To appear in the

Proceedings of the Twelfth International Conference on Machine Learning (MLC-95),

Lake Tahoe, July 1995.

The Challenge of Revising an Impure Theory

Russell Greiner
Siemens Corporate Research
755 College Road East
Princeton, NJ 08540-6632

Email: greiner@scr.siemens.com

Abstract

A pure rule-based program will return a set
of answers to each query; and will return
the same answer set even if its rules are
re-ordered. However, an impure program,
which includes the Prolog cut “!” and not(-)
operators, can return different answers if the
rules are re-ordered. There are also many
reasoning systems that return only the first
answer found for each query; these first an-
swers, too, depend on the rule order, even in
pure rule-based systems. A theory revision
algorithm, seeking a revised rule-base whose
erpected accuracy, over the distribution of
queries, is optimal, should therefore consider
modifying the order of the rules. This pa-
per first shows that a polynomial number
of training “labeled queries” (each a query
coupled with its correct answer) provides the
distribution information necessary to identify
the optimal ordering. It then proves, how-
ever, that the task of determining which or-
dering is optimal, once given this informa-
tion, is intractable even in trivial situations;
e.g., even if each query is an atomic literal,
we are seeking only a “perfect” theory, and
the rule base is propositional. We also prove
that this task is not even approximable: Un-
less P = N P, no polynomial time algorithm
can produce an ordering of an n-rule theory
whose accuracy is within n” of optimal, for
some v > 0. We also prove similar hardness,
and non-approximatability, results for the re-
lated tasks of determining, in these impure
contexts, (1) the optimal ordering of the an-
tecedents; (2) the optimal set of rules to add
or (3) to delete; and (4) the optimal priority
values for a set of defaults.

Phone: (609) 734-3627

1 Introduction

A knowledge-based system (e.g., an expert system,
logic program or production system) will return incor-
rect answers if its underlying knowledge base (a.k.a. its
“theory”) contains incorrect or mis-organized informa-
tion. A “theory revision” process attempts to convert
such faulty theories into more accurate ones — i.e.,
theories whose answers correspond more closely to the
real world. Many such processes work by hill-climbing
in the space of theories, using as operators simple
theory-to-theory transformations, such as adding or
deleting a rule, or adding or deleting an antecedent
within a rule. Another class of transformations re-
arrange the order of the rules, or of the antecedents.
These transformations will effectively modify the per-
formance of any knowledge-based system written in a
shell that uses operators corresponding to PROLOG’s
cut “!” or not(-), as well as any system that returns
only the first answer found; this class of shells includes
TesTBENCH! and other fault-hierarchy systems, and
prioritized default theories [Gro91], as well as Pro-
LoG [CM81].

The goal of a theory revision process is to improve the
accuracy of the reasoning system on its performance
task of answering queries. Section 2 first defines this
objective more precisely: as identifying the revision
(i.e., “sequence of transformations”) that produces a
theory whose expected accuracy, over a given distri-
bution of queries, is maximal. It also proves that a
polynomial number of training samples (each a spe-
cific query paired with its correct answer) is sufficient
to provide the information needed to identify a revision
whose accuracy is arbitrarily close to optimal, with ar-
bitrarily high probability. Section 3 then presents our
main results, showing first that this task is intractable?
even in trivial situations — e.g., even if each query is

!TESTBENCH is a trademark of Carnegie Group, Inc.

2Throughout, we will assume that P # NP [GJ79],
which implies that any NP-hard problem is intractable.
This also implies certain approximation claims, presented
below.

an atomic literal, we are only seeking a “perfect” or-
dering (which returns the correct answer to each given
query), and the knowledge base is propositional. It
also proves intractable the task of finding the smallest
number of “individual re-orderings” required required
to produce a perfect ordering. We then prove that this
task is also non-approximable; i.e., unless P = NP,
no poly-time algorithm can identify an ordering of
an n-rule theory whose accuracy is within n” of op-
timal, for some > 0. This section also proves similar
hardness, and non-approximatability, results for the
related tasks of determining the optimal ordering of
the rule antecedents, and the optimal set of rules to
add (resp., delete) in the impure case. Section 4 then
quickly overviews reasoning using a “prioritized de-
fault theory”, and proves that the above results hold,
mutatis mutandis, in this context as well. Section 5.1
presents several generalizations of our framework. The
appendix includes proof sketches of many of the theo-
rems; the complete set of proofs appear in the extended
paper [Gre95a].

We first close this introduction by describing some re-
lated research.

Related Research: This paper describes the com-
plexity of a particular form of theory revision. While
there are many implemented theory revision sys-
tems (including AUDREY [WP93], FonTE [MBS88],
ErTHER [OM94] and A [LDRGY4]), most deal (in
essence) with the “pure” Horn clause framework, seek-
ing all answers to each query; they therefore do not
consider the particular class of transformations de-
scribed in this paper. The companion paper [Gre95b]
analyses the classes of transformations used by those
other systems: adding or deleting either a rule or an
antecedent within a rule, in the standard pure context.
Among other results, it proves that the task of find-
ing the optimal set of new rules to add (resp., existing
rules to delete) is intractable, but can be approximated
to within a factor of 2, in this context.

