccuracies, and errors in the state transition function
prevent the applicability of classical MDP and search methodologies. However, a
fine tuned combination of feature functions, state evaluation functions, domain
model approximations combined with dynamic lookahead depth selection may
in fact produce near optimal results. Naturally these problems motivate an in-
vestigation into the conditions under which the use of a lookahead control policy
is most applicable.

3 Experimental Domain

Many Reinforcement Learning projects have used the grid world domain as a
test bed [Sutton, Barto 2000]. In the following we refine the classical definition
by introducing state abstraction in a particular fashion compatible with the
real-world FIMS domain. This compatibility enables further scalability studies
via a transition from the grid world to the actual FIMS system. The refined
grid world is referred to as the Maze Domain. The maze is represented by an
N × N two-dimensional matrix M with each cell being in two possible states:
empty M(x, y) = 0 or wall M(x, y) = 1. There is a single agent in the maze that
can occupy any of the empty cells. Additionally, one of the empty cells (xg, yg)
contains a goal. The maze is surrounded by a solid wall preventing the agent
from wandering off the map. An agent’s raw state is a pair of coordinates (x, y)
with 0 � x, y � N − 1. Formally: S = {0 . . . N − 1} × {0 . . . N − 1}.

The set A of agent’s actions is comprised of λ equally spaced directions and
a special action ’quit’. Each of the λ move actions transports the agent along a
ray shot from the agent’s current location at the angle of 360·a

λ degrees where
0 ≤ a < λ. The Euclidean distance travelled is upper-bounded by τ and walls
encountered (Figure 2). We represent this with a deterministic state transition
function δd(s, a) = s′.

The MDP immediate reward function is defined as:

r(s, a, s′) =

{
R(s′), if a = ’quit’,
−‖s, s′‖, otherwise.

(1)

Here the cost ‖s, s′‖ =
√

(xs − xs′)2 + (ys − ys′)2 of action a is defined as the
Euclidian distance between the new and the old cells. The terminal reward R(s)

304 I. Levner et al.

Fig. 2. Agent’s actions in the maze domain (λ = 24, τ = 2). Cells occupied by walls are
inaccessible (shown in grey).

of quitting in state s is defined as: R(s) = Θ −Esp(s, sg) ,where Θ is a constant,
and Esp(s, sg) is the sum of Euclidean distances of steps in the shortest path
from state s to sg. A game terminates whenever the agent executes the ’quit’
action or the move quota is exhausted.

3.1 State Abstraction

Within the maze domain, the state abstraction is simulated via fixed tiling.
Specifically, if the raw state is s = (x, y) the abstracted state is given as:

Fk(x, y) =
(⌊x

k

⌋
· k,

⌊y

k

⌋
· k

)
(2)

where the floor function �
 returns the integer part of its argument. Parameter
k = 1, 2, . . . , N is the degree of abstraction. Effectively, the entire maze is divided
into non-overlapping rectangular k × k tiles.

The underlying motivation of this particular abstraction scheme is compati-
bility with state abstraction in FIMS. Namely, in a computer vision system like
FIMS and ADORE, most operators add an information datum of a different cat-
egory to the problem-solving state (e.g., add extracted edges to an image). The
state abstraction features used for various types of data vary considerably (e.g.,
average brightness for images and mean curvature for extracted edges) making
it unlikely that an operator application leaves the agent in the same abstraction
tile. On the other hand, several similar operators can move the agent to a single
tile (different from the current one). Furthermore, some computer vision oper-
ators are not applicable in certain problem-solving states which is modelled by
certain angles being blocked off by the maze walls.

4 Lookahead Control Policy

If state aggregation has the property that a longer sequence of actions is more
likely to lead outside an abstracted state, then deeper lookahead plays an im-
portant beneficial role. By considering only one action or a short sequence of
actions the agent can observe that all reachable states have the same values.
Thus in such a case deeper lookahead increases the probability of the agent
”seeing” outside the current state abstraction tile and seems to be quite benefi-
cial. Therefore, lookahead can provide the agent with a more accurate guidance

Performance of Lookahead Control Policies 305

Fig. 3. (a) A maze domain partitioned into four state abstraction tiles (dashed lines).
The agent’s starting position is the mesh filled cell and the goal position is marked
with a ”G”. Walls are shown as grayed out, solid cells. For this example there are 4
actions (north, east, south, west) available to the agent (i.e. λ = 4). (b) Final position
of the agent using lookahead with depth of p = 1. (c)Final position of the agent using
lookahead with a depth of p = 3.

