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Abstract

This report addresses the challenge of using auxiliary information 74 to improve a given the-
ory, encoded as a belief net Bg. In contrast with many other “knowledge revision” systems, we
deal with the situation where this I4 may be imperfect, which means Bg should not necessarily
incorporate that information. Instead, we provide tools to help the expert decide how to use I4.
After presenting objective criteria for measuring how much I4 differs from Bg, we discuss ways
to evaluate whether this difference is statistically significant. We then provide tools to isolate
the differences — to tell the domain expert which parts of the belief net (e.g., which links,
and/or which nodes) account for the discrepancy. Finally, we include some empirical studies to
illustrate that our tools are effective.

Two of our tools involve techniques that are of independent interest: wviz., the use of a non-
central x2-test to compute the relative likelihood of two similar belief nets, and a sensitivity
analysis that provides the “error-bars” around the answers returned by a belief net, as a function
of the samples used to learn it.
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1 Introduction

Human experts are indispensable in producing effective Decision Support Systems (DSSs). They
typically provide the initial structure of the DSS, including the qualitative “what depends on what”
knowledge, as well as some of the quantitative information. Unfortunately, their knowledge is not
always completely correct: first, there may be significant gaps in their knowledge; e.g., an expert
who knows the electrical system of a large plant may not be as familiar with the hydraulic parts.
Second, the expert may be wrong in certain aspects — due to human fallability, misunderstandings,
outdated knowledge, or the fact that people are notoriously bad at providing quantitative informa-
tion — e.g., we often under-estimate the probability of rare events, among other problems [KT82].

It is therefore important to correct and augment an expert’s knowledge, using some other
source(s) of knowledge — perhaps other human experts, or data produced by the plant, or by a
simulator. Unfortunately, such alternative sources are seldom perfect: The alternative expert has
the same class of limitations as the original domain expert. And a set of samples that trace the
behaviour of the plant is also problematic, in terms of both quality (due to measurement error,
as well as the problems induced if the plant is not stationary) and quantity (as it may be very
hard to obtain enough relevant samples). While quantity may not be an issue if the samples are
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Figure 1: Simple Belief Net

produced by a simulator, the quality may be further compromised, as a simulator is only as good
as its model, and many models have systematic (irremediable) problems — perhaps by being able
to handle only singleton faults while the plant may have multiple problems, etc.

This report addresses the challenges of using this auxiliary, albeit imperfect, information to
help improve the theory (e.g., DSS!) produced by the domain expert. In particular, we start with
a theory that has been approved by a domain expert, typically because he authored this system.
We will assume this theory is encoded as a belief network, called Bg. The expert then has access to
another body of auxiliary information 74 — perhaps encoded as an alternative belief net 4 = B4,
or (for most of our analyses) provided as a set of samples Iy = Sy = {5}, or whatever. The
expert is then allowed to use this additional information to revise his initial theory, doing anything
from completing ignoring I4 and keeping the original Bg-based DSS, to throwing out his Bg in
favor of (a DSS based on) I4, or more typically, incorporating some information from I4 within
Bg. Note that we are intentionally leaving the expert “in the loop”, as he may well possess insights
and “implicit” knowledge that go beyond the information explicitly embodied within his Bg. We
provide below a set of tools to help the expert in this task.

Section 2 first provides the formal framework for our work. It begins with a mini-summary
of belief nets — the formalism we will use to encode the probabilistic knowledge used by our
DSS. It then discusses ways to measure how closely the expert’s By corresponds to (or more
importantly, differs from) another model. We present two formal evaluation-approaches here: the
“query based” approach assumes that we know which questions will be posed to the eventual DSS,
while the “distribution only” model, that we do not know this “future query” information. Section 2
concludes with a synopsis of the relevant literature — explaining in particular why our results are
not subsumed by the work on learning/revising belief nets.

These evaluation approaches allow the expert to measure the difference between Br and 4.
Section 3 extends this, by providing “error-bars” around this difference, to determine whether the
observed raw score is significant. The expert can use this result to decide whether to consider
revising his Bg. By applying this analysis at the single-query level, the expert can get some
insights for where to consider revising; i.e., which parts of the belief net seem different from the
other corpus. Section 4 goes further, by providing specific tools designed to isolate the differences.
In particular, one tool can identify which specific causal links in the belief net are not supported by
14, and so are likely to be the source of the discrepancy. Another tool suggests which features are
problematic — i.e., which variables are handled differently in the two models. Finally, Section 5
summarizes our contributions.