Second, Bergadeno et al. [BGT93] note that learning
tmpure logic programs, which include the cut opera-
tor, is more difficult than learning pure programs; our
paper gives additional teeth to this claim, by showing
a particular task (wiz., learning the best set of rules to
add or to delete) that can be trivially approximated
in the context of pure programs, but which is not ap-
proximatable for impure programs — see especially
Theorem 8.

Third, Valtorta [Val89, Val90, LV91] also considers
the computational complexity of modifying a theory.
Those papers, however, deal with a different type of
modifications: wiz., adjusting the numeric “weights”
within a given network (e.g., altering the certainty fac-
tors associated with the rules), but not changing the
structure by arranging rules or antecedents. Wilkins
and Ma [WM94] show the intractability of determin-

ing the best set of rules to delete in the context of
such weighted rules, where a conclusion is believed if
a specified function of the weights of the supporting
rules exceeds a threshold. Our results show that this
“optimal deletion” task is not just intractable, but is in
fact, non-approximatable, even in the (impure) propo-
sitional case, when all rules have unit weight and a
single successful rule is sufficient to establish a conclu-
sion.

Finally, this paper has some superficial similarities
with [Gre91], as both articles consider the complexity
of (in essence) ordering a set of rules. However, while
[Gre91] deals with the efficiency of finding any answer
to a given query, this paper deals with the accuracy of
the particular answer returned.

2 Framework

Section 2.1 first describes propositional PROLOG pro-
grams; Section 2.2 then extends this description to
predicate calculus. Section 2.3 discusses the sample
complexity of the theory revision process.

2.1 Propositional Horn Theories

We define a “theory” as a ordered list of Horn clauses
(a.k.a. “rules”), where each clause includes at most
one positive literal (the “head”) and an ordered list
of zero or more literal antecedents (the “body”). A
theory is considered “impure” if it includes any rule
whose antecedents use either the PROLOG cut “!” or
negation-as-failure “not (-)” operator. See [CM81] for
a description of how PROLOG answers queries in gen-
eral, and in particular, how it uses these operators.
The two most relevant points, here, are that Pro-
LOG processes the theory’s rules, and each rule’s an-
tecedents, in a particular order; and on reaching a cut
antecedent, within a rule of the form “o := 7, ...,
', ..., Tp.”, PrROLOG will not consider any of the
other rules whose heads unify with o.

As a trivial example, consider the theory

q - !, fail.
r :- not(q).

Given the query “q”, PROLOG first finds the rules
whose respective heads unify with this goal (which are
the first two), and processes them in the order shown
(top to bottom). On reaching the “!” antecedent in
the “q := ', fail.” rule, ProLOG will commit to
this rule, meaning it will now not consider the sub-
sequent atomic rule “q.”. PROLOG will then try to
prove the “fail” subgoal, which will fail as T; con-
tains no rules whose head unifies with this subgoal.
This causes the top-level “q” query to fail as well. Now
consider the “r” query, and notice that it will succeed

here as “q” had failed; in general, not(7) succeeds

whenever its argument 7 fails, and fails whenever 7
succeeds.

Now let T5 be the theory that differs from T only be
exchanging the order of the first two clauses; i.e.,

q.
Ty = q :- !, fail. . (2)
r :-not(q).
Here, the q query will succeed, and so the r query will
fail.

Borrowing from [Lev84, DP91], we also view a theory
T as a function that maps each query to its proposed
answer; hence, T: Q@ — A, where Q is a (possibly
infinite) set of queries, and A = { No, Yes } is the
set of possible answers. Hence, given the T; and T,
theories defined above, T1(q) = No, T(r) = Yes, and
Ta(q) = Yes, Ta(r) = No.

For now, we will assume that there is a single correct
answer to each question, and represent it using the
real-world oracle @: Q — A. Here, perhaps, O(q) =
No, meaning that “q” should not hold.

Our goal is to find a theory that is as close to O() as
possible. To quantify this, we first define the “accu-
racy function” a(-, -) where a(T, o) is the accuracy of
the answer that the theory T returns for the query o
(implicitly wrt the oracle O):

def { 1 if T(o)=0(0)

0 otherwise

Hence, as O(q) = No, a(T1, “q”) = 1 as T provides

the correct answer while a(T2, “q”) = 0 as Ty returns
the wrong answer.

This a(T, -) function measures T’s accuracy for a sin-
gle query. In general, our theories must deal with a
range of queries. We model this using a stationary
probability function Pr: @ — [0, 1], where Pr(o) is
the probability that the query o will be posed. Given
this distribution, we can compute the “expected accu-
racy” of a theory, T:

A(T) = E[a(T,0)] = > Pr(o) xa(T, o) .
oceQ

We will consider various sets of possible theories,
Y(T) = {T;}, where each such X(T) contains the set
of theories formed by applying various transformations
to a given theory T; for example, X9%(T) contains the
n! theories formed by rearranging the clauses in the n-
clause theory T = (p;)’;. Our task is to identify
the theory T,,; € X(T') whose expected accuracy is
maximal; i.e.,

VYT € 3(T): A(Tope) > A(T). (3)

There are two challenges to finding such optimal the-
ories. The first is based on the observation that the

expected accuracy of a theory depends on the distri-
bution of queries, which means different theories will
be optimal for different distributions. While this dis-
tribution is not known initially, it can be estimated by
observing a set of samples (each a query/answer pair),
drawn from that distribution. Section 2.3 below dis-
cusses the number of samples required to obtain the
information needed to identify a good T* € X(T), with
high probability.