function. Is deeper lookahead always beneficial? Figure 3, illustrates an example
of adverse effects of a deeper lookahead in a simple maze domain. There are
5 deterministic actions: up, down, left, right, and ’quit’ available to the agent.
The agent has perfect knowledge of its position within the maze but the value
function is the same for all states in each abstracted state (or tile). Assume that
the agent starts in the mesh filled square of Figure 3a. A greedy policy considers
only a lookahead of 1 ply deep. Choosing an action under such policy leads the
agent to the state denoted by the mesh filled square in Figure 3b (which is a local
maximum provided depth 1 lookahead). But if the agent considers sequences of
3 actions (a lookahead of 3 plies deep) it ends up in the state denoted by a mesh
filled square of Figure 3c. This cell is a much worse state than the terminal state
in Figure3b. Thus deeper lookahead results in a policy leading the agent away
from the goal rather than bringing it closer. This example illustrates adverse
impact of abstracting together states with very different V ∗ values. In general,
however, we found that deeper lookahead does help. The results consistently
demonstrated that deeper lookahead in the face of state abstraction is beneficial
with the aforementioned exceptions being rare. Figure 4 demonstrates the agents
average performance within a larger (48 × 48) maze domain with λ = 8 and a
distanse of each action τ = 2

√
2. Clearly lookahead plays a beneficial role in this

case by helping the agent ’see’ beyond the abstraction tile it currently occupies.
In contrast to the above results, we found cases where lookahead did neither

improve nor degrade the agents performance within the maze domain. Figure 5
shows the performance results of an agent using a machine learned Ṽ ∗ function.
Unlike errors due to state abstraction, errors induced by machine learning do
not appear to be diminished by deeper lookahead search.

306 I. Levner et al.

Fig. 4. Reward (score) vs. Ply Depth for experiments with various state abstraction
tile sizes (k). Clearly lookahead improves the agent’s performance, with optimal ply
depth (resulting in maximal reward) proportionally rising with the increase in state
abstraction, k.

Fig. 5. Reward (score) vs. Lookahead Ply Depth for experiments using machine
learned Ṽ ∗ function. η is the measure of error present within the Ṽ ∗ with respect
to V ∗. It is clear there are cases of Ṽ ∗ where lookahead does neither help or hinder the
performance of an agent.

5 Summary and Future Work

This preliminary study focused on identifying the benefits of lookahead control
policies within MDP/POMDP environments. Clearly, even for the trivial cases
presented, lookahead can have significantly different effects on the agent’s per-
formance with respect to the rewards gained. Such contrasting results motivate
further studies to establish concrete rules for when the benefits of lookahead
outweigh the computational costs of doing so. Furthermore as seen in exper-
iments presented even without the erroneous state transition (domain) model
the benefits of lookahead drop off at specific ply depths depending on the types
of inaccuracies present. It is therefore beneficial to establish a concrete test-
ing procedure for determining optimal ply depth within the lookahead control
policies.

Performance of Lookahead Control Policies 307

Acknowledgements. We would like to thank Natural Sciences and Engineering
Research Council (NSERC) for their sponsorship of this project.

References

[Bulitko et al. 2000] Bulitko, V., Caelli, T., McNabb, D. 2000. Forestry Informa-
tion Management System (FIMS): An Introduction. Techni-
cal Report. University of Alberta.

[Draper et al. 2000] Draper, B., Bins, J., Baek, K. 2000. ADORE: Adaptive Ob-
ject Recognition, Videre, 1(4):86–99.

[Good 1971] Good, I.J. 1971. Twenty-seven Principles of Rationality. In
Foundations of Statistical Inference, Godambe V.P., Sprott,
D.A. (editors), Holt, Rinehart and Winston, Toronton.

[Gougeon 1993] Gougeon, F.A. 1993. Individual Tree Identification from
High Resolution MEIS Images, In Proceedings of the In-
ternational Forum on Airborne Multispectral Scanning for
Forestry and Mapping, Leckie, D.G., and Gillis, M.D. (edi-
tors), pp. 117-128.

[Hsu et al. 1995] Hsu, F.H., Campbell, M.S., Hoane, A.J.J. 1995. Deep Blue
System Overview. Proceedings of the 9th ACM Int. Conf. on
Supercomputing, pp. 240-244.

[Korf 1990] Korf, R.E. 1990. Real-time heuristic search. Artificial Intel-
ligence, Vol. 42, No. 2-3, pp. 189-211.

[Larsen, Rudemo 1997] Larsen, M. and Rudemo, M. 1997. Using ray-traced tem-
plates to find individual trees in aerial photos. In Proceed-
ings of the 10th Scandinavian Conference on Image Analysis,
volume 2, pages 1007-1014.

[Newborn 1997] Newborn, M. 1997. Kasparov vs. Deep Blue: Computer Chess
Comes Out of Age. Springer-Verlag.

[Pollock 1994] Pollock, R.J. 1994. A Model-based Approach to Automati-
cally Locating Tree Crowns in High Spatial Resolution Im-
ages. Image and Signal Processing for Remote Sensing. Jacky
Desachy, editor.

[Schaeffer et al. 1992] Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P.,
Szafron, D. 1992. A World Championship Caliber Check-
ers Program. Artificial Intelligence, Volume 53, Number 2-3,
pages 273-290.

[Sutton, Barto 2000] Sutton, R.S., Barto, A.G., 2000. Reinforcement Learning: An
Introduction. MIT Press.

	Introduction
	Image Interpretation in the FIMS Domain
	Indeterminate Goal States
	Partial State Observability
	Value Function Inaccuracies
	Inaccurate Domain Models
	Solution Strategy

	Experimental Domain
	State Abstraction

	Lookahead Control Policy
	Summary and Future Work