!While we word our task in terms of a diagnostic decision support tool, our ideas apply to reasoning in general,
especially when the reasoner is encoded as a belief net.



2 Framework

2.1 Introduction to Belief Nets

In general, a belief net (a.k.a. Bayesian network, probability net, causal net) B = (N,L,0) is a
laconic way to represent an arbitrary distribution. Technically, each random variable is represented
by a node n € N in a directed acyclic graph (DAG). Each directed link £ € L denotes a “probabilis-
tic” (some say “causal”) dependency, in the sense (for example) that having a particular disease
“causes” a patient to exhibit some symptom. Each node n; € N also includes a “conditional proba-
bility table” (aka “CPtable”) 6; € ©, which specifies the distribution of this variable, as a function
of the values of its parents. If all of the variables are binary, we can represent the CPtable for the
node X, with k parents Pa(X) = {Y1,...,Y}, by a table with 2¥ rows, each row representing one
possible assignment to the node’s parent-set. If the i"* row is indexed by (Y1,..., Yy ) = (y1,...,yx )
(where each y; € {0,1} is the value of the random variable Y;), then the values for this row specify
P(X =1|(Y1,...,Ys)=(y1,---,yk)) and P(X =0|(Y1,...,Y%) = (y1,-.-,Yk))- See Figure 1
for an example of such a structure. 2 While this represents the complete distribution, here it
requires only 5 CPtable entries total; in general, we would require 7 = 23 — 1 values to specify the
distribution over 3 binary variables. The small savings is because the structure implicitly encodes
several independence claims — in particular, that P(J|H,B) = P(J | H ). In general, the savings
can be huge, which can allow us to represent fairly complex distributions using only a small number
of parameters; see [PPMH94]. (See [Pea88] for more information about Belief Nets in general.)

2.2 How closely does I4 correspond to Bg?

As noted above, we will often want to determine how closely the given belief net Bg corresponds
to the alternative model 14, for some sense of the term “correspond”. Here we focus on situations
where this 14 is derived from a sample of data S4. Section 2.2.1 addresses this question in the
context where we have only the two distributions corresponding to Bg and S4. Section 2.2.2 then
provides a measure that applies when we also know the range of questions that the eventual DSS
will have to answer. (Section 3 will later discuss the statistical significance of the measure.)

2.2.1 Distribution-Only (Query-Free) Model

One natural way to relate a set of tuples T4 ~ S4 = {5} to a given distribution (here, repre-
sented by the belief net Bg) is to compute the probability of S4, given the distribution — i.e.,
P(Sa|Bgr) = Pg,(Sa). The larger the score, the more likely that the observed S4 would be
produced from Bg; this supports the view that S4 corresponds to Bg. Many belief-net-learning
algorithms therefore use this measure (typically augmented with a regularizing term) to determine
which belief net is best [Hec95].

If we view the sample S = S4 as a distribution — i.e., define Pg(z) = 1/|S| if z € S, and 0
otherwise® — this measure relates to the standard measure between two distributions: “Kullback-
Leibler divergence” [KL51],

KL(Py; ) = Y Pi(z)ln

*Here, we have suppressed the superfluous P(X = 0|§) values, as P(X =0|%) =1—- P(X =1|7).
3To simplify the presentation, we will assume that each element of S appears only once in the sample. Also, we
will use Pg(q) to refer to the probability that B assigns to the query q.



Hence,

KL(Ps;Pg) = ZPS(:I:)IH<PS($)) —In(K ——ZlnPB :—ln(K)—%ln(Pg(S’))

Ps ( z ) ses

(using the fact that the s; € S are iid), where K = |S|, and the “z” in the first summation ranges
over all 20(") assignments to the variables. Hence, holding S fixed, the B that maximizes Pg(S)
will be the one that minimizes K L(Ps; B).

KL is non-negative, and (in the discrete case) is 0 iff Vo Ps,(z) = Bg(z) — i.e., if the
belief net Bg and the sample S4 coincide. Thus KL = 0 means the two distributions will “behave”
identically, by providing the same answer to any query.