We are then left with the challenge of computing
the best theory, once given this distributional esti-
mate. Section 3 addresses the computational com-
plexity of this process, showing that the task is not
just intractable,® but it is not even approximatable —
i.e.,no efficient algorithm can even find a theory whose
expected accuracy is even close (in a sense defined be-
low) to the optimal value.

2.2 Predicate Calculus

To handle predicate calculus expressions, we consider
answers of the form* Yes[{X;/v;}], where the expres-
sion within the brackets is a binding list of the free
variables, corresponding to the first answer found to
the query. For example, given the theory

T — tall(john). rich(fred). rich(john).
pe eligible(X) :- rich(X), tall(X).

(where the ordering is the obvious left-to-right, top-to-
bottom traversal of these clauses), the query tall(Y)
will return

T,.(tall(Y)) = Yes[{Y/john}] ;
the query rich(Z) will return the answer
Tpe(rich(Z)) = Yes[{ Z/fred }]

(recall the system returns only the first answer it

finds); and
T,.(eligible(4)) = { Yes[{A/john}] }
(here the system had to backtrack).

2.3 Sample Complexity

We use following standard Computational Learning
Theory theorem to bound the number of samples re-
quired to obtain the information needed to identify a
good T* € X(T) with high probability; showing in
particular how this depends on the space of theories
¥(T) being searched:

%As a('T', q) requires computing T'(g), which can require
proving an arbitrary theorem, this computation alone can
be computationally intractable, if not undecidable. Our
results show that the task of finding the optimal theory is
intractable even given a poly-time oracle for these arbitrary
derivations. Of course, as we are considering only Horn
theories, these computations are guaranteed to be poly-
time in the propositional case [BCH90].

*Following PROLOG’s conventions, we will capitalize
each variable, as in the “X;” above.

Theorem 1 (from [Vap82, Theorem 6.2])

Given a class of theories & = X(T) and constants
€6 > 0, let T, € X be the theory with the largest
empirical accuracy after

2 (X
Mupper(E,e,é) = [6_2 In <7)-‘

samples (each a labeled query), drawn from the station-
ary distribution. Then, with probability at least 1 — 6,
the expected accuracy of T, will be within € of the opti-
mal theory in X; i.e., using the Top; from Equation 3,
PrlA(Ty) > A(Tops) —€] >1-6.

This means a polynomial number of samples is suffi-
cient to identify an e-good theory from ¥ with prob-
ability at least 1 — §, whenever In(|X]) is polynomial
in the relevant parameters. Notice this is true for ¥ =
YOR(T): Using Stirling’s Formula, In(|Z%(T)|) =
O(nln(n)), which is polynomial in the size of the ini-
tial theory n = |T|. We will see that (a variant of)
this “In(|X]) = poly(|T|)” claim is true for every class

of theories ¥ considered in this paper.

3 Computational Complexity

Our basic challenge is to produce a theory T,,; whose
accuracy is as large as possible. As mentioned above,
the first step is to obtain enough labeled samples to
guarantee, with high probability, that the expected
accuracy of the theory whose empirical accuracy is
largest, T, will be within € of this T,,;’s. This section
discusses the computational challenge of determining
this T, given these samples. It considers four different
classes of theories:

o YOR(T) (resp., £O4(T), X42(T) and LPE(T))
is the set of theories formed by re-ordering the
clauses of a given initial theory T (resp., re-
ordering the antecedents of T’s clauses, adding
new clauses to T, and deleting existing clauses
from T).

Notice each ¥ € { RO 04 w3 AR y1DR 1 ig a func-
tion mapping a theory to a set of theories.

To state the task formally: For any theory—to—set-of-
theories mapping X,

Definition 1 (DP(X) Decision Problem)
INSTANCE:

— Initial theory T;

— Labeled training sample S = {{g;,0(¢))}
containing a set of queries and the correct an-
swers;, and

— Probability value p € [0, 1].

QUESTION: Is there a theory T’ € X(T) such that
AT = ﬁ Y otgnes T 6) > p?

(Notice we are simplifying our notation by writing
A(T") for the approximation to A(T’) based on the
training sample S.)

We will also consider the following special cases:

e DPp.,;(X) requires that p = 1;
i.e., seeking perfect theories, rather than “opti-
mal” theories DPop(X);

e DPpy,(X) consider only pure theories;
1.e., without “!” and “not(-)”; rather than im-
pure DPy,,,(X) and

e DPp,,,(X) deals with propositional logic, rather
than predicate calculus, DPpc(X).
In this DPpc(X) case, we seek only a first solu-
tion found; notice this corresponds to asking an
impure query of the form “foo(X, Y), !.”. (As
propositional systems can only return at most one
solution, this restriction is not meaningful in the
propositional case.)