2.2.2 Query-Based Model

While this “equivalence” condition is desirable, it is unlikely to hold. Fortunately, we typically do
not require so strong a condition. In general, it is sufficient to know that the two distributions will
provide similar answers to the relevant queries — i.e., to the queries that are actually posed.

We therefore can consider a distribution over the queries Pg(q) — i.e., we consider the prob-
ability of asking a question “q”, where each question ¢ is of the form “What is the probability
P(A =a|B =b)?”, where A is a variable, a is a value of A, B = (B,...,B,) is a vector of
zero or more variables, and b= (b1,...,b,) is a corresponding vector of values. For example, the
assertion Pg( Cancer; Male, Age=42, Smoker) = 0.35; means that 35% of the time, the DSS will
ask “What is P( Cancer| Male, Age=42, Smoker)?”; i.e., for the probability that a patient has Cancer,
given that the patient is male, is 42 years old, and is a smoker. The DSS may also ask “What is
P( Cancer| Female, Age=35, Smoker)?” 5% of the time; “What is P( Hepatitis | Jaundice)?” 18%
of the time; etc.

Note that the probability of asking a query (Pg) can be totally unrelated to the underlying
probability P — e.g., even though “What is P( Cancer| Male, Age=42, Smoker)?” is asked 35%
of the time, the actual value of P(Cancer | Male, Age=42, Smoker ) could be 0, or 1, or any other
value. We must therefore distinguish between

“tuple distributions”: which specifies the probability that this (conditional) event will happen,
e.g., [P(Cancer |Male, Age=42, Smoker) = 0.1.

“query distributions”: which specifies the probability of posing some queries, such as
“What is P( Cancer| Male, Age=42, Smoker)?” is asked 0.35 of the time.

Note that the distributions associated with the expert’s assessment Br and with the tuples S4 are
each tuple distributions.

Here, we would like to know that these two “tuple-distributions” Pg and Pg provide essentially
the same answers for these queries. Note that we don’t care if the distributions provide very different
answers to the other 0-probability queries — e.g., if we never ask P(Smoker | Male ), we should not
care if the two distributions provide very different answers. For example, if Py ( “P( Smoker | Male )” )
0, then we should not worry if Pg( Smoker | Male ) = 0 but Pg( Smoker | Male) = 1.

To state this more quantitatively, given a distribution over queries Pg, we can measure the
difference between B and S as

Brrg(B.8) = 3 Po(a) [Pa(a) = Ps(a)f 1)



(We use this Ly measure — [Pg(q) — Ps(q)]?> — as it is convenient for the derivations used in
Section 3; we could have used essentially any other cost function.)

While KL(B,S) = 0 implies Errg(B,S) = 0 for any query distribution P, the converse is
false; in fact, it is possible for K L(B, S) to be arbitrarily large while Err(B,S) = 0. (For example,
suppose ) consists of only the single query “What is P(A)?”, to which B and S provide the
same answer. However, B and S can be completely different with respect to every other feature,
correlation, etc.)

There are some challenges to using this Errg(-,-) measure. One issue is obtaining (at least an
estimate of) the distribution over queries @; see [GGS97] for a discussion of this issue. For this
report, however, we will simply assume this distribution is given.

The next complication is in computing these P, (X |Y ) quantities as this is NP-hard when
dealing with belief nets [Co090] — e.g., when dealing with the information provided by the expert.
Note also that P, (X |Y ) is undefined if P, (Y ) = 0, which is a problem as the user is allowed to
pose such counterfactual queries (e.g., “if components A and B both failed (which cannot happen)
what effects would be present”, or “what is the chance that a pregnant man will develop cancer”) —
cf., [Gin86, BP94]. (This issue is especially problematic if this alternative distribution is obtained
from a sample S4, as here many conditioning events may appear to have 0 probability.)

The third problem occurs if there are too many possible queries to examine each. Here, of course,
we can sample from this space of queries, and replace Equation 1 with its empirical approximation;
again see [GGS97].

2.3 Related Work

As our task often involves using a set of samples to produce an accurate belief net, our results appear
related to the work on learning belief nets [Hec95, Bun96], and perhaps even more similar to revising
a given belief net [LB94, HGC95]. Note, however, that almost all of the learning/revising systems
assume that the given training sample (here I4) is completely correct. This assumption does not
hold in our situation, as we know there will be systematic errors in the data. (See [PDar, Bee57]
for further motivation.) This means we should not necessarily incorporate (parts of) I4 into our
emerging Bg. Our goal, instead, is to simply inform the expert of possible discrepancies, here by
identifying “components” of Bg that do not correspond to I4. The expert can then decide on the
proper response.

As a related point: Every BN-learning algorithm must have some criterion to decide whether one
BN is “better” than another. One component of this criterion is typically fit to the training data.
Of course, a larger BN can only improve this empirical fit. Unfortunately, as a better empirical fit
does not guarantee a better fit to the underlying distribution, most learners impose some “penalty”
for each additional parameter. For example, given training data S, many MDL-based learners score
a belief net B with m parameters as [F'Y96]

log(P(S|B)) — 7 log(|S])

This means, when comparing B; to a larger B that uses & more parameters, such MDL systems
will prefer the simpler B; unless

P(S|By) k
IOg(P(SiUS’?)) > 510g(|S|)

Section 4.1 uses a similar expression when comparing two similar nets, to see which is better
supported by the training data. However, rather than impose an absolute measure, this system



first asks the user to specify some confidence bound, say a = 0.05. It then advocates the simpler

B unless
P B 1
log ( (5182 )> >

P(S|B1) g Xt

where t, is the a quantile for the (non-central) x2[)\] distribution (defined below). Here, the user
can specify different o values in different contexts, depending on how confident he needs to be for
each individual decision.

This issue is clearly related to the confidence measured used by the BN-learners that use
conditional-independence tests to decide whether to include some link [GSSK87, CBL97]. Our
test, however, is more fine-grained (at the level of a single modification, rather than dealing with
the entire cascade of decisions made by general learning algorithms), and, again, is under the control
of the user. We also use a test associated with a slightly different distribution; see Section 4.1.

Also, some of our analyses assume we know how the eventual belief net will be used — i.e.,
we know the distribution of queries that will be posed (see Section 2.2.2). This allows us to focus
attention on producing a system that will perform well on these queries. This model, first expressed
in [GGS97], differs from both of the dominant approaches, based on maximizing likelihood [Hec95]
or finding independencies [GSSK87, CBL97].

Like us, Matzkevich and Abramson [MA93] also deal with a situation where there are multiple
sources of information — here, from multiple experts. Their system tries to automonously “merge”
that information, to find a consensus interpretation. By contrast, our approach is to simply to tell
the expert how strongly the purported expert knowledge (embodied within a belief net) matches
an auxiliarly body of samples. We anticipate the expert will then, in general, accept just one of
the data-sources, and ignore the other.

Webb, Wells and Zheng [WWZ99] also similarly consider using both expert information (ac-
quired using knowledge acquisition techniques) and data samples (exploiting via some learning
algorithm). They demonstrate the advantages of using both sources. Our results nicely comple-
ment theirs, by providing another approach for doing this, in the context of theories encoded as
belief nets.

Section 3 shows how the error-bars for an inference from a belief net varies with the sample
size; this relates to the work on determining the sample complexity for learning belief nets cf.,
Friedman/Yakhini [FY96], Dasgupta [Das97] and Hoeffgen [H6f93]. Of course, those papers dealt
with the problem of identifying which of a given class of belief nets is best; by contrast, we are
given a single belief net to evaluate. Also, while those other analyses are in terms of the “Maxi-
mize Likelihood”-based approaches, some of our analyses are in terms of the queries that will be
addressed.

Section 4.2 considers situations where we may want to remove some features (aka attributes,
variables). While this objective is superficially similar to the many feature-selection algorithms
[KJ97, BLI7], note that our goals are different: While many of those other systems try to remove
redundant features (i.e., features whose values can basically be determined from the other features),
we are trying to identify those features where the expert and the training sample appear to disagree.

3 Is the Difference Significant?

Motivation: Suppose we are considering a particular belief net structure, and are using a set
of samples S4 to fill-in the CPtables [Hec95, CH92]. We can then use the resulting belief net,



B4 = B(S4), to answer questions; i.e., to obtain a value P4(X = z|Y = y) for each “What is
P(X =z|Y =1y)?” query posed. Of course, the expert will also have an answer to each such
question, written Pg(X = z|Y = y), determined by his Bg belief net. Finding that Ps(X =
z|Y =y) = Pg(X =z|Y =y) suggests that B4 and Bg agree, wrt this query. If these values
are different, however, the expert may be tempted to modify his Bg. Note, however, that B(S4)’s
CPtables depend on the actual S4 samples used, meaning the value of P4(X =z |Y =y), in turn,
also depends on this sample. It is therefore possible that the difference between the value returned
by Bg and by B(S4) is due only to the sampling “error” in producing this S4, which would mean
that Br and the source of S4 do in fact agree. If so, then this “P4(X =z |Y =y) # Pr(X =
z|Y =y)” discrepancy should not suggest modifying Bg.