We will also combine subscripts, with the obvi-
ous meanings. When DP,(X) is a special case
of DPy(X), finding that DP,(X) is hard/non-
approximatable immediately implies that DPy(X) is
hard/non-approximatable. Finally, each of the classes
mentioned above allows an arbitrary number of mod-
ifications to the initial theory; e.g., the set NP%(T)
includes the theories formed by deleting any number
of clauses, including the empty theory formed by delet-
ing all of T’s clauses. We let

o SDE(T) refer to the theories formed by deleting
at most K € Zt clauses from T. We define
YAR(T), S2R(T) and X24(T) similarly.

3.1 Ordering of Rules

This subsection considers the challenge of re-ordering
the rules, using the X9 transformations. First, this
task is intractable, even in trivial situations:

Theorem 2

Each Of DPPerf,Imp,Prop (by
DPpert purpc(Z9F) is NP-complete.

OR) and

This theorem means that, unless P = NP, no poly-
time algorithm can find a ordering of a list of impure
proposition Horn clauses (resp., a list of pure predicate
calculus Horn clauses) that returns the correct answers
(resp., returns the correct first answer) to each of a
given set of queries.

We can also restrict the space of possible theories by
dealing only with theories formed by applying a lim-
ited number of “individual rule moves”, where each
such individual move will move a single rule to a new
location. ©Q#(T) is then the set of theories formed
by applying a sequence of at most K such individual

moves. As a simple example, notice

2P ({a,b,c.d}) =
{biaﬂcﬂ d} {b’cﬂa)d} {b’cﬂ d)a}
{ {a’b’d’ C} {a’cﬁb’d} {a7c’ dib} }
{cia)bid} {d?aibﬂ C} {a’d)bic}

includes only 9 of the 4! = 24 possible permutations.

However, the task of finding the best re-ordering
within this smaller space is also intractable:

Theorem 3
There is a K € Zt for which each of
DPPerf,Imp,Prop(E?{R) and DPPerf,Pur,PC(E?{R) 15
NP-complete.

This negative result shows the intractability of the ob-
vious proposal of using a breath-first transversal of
the space of all possible rule re-orderings, seeking the
minimal set of changes that produces a perfect the-
ory: First test the initial theory Ty against the la-
beled queries, and return Tg if it is 100% correct. If
not, then consider all theories formed by applying only
one single-move transformation, and return any per-
fect T; € N9B[Ty]. If there are none, next consider
all theories in X$%[Tg] (formed by applying pairs of
moves), and return any perfect Ty € L[Ty]; and so
forth.

Approximatability: Many decision problems corre-
spond immediately to optimization problems; for ex-
ample, the INDEPENDENTSET decision problem (given
a graph G = (N, E) and a positive integer K, is there a
subset M C N of at least |M| > K nodes that are not
connected to one another [GJ79, pl194]) corresponds
to the obvious maximization problem: Given a graph
G = (N, E), find the largest independent subset of N.
We can similarly identify the DP(X9#) decision prob-
lem with the “MAX(X9)” maximization problem:
“Find the T' € X9%(T) whose accuracy is maximal”.

Now consider any algorithm B that, given any
MAX(X9®) instance z = (T, S) with initial the-
ory T and labeled training sample S, computes a syn-
tactically legal, but not necessarily optimal, revision
B(z) € X9B(T). Then B’s “performance ratio for the
instance z” is defined as

A(opt(z))
MazPerf(B,z) = MazPerfsor(B,2) = ———
A(B(z))
where opt(z) = optpyrap(zor)(z) is the optimal so-

lution for this instance; i.e., opt(x) is the theory
Topt € YOR(T) with maximal accuracy over S.
(This MazPerf(B,z) value is arbitrarily large if
A(B(x)) =0)

We say a function ¢(-) “bounds B’s performance ratio”
iff

Ve MAX(XO®) MazPerf(B,z) < g(|z|)

where |z| is the size of the instance z = (T, S),
which we define to be the number of symbols in T
plus the number of symbols used in S. Intuitively,
this g(-) function indicates how closely the B algo-
rithm comes to returning the best answer for z, over
all MAX(X9®) instances z.

Now let Poly(MAX(X9%)) be the collection of all
polytime algorithms that return legal answers to
MAX(X9%) instances. It is natural to ask for the
algorithm in Poly(MAX (X)) with the best perfor-
mance ratio; this would indicate how close we can come
to the optimal solution, using only a feasible compu-
tational time. For example, if this function was the
constant 1 for MAXp,p prop(YO8 then a poly-time
algorithm could produce the optimal solution to any
MAX(X9%) instance; as DP]mpyprop(EOR) is NP-
complete, this would mean P = N P, which is why we
do not expect to obtain this result. Or if this bound
was some constant ¢(z) = ¢ € RF, then we could effi-
ciently obtain a solution within a factor of ¢ of optimal,
which may be good enough for some applications.’

However, not all problems can be approximated. Fol-
lowing [CP91, Kan92], we define

Definition 2 A mazimization problem MAX is NOT-
PoLYAPPROX if there is a v € RT such that
VB € Poly(Max), Jz € Max,
MazPerfyjx (B, z) > |z[7 .

Arora et al. [ALM*92] prove that the “MaXIMUM
INDEPENDENT SET maximization problem” is NoT-
PoLy ArPrROX. We can use that result to prove:

Theorem 4
Unless P = NP, each of MAX[m%P,—Op(EOR
MAX pur pc(E9F) is NoTPOLY APPROX.