Therefore, before questioning whether By is wrong, we should first determine the “error-bars”
around B(S4)’s answers to the “What is P(X = z|Y = y)?” queries. Then, for each query, we
should only consider changing Bg if |[Pa(X =z|Y =y) — Pg(X = z|Y = y)| exceeds those
error bars. This section therefore describes how to determine the error-bars around the answers
returned by a completed belief net, as a function of the samples used to compute its CPtables.

Analysis: For now, we will consider only a single query P(X |Y ), and implicitly use the L;
measure (the simple difference between the correct value and the estimated value); it is obvious
how to generalize these results to handle an arbitrary distribution of queries, and to use the Lo
norm.

Assume there are K CPtable entries that can affect the P(X |Y ) query — i.e., that are not
d-separated from X, Y. (In general, this K will be significantly smaller than the total number of
CPtable entries in the full belief net.*) Consider a single such CPtable entry €q|r» Which specifies the
probability that ) = g given the assignment R = r. Assume we have collected N tuples S, and of
these, ny = | S[R = r]| have the variables R set to the values r. We define é,), = M to be
the empirical estimate, obtained from these n, samples. We can use Hoeffding’s Inequahty [Hoe63]
to see that, given these n, samples, we can be at least 1 — /K confident that our empirical estimate

€qr will be within

1 2K
Ar = In —
r 2n, . )
of the corresponding e ,; i.e.,
)

P(|éq|r - eq|1" > )‘1‘) < E

holds for all @) = g. Therefore, with probability at least 1 — J, we can assume each of the K é,,
values will be within A\, of the true eqr values. (If ny = 0, we can set A, to 1.)

How will that affect the value of our estimate P(X|Y') of P(X |Y)? Using

Lemma 1 %l‘y) = S IP(X,Y|gr) = P(X|Y)P(Y [g,r)] 0

“In one short empirical study, using the ALARM network [BSCC89] and a reasonable distribution of queries [HC91],
we found that, on average, only 10% of the CPtable entries were actually involved with any computation.



we see that

dP(X|Y)

PX|IY)-P(X|Y < .
|P(X[Y) (I)\_(%/\>< degs

L2 PB)  ip(x,y gr) — P(X|Y)P(Y |gor)]

2n, 6  P(Y)

1 2K 1
—In— X

oN "5 X Py %;) VP(r) [P(X,Y |¢,r) = P(X|Y)P(Y |q,r)]

Q

using the observation that 7 = P(r) = P(r). As we are assuming that P is close to P, we can
use the estimated P(-) terms above.

Comments: (1) We see immediately that this error decreases in an O(1/+/N) fashion.

(2) This is an extremely generous bound, as it assumes every CPtable entry must be estimated
independently and that these estimates can all be wrong in the same directions. Of course, this is
not the case: e.g., a P(X |Y') computation may involve both P(q)r = ¢y g2 and P( =g )r = c—ggo;
as they sum to 1, we need only estaime a single quantity. Moreover, it is not possible for both
estimates to be over the true value, or both under.

(HERE: How to deal with this?))

(3) This expression also suggests which type of new tuples may be most useful, towards reducing
the error bars. In particular, if we are running a simulator and so are able to select the samples,
we should focus on the particular instances that “hit” the particular CPtable entries ey, that most
effect (i.e., have the highest derivative wrt) the relevant queries “P(X |Y )” — for example, the
queries that still have the highest variance.

(4) We can use this analysis to help identify which queries are “unambiguous” — i.e., where
Bg and S4 agree. We may then choose to believe these queries, but be skeptical of the others.