) and

As |z| can get arbitrary large, this result means that
these MAX (X)) tasks cannot be approximated by
any constant, nor even by any logarithmic factor nor
any sufficiently small polynomial, etc.

3.2 Ordering of Antecedents

As mentioned above, each theory is an ordered list of
rules, whose antecedents are also ordered. We can form
new theories by re-ordering the antecedents of various
rules, and note that these new theories can produce
different answers to queries, in the impure contexts.
We therefore let ©94(T) be the set of theories ob-
tained by reordering the antecedents in T’s rules, and
ask the same questions asked above (sample complex-

®There are such constants for some other NP-hard op-
timization problems. For example, there is a polynomial-
time algorithm that computes a solution whose cost is (es-
sentially) within a factor of 11/9 for any MAXBINPACKING
maximization problem; see [GI79, Theorem 6.2].

ity, computational complexity and approximatability).
Here, we obtain the same results, mutatis mutandis:

First, note that |[N94(T)| = [].cr(#Ants(c))! =
O(|T|I™1), where #Ants(c) € 22 refers to the number
of antecedents in the clause ¢. Re-using Theorem 1,
this means we need only a polynomial number of sam-
ples.

Addressing the computational complexity of these
tasks, we see

Theorem 5

Each Of DPPerf,Imp,Prop(EOA),
DPpers purpc(E°4), DPpersimpprop(E2?) and
DPpert purpc(E%4) is NP-complete.

(Notice this includes both the limited 94 and unlim-
ited £94 transformations.)

Theorem 6
Unless P = NP, each of MAX]mpyp,‘op(EOA) and
MAX pyur pc(X94) is NoTPOLY APPROX.

3.3 Adding or Deleting Clauses

This subsection deals with adding or deleting clauses,
in the impure contexts of finding all answers from im-
pure programs, and finding the first answers from pure
programs. We first state the results known about the
standard pure context:

Theorem 7 (from [Gre95a))
In the pure context, for each ¥ € { ¥AR yPRE
¢ DPpert prop Pur (X)) is NP-complete,

e MAXpy (X)) is trivial to approzimate:
dBy, € POly(MAXPUT(E)),
Ve € MAXpur(X)
MazPerfyrax,, sy(B,z) < 2.

Hence, each of these maximization problems is triv-
ially solved within a factor of 2 in the pure setting.
However, in the impure setting:

Theorem 8

Unless P = NP, for each © € { £S48 ©PE 1 cqch
Of MAX[mpyprop(E) and MAXpurypc(E) s NoT-
PoLyAprProOX. This holds even if the only clauses
added (resp., deleted) are pure atomic literals.

These same statements also apply to the tasks of
adding or deleting antecedents: each can be trivially
approximated in the pure context, but not in the im-
pure contexts.

To address the sample complexity issue: Clearly
In(|£P#|) = |T| which means a polynomial number
of samples is sufficient to make the familiar PAC-style
guarantees. Similarly, In(|S4%|) is polynomial in the

size of the theory and the language, in the proposi-
tional case. In the predicate calculus case, however,
YAR can be arbitrarily large. Observe however that
SAR(T) = U, 4H(T) and In(|EZ£E(T)|) is polyno-
mial in |T|. Hence, the number of samples required is
polynomial in the “size” of the revised theory, which
means we can apply the techniques from “nonuniform”
pac-learning [BI88] to learn such classes.

4 Prioritizing Default Theories

This section first provides a brief motivation and intro-
duction to prioritized THEORIST-style default theories,
then shows that our basic results apply here as well.

The conclusions reached by a “monotonic reasoning
system” T will remain true even if additional informa-
tion is added to the initial theory; i.e., T(c) C T'(0)
whenever T' = TU {p}.° However, this monotonicity
is often inappropriate; it often makes sense to allow a
system T to produce the answers T(o) to the query
o, but allow T to produce a completely different an-
swer T'(0) # T(c). As an example, knowing that
something (b) is a bird, we may assume that b can fly.
...until we hear that b is a penguin; here we want to
reverse that position and conclude that b can not fly.
Unless, of course, we learn that b is in an airplane, etc
etc etc. [Rei87]

The THEORIST system [PGAS87] provides one way to
encode such information.” Its knowledge base consists
of a set of facts F' = {f;} which are the unchallengable

claims and a set of “assumables” D = {d;}, which

correspond to the defaults. Here, perhaps,
bird(b51).

Fo— bird(b93). penguin(b93)

r= bird(X) :- penguin(X).
animal(X) :- bird(X).
assumable: fly(B, yes) :- bird(B).

D, = { assumable: £ly(B, no) :- penguin(B).
assumable: f£ly(B, yes) :- inPlane(B).

Given the query ¢ = £ly(b51, Q), THEORIST will
first try to prove this query using only its fact
knowledge base F', using a pure ProLoG-style (SLD)
backward-chaining derivation. Notice this will fail.
THEORIST will next try to use the information in
its collection of possible assumptions Di: It is al-
lowed to “assume” any relevant consistent clause
“assumable:p” € Di: i.e., THEORIST first checks if p
is consistent with F; and if so, it considers adding p in,
forming F' = F; U{p}. THEORIST next tries to prove
o using this new F’. Here, when THEORIST finds the
p = “fly(B, yes) :- bird(B)” clause, it will then
add in p, and use it to return the answer Yes[Q)/yes].

SHere, the “No” answer corresponds to the empty set

{}.
"This description slightly modifies the THEORIST
syntax.

Now consider the query ¢/ = £1ly(b93, R). Here
again THEORIST is unable to answer the query us-
ing only information in F7, and so will consider its
set of assumables, D;. Unfortunately, there are now
two assumables that qualify, which give contradictory
answers to this question.

We can address this problem by assigning priorities to
the defaults, with the understanding that lower prior-
ities will be tried first [Bre89, vA90]. Here, the follow-
ing priority assignment probably makes sense:

assumable 1: f£ly(B, yes) :- inAirplane(B).
assumable 2: f£ly(B, no) :- penguin(B).
assumable 3: f£ly(B, yes) :- bird(B).

which allows us to assume that anything w known to be
in an airplane, is flying; otherwise (if we don’t know
that w is in an airplane), if w is a penguin, we can
conclude w is not flying, and if not, and we know w is
a bird, then we can conclude w does fly.

In general, a prioritized THEORIST-style default sys-
tem can include many assumptions with the same pri-
ority number. Here, on the ** iteration, the system
will add in all of the priority-i assumptions. (in addi-
tion to assertions with priority-i—1,4—2, ..., 1). The
initial collection of facts can therefore be regarded as
priority-0.

Now suppose we have built a THEORIST knowledge
base, with both facts and assumables, but have not as-
signed priorities to the assumables. (Or equivalently,
we are not happy with the current set of priorities as-
signed.) We might then want to use a set of training
samples to find the optimal priory assignment. Unfor-
tunately,

Theorem 9

Unless P = NP, each of MAX[mpyprop(EPD) and
MAX pyur,pc(EFP) is NorPoLy ApProOX. This holds
even if only two priority levels are considered.

where PP (T) is the set of prioritized THEORIST-style
theories that differs from the (prioritized THEORIST-
style theory) T only by re-prioritizing the assumables.
The subscripts ¥ in MAX, (XFP) describes proper-
ties of both knowledge bases (factual and assumable)
of the underlying THEORIST theory.

5 Conclusion

5.1 Extensions

All of the previous theorems will hold even if we use a
stochastic real-world oracle, encoded as @': Q@ x A —
[0,1], where the correct answer to the query ¢ is a
with probability O'(q, a). (Notice here that a(T, ¢) =
0’(¢, T(q)).) Our deterministic oracle is a special case
of this, where O0'(¢,a,) = 1 for a single a, € A and
0'(g,a) = 0 for all a # a,.

There are obvious ways of extending our analysis to al-
low a more comprehensive accuracy function a(T, o)
that could apply different rewards and penalties for
different queries (e.g., to permit different penalties for
incorrectly identifying the location of a salt-shaker,
versus the location of a stalking tiger [Vor91]). As
these extensions lead to strictly more general situa-
tions, our underlying task (of identifying the optimal
theory) remains as difficult; e.g., it remains computa-
tionally intractable in general.

5.2 Contributions

Most theory revision systems deal with a particular set
of theory-modification techniques (adding or deleting
either a rule or an antecedent) that implicitly assumes
the underlying theory is pure and the user is seeking
all answers. Many reasoning contexts, however, vio-
late these assumptions: theories are often impure, and
many users seek only a subset of the answers. This
paper presents two additional types of modifications
that are meaningful for these “impure contexts” —
viz., re-ordering rules and re-ordering antecedents —
and describes the complexities inherent in using them.
In particular, it shows first that a polynomial num-
ber of training samples are sufficient to acquire the in-
formation needed to determine which transformation
sequence is best. Unfortunately, however, the task of
using this information to produce an optimal, or even
near optimal, ordering of the rules (or ordering of the
antecedents) is hopelessly intractable: no efficient al-
gorithm can produce even a good approximation to
the optimum. This resonants with earlier analyses
of the theory revision task, and justifies the standard
approach of hill-climbing to a locally-optimal theory.
Wet also illustrate the additional complexities inher-
ent in learning “impure” theories (beyond the prob-
lems of learning pure ones), by showing that the task
of adding (resp., deleting) rules, which is trivially ap-
proximated in the pure context, is not approximatable
in this setting. Finally, this paper also proves non-
approximatable the task of determining the best pri-
ority values of a set of defaults.

A Proof Sketches of Some Theorems

Proof of Theorem 2 (sketch):® We reduce
DPPeTfVImpyprop(EOR) to 3SAT [GJ79, p259]1 De-
termine if there is an variable assignment that satis-
fies a given 3-CNF formula (which is a conjunction
of clauses, where each clause i1s a disjunction of at
most three literals). By examining theories T; and
T2 (from Equations 1 and 2 respectively), notice that
exactly one of q or r can be true as we reorder the

8n all proofs of the following “NP-complete”-claims,
we prove only the the decision problem is NP-hard; each
problem 1is trivially in NP.

clauses; we can therefore identify q with a positive lit-
eral, and r with a negative literal. Given any 3SAT
formula ¢ = A;_; ,, ¢; over the n literals {z;}j_,, we
therefore form the theory 7, which contains n copies
of T1’s clauses (each using q; and r; for some i = 1..n)
as well as the clause ¢; :- r; whenever z; € ¢; and
cj :— q; whenever &; € ¢j. The query/answer set is

{{cj; Yes)
Now observe there is a perfect re-ordering of T,’s
clauses iff ¢ has a satisfying assignment.

for ¢; € }.