(5) Here, we used a set of samples Sy to obtain the error-bars. However, all that we used (beyond
the empirical average) was the “amount of evidence”: how many examples matched a certain
assignment of the parent nodes. We can sometimes obtain this information in other contexts; e.g.,
it is implicitly provided by a Dirichlet distribution [Hec95]. Therefore, we can also obtain error-bars
associated with the expert’s By belief net if we know such statistics about its nodes — perhaps
because the value of the Br’s CPtables were also filled using samples, or because the expert who
filled in these values could also provide “equivalent sample size” (e.g., “the probability that Temp =
high given Cancer = true is 0.45, and this is based on having seen 200 Cancer instances”). Here,
we could of course combine the two error-bars, from Bg and B(S4), in a statistically appropriate
manner [BD77].

(6) We can use the finding that Pg(X |Y ) appears statistically different from P4(X |Y") to
help identify “problematic” parts of the Bg; i.e., we know that Bg and S, differ wrt some of the
links that are involved with (read “not d-separated from”) such “significantly different” queries.
Given a set of queries, we can further focus the search for problematic links by emphasizing the
links that appear to be involved in many “problematic queries”. We may then be able to use some
of non-problematic queries to prune these options, as finding that I4 agrees with Bg on some query
suggests that the links involved are likely to be correct. As a simple example, suppose Bg contains
the links . If 14 and Bg agree on the P(C'| B) query but disagree on P(C | A), then
we may suspect the B — C link is correct, but the A — B link is not. (Section 4 will provide
another mechanism for isolating these differences.)



(7) Of course, the general problem requires dealing with a distribution of queries; here we would
have to weight each such error by the probability of that particular query. (And if using Ly norm,
we need to square this difference.) If there are too many queries to evaluate the error bars of each,
we can instead estimate this quantity, by sampling from the distribution of queries.

4 Isolating the Differences

The previous section discussed ways to decide whether two distributions (perhaps one obtained
from an expert and the other obtained from a sample) are significantly different. If so, the next
step is to isolate this difference; in our situation, this means pin-pointing just where the belief
net differs from the other distribution. Section 4.1 considers the situation where this difference
is possibly due to the links within the belief nets, in that the belief net may better match the
sample if it includes a new link, or excludes an existing one. In particular, it provides a statistically
sound technique (viz., a non-central x? test) for determining whether a net formed by adding, or
by deleting, a few specified links is a better model of a given set of tuples. It is based on the
“query-free (aka “distribution-only”) approach — i.e., in terms of the likelihood of the data, given
the belief net.

Removing a single arc is a relatively small modification to a network; sometimes we may want to
perform the bigger modification of removing an entire feature. To motivate this, imagine the person
building the network was truly an expert, but only in one subdomain — perhaps in hydraulics.
Hence we may expect the sub-network dealing with hydraulics to be essentially perfect. However,
he may also add in nodes that represent the electrical system. It is possible that the expert will
get these features (and associated sub-net) seriously wrong.

Section 4.2 therefore considers ways to identify which features give rise to differences between
Bg and 14, as this may point the expert to “regions” where his opinion, as encapsulated within
Bg, is questionable.® This tool also uses the “distributional approach”; we explain below why this
task is not interesting in the query-based approach.

4.1 Problematic Links

The section provides a technique to determine whether the expert’s By belief net omits some links
that are sanctioned by the alternative distribution I4 (which was perhaps induced by a set of
samples S4). That is, form B’ by adding some new links to the given Bg network. Clearly B, with
strictly more degrees of freedom, cannot be a worse fit to any distribution (and so it cannot be a
worse fit to I4). However, if By is as good a fit, then the extra links in “B’ — Bg” are superfluous.

Here, we provide a tool to address this issue: to determine whether B’ is a significantly better
fit to the I distribution, within the “query-free” approach. If so, this would suggest adding the
extra links in B’ — Bg. We can also use this same analytic tool to go the other way: Suppose
the expert initially proposed the larger B = B’', and then observed that the reduced B”, which
omitted some links from Bg, was still comparable to the larger Bg. This would suggest deleting
these apparently-superfluous links.

Given this tool, we could consider various ways of exploring the space of “new links to consider
adding” and “existing links to consider deleting”. One obvious approach is to focus on the links
involved with problematic queries, as determined by the analysis in Section 3. We could also
consider adding in new links, which have the potential to correct the discrepancies found by that

®It is still possible that the expert is correct in this situation, but the training sample was wrong. Recall that we
are not assigning blame, but are instead simply identifying differences.



analysis. Note also that our analysis can handle adding/removing arbitrary sets of links, as well as
single links.