The proof for DPpe,pr’pc(EOR) is a more cum-
bersome reduction to MoNOTONE3sAT [GJ79, p259],
which is an NP-complete special case of 3SAT where
each clause contains either all positive, or all negative,
literals. The theory TL,(,PCJ includes both u;(0) and
u; (1) for ¢ = 1..n, as well as the clauses

c; (X) 1;1(V1), u;2(V2), u;3(V3),
or3(Vi, V2, V3, X).

for each clause ¢; = z;1 V xj2 V z;3 containing only
positive literals, and

c; (X) u;1(V1), u;2(V2), u;3(V3),
orN3(V1i, V2, V3, X).
for each clause ¢; = Z;1 V ;2 V Z;3 containing only

negative literals. TL,(,PC) also contains the 8 atomic
clauses defining or3 as or3(4, B, C, D) holds iff
D= AvBvVC (eg., “or3(1, 0, 1, 1)” and “or3(0,
0, 0, 0)”), and the 8 atomic clauses defining orN3
as orN3(A, B, C, D) iff D = -AV -BV (. The
query/answer pairs are

SPO = {(¢j(X); Yes[X/1)) | for ¢; € ¢} .

Once again, there is a perfect ordering of TéPC)’s
clauses iff ¢ is satisfiable. a

Proof of Theorem 3 (sketch): The proof for
DPpert imp,Prop Y1) is a reduction to x3¢ (ExacT
CoVER BY 3-SETs [GJ79, p221]): Given a set of ele-
ments X = {z;}3X and collection of 3-element subsets
C = {¢j }]M:l of elements of X, determine if there is a

subcollection C" C C of disjoint sets whose union cov-
ers all of X. Given any such X and C| let

X; - ¢j. when z; € ¢;
—_ L= 1
TXC = z] : 1y fail. for ¢ € C
.
Sxc = {(xi; Yes) fori=1.3K}.

By moving any “c;.” atomic clause forward, we can

cause ¢; to become entailed, which in turn means the
resulting theory will entail the associated x;’s. There
is an exact cover of (X, C) iff we can form a perfect
theory by re-ordering exactly K of the “c;.” clauses.

The proof for DPpeyt pur pc (%28) is also a reduction
to X3¢, and re-uses Theorem 2’s trick of explicitly en-

coding a disjunction. Here, the initial theory T)((%C)

includes, for each set c;, the atomic clauses c; (0) and
c;j (1), in this order; and for each z;, a clause of the
form

x; (Zy) c;i1(Y1), ¢;2(Ys), or2(Yy, Yz, Zs),
Ci3<Y3)’ Or2<22, YS’ ZB), cees

cix(Yg), or2(Zp_1, Yi, Zp).

where the antecedent cj,(-) appears whenever z; €
cje. (Here, z; is in exactly k sets; of course, different

z;’s will be in differing numbers of sets.) T)((PCC) also
includes the four clauses that define or2(4, B, C) as
C = AV B. The query/answer set is

ST = {(x;(W); Yes[W/1]) | for z; € X} .

Now observe the underlying X3¢ problem has a solu-
tion iff there is a set of K reorderings that produces a
perfect theory. a

Proof of Theorem 5 (sketch): The proof for
DPp@rmep’pmp(EOA) is essentially the same as the
proof for DPpermepypmp(EOR) (Theorem 2), us-
ing the observation that reordering the antecedents
of “q := ', fail.” to form “q :- fail, !'.” has
the effect of allowing q to be entailed. The proof
for DPpeerImpypmp(E?{A) is similarly related to the
proof for DPpe,mep’pmp(E?(R) (Theorem 3), as
changing “c; :- !, fail.” to “c; :- fail, !.”
causes ¢; to be entailed.

For DPpe,Lpu,.’pc(EOA), replace each of (Theo-

rem 2) Tépc)’s “u;(0).” and “u;(1).” pair of
clauses with the single clause “u; (Y) :- prefero(Y),
preferi(Y).”, and also include the four atomic

clauses

prefer0(0).
preferi(1).

prefer0(1).
prefer1(0). (4)

in this (left-to-right) order. Notice the first answer re-
turned to the (sub)query “u;(Y)” is Yes[Y/0], when
using the initial “u; (Y) :-
prefer0(Y), preferi(Y).” clause, but if we re-order
the clause’s antecedents to “u;(Y) :- preferi(Y),
prefer0(Y).”, we get Yes[Y/l] for this subquery.
The rest of the proof is identical to the proof that
DPPe,-fypurypc(EOR) is NP-hard in Theorem 2.

The proof for DPpe,«f’punpc(E%“) follows from
the proof of Theorem 3, using this same trick of
by replacing each pair {c;(0)., ¢;(1).} with the
single clause “c;(Y) :- prefer0(Y), preferi1(Y).”
and by including the four atomic clauses in Equa-
tion 4. As above, we can reorder the “prefer0”
and “prefer1” literals of the “c; (Y) :- prefer0(Y),
prefer1(Y).” clauses to get different answers to the
“c; (Y)” subquery; etc. a

References

[ALMT92] Sanjeev Arora, Carsten Lund, Rajeev Mot-
wani, Madhu Sudan, and Mario Szegedy.

[BCHY0]

[BGT93]

[BISS]

[Breg9]

[CM81]

[CP91]

[DPY1]

[GIT9]

[Gred1]

[Gre95a]

[Gre95b]

[Gro91]

[Kan92]

[LDRGY4]

Proof verification and hardness of approx-
imation problems. In FOCS, 1992.

E. Boros, Y. Crama, and P.L.. Hammer.
Polynomial-time inference of all valid im-
plications for horn and related formulae.
Annals of Mathematics and Artificial In-
telligence, 1:21-32, 1990.

Francesco Bergadeno, Daniele Gunetti,
and Umberto Trinchero. The difficulties of
learning logic programs with cut. Journal

of AI Research, 1:91-107, 1993.

G. Benedek and A. Itai. Nonuniform learn-

ability. In ICALP-88, pages 82-92, 1988.

Gerhard Brewka. Preferred subtheories:
An extended logical framework for default
reasoning. In IJCAI-89, pages 1043-48,
Detroit, August 1989.

William F. Clocksin and Christopher S.
Mellish. Programming in Prolog. Springer-
Verlag, New York, 1981.

P. Crescenzi and A. Panconesi. Complete-
ness in approximation classes. Information

and Computation, 93(2):241-62, 1991.

Jon Doyle and Ramesh Patil. Two the-
ses of knowledge representation: Language
restrictions, taxonomic classification, and
the utility of representation services. Arti-

ficial Intelligence, 48(3), 1991.

Michael R. Garey and David S. Johnson.
Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H.
Freeman and Company, New York, 1979.

Russell Greiner. Finding the optimal
derivation strategy in a redundant knowl-
edge base. Artificial Intelligence, 50(1):95—
116, 1991.

Russell Greiner. The challenge of revis-
ing impure theories. Technical report,
Siemens Corporate Research, 1995. (See
also ftp://scr.siemens.com/pub/learning/
Papers/greiner/impure.ps).

Russell Greiner. The complexity of the-
ory revision. In IJCAI-95, 1995. (See
also ftp://scr.siemens.com/pub/learning/
Papers/greiner/comp-tr.ps).

Benjamin Grosof. Generalizing prioritiza-

tion. In KR-91, pages 289-300, Boston,
April 1991.
Viggo Kann. On the Approzimability

of NP-Complete Optimization Problems.
PhD thesis, Royal Institute of Technology,
Stockholm, 1992.

Pat Langley, George Drastal, R. Bharat
Rao, and Russell Greiner. Theory revision

[Lev84]

[LV91]

[MBS8S]

[OM94]

[PGAST)

[Rei87]

[vA90]

[Val89]

[Val90]

[Vap82]

[Vor91]

[WMY4]

[WP93]

in fault hierarchies. In Fifth International
Workshop on Principles of Diagnosis (DX-
94), New Paltz, NY, 1994.

Hector J. Levesque. Foundations of a func-
tional approach to knowledge representa-
tion. Artificial Intelligence, 23:155-212,
1984.

Charles Ling and Marco Valtorta. Revision
of reduced theories. In MLC-91, pages 519—
23, 1991.

S. Muggleton and W. Buntine. Machine in-
vention of first order predicates by invert-
ing resolution. In MLC-88, pages 339-51.
Morgan Kaufmann, 1988.

Dirk Ourston and Raymond J. Mooney.
Theory refinement combining analytical
and empirical methods. Artificial Intelli-
gence, 66(2):273-310, 1994.

David Poole, Randy Goebel, and Romas
Aleliunas. Theorist: A logical reasoning
system for default and diagnosis. The
Knowledge Frontier: FEssays in the Rep-
resentation of Knowledge, pages 331-52,
New York, 1987. Springer Verlag.

Raymond Reiter. Nonmonotonic reason-
ing. In Annual Review of Computing Sci-
ences, volume 2, pages 147-87. Annual Re-
views Incorporated, Palo Alto, 1987.

Paul van Arragon. Nested default rea-
soning with priority levels. In CSCSI-90,
pages 77-83, Ottawa, May 1990.

Marco Valtorta. Some results on the com-
plexity of knowledge-base refinement. In

MLC-89 pages 326-31, 1989.

Marco Valtorta. More results on the com-
plexity of knowledge base refinement: Be-
lief networks. In MLC-90, pages 419-26,
1990.

V.N. Vapnik. Estimation of Dependences
Based on Empirical Data. Springer-Verlag,
New York, 1982.

David Vormittag. Evaluating answers to
questions, May 1991. Bachelors Thesis,
University of Toronto.

David C. Wilkins and Yong Ma. The re-
finement of probabilistic rule sets: socio-
pathic interactions. Artificial Intelligence,

70:1-32, 1994.

James Wogulis and Michael J. Pazzani.
A methodology for evaluating theory re-
vision systems: Results with Audrey II. In

1JCAI-93, pages 1128-1134, 1993.