Finally, before providing our approach, it is worth quickly mentioning how this improves on the
obvious idea of directly comparing the Bg’s CPtable entries with the I4 distribution. That is, each
eg/r entry in Bg provides the expert’s estimate of P(Q = ¢|R =r) — i.e., the probability that @ =
g given that Q’s parents R have the values R = r. We could also get I4’s opinion of this quantity,
and note when these two quantities are different. There are two problems with this naive approach:
First, it is too “local”, as it would only deal with a single (g,r) entry within @’s full CPtable
{{Q =¢;|R =r;)}. For example, suppose we find that the expert’s Pg(Fever = 1|Cancer = 1)
value was very different from the alternative P4(Fever = 1|Cancer = 1) value, but there is
agreement for the other value Pg(Fever = 1|Cancer =0) = P4(Fever =1 |Cancer = 0). Here,
it is not clear whether we should delete this link, based on this one problem. Second, as noted
above, we should only consider any modification if the differences are significant. The following
analysis deal with both issues.

Analysis: Let G and G be two belief nets, both using the same random variables X1,...,X,, as
nodes, such that the links in G5 form a subset of those in Gp. Let n be the number of additional free
parameters in a minimal representation of the CPtables of G as compared to Gs. To simplify the
presentation, assume each random variable (rv) take values in the (finite) set V. Thus a variable
X, which has j parents in G and k > j parents in Gy, contributes (|[V ¥ — |[V|/)(|[V| — 1) to n.

Definition 2 For any sequence S of iid draws of X1,..., Xy, let Ps and Py be the probability
measures of the mazimum-likelihood belief nets corresponding to Gs and Gy. Then we define the
likelihood ratio statistic as [ = Ps(S)/Py(S). Note that 0 <1 < 1.

Note we can compute this Likelihood Ratio relatively efficiently: Let Pg be the probability
distribution of a specific belief network with graph G. Then for samples § = {s()}; (where each

sj = (s, 88, Pa(S) = TI; Pa(s9) = T, T Po(X; = s |Pa(X;) = sg;(xi)), where
Pa(X) refers to the parents of the node X. Hence, when calculating [, we can cancel the terms
corresponding to nodes that have the same set of parents in GGy that they have in G;.

Consider a parameterization (¢,0) of the Gy belief net such that, if we constrain each element

of 8 to be zero, ¢ is a valid parameterization of G5. Then:

Proposition 3 ([SO91, Roy57]) Let Hs (resp., Hy) be the hypothesis that the data S was gen-
erated (7id) by a distribution representable by Gy (resp., by Gy, but not by Gs).

When Hg holds, —2In(Ps(S)/Py(S)) asymptotically has a x? distribution with n degrees of free-
dom.

When Hy holds, —2In(Ps(S)/Py(S)) asymptotically has a non-central x? distribution with n de-
grees of freedom and non-central parameter

AN = T Mo (2)

_ 8?2 In Py(S)
w}lere MZ] = _EXI,;Xm(W)

One challenge is computing this A non-centrality parameter. Fortunately, this turns out to be
straightforward:
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Figure 2: Subset of network structure

Theorem 4 Let Gy be a belief net that includes only the nodes A and B, where A is the only
parent of B, A ranges over the values {a,...,k}, and B over {1,...,£}. Let G, differ from Gy
only by deleting this one link connecting A to B. Then after observing the sample S, containing
m = |S| completely-specified instances (drawn iid, possibly from the Gy distribution), the non-
centrality parameter is

, P(B=b|A=a)
P(B=b)

A = mY[PA(B=b)—P(B=b|A=a) (3)
a,b

where each P(-) statement is wrt the empirical distribution, with a LaPlacian correction to avoid
0’s. The “degrees of freedom” here is (£ — 1)(k — 1).

Observe immediately that if B is independent of A, then P(B =b) = P(B =b|A = a) for
all b and a (for the true distribution), which means this A term will be 0 in the limit (i.e., when
the empirical average corresponds to this true distibution). Note also that Equation 3 looks very
similar to the standard equation for using a (central) x? test to decide whether to add a link, which
compares
2 P(A=a)

mgww:m—ﬂB=MA=w]ﬁ§;5

to the value X%,a (based on k degrees of freedom, and the confidence parameter «). By contrast,
Equation 3 will produce a value ), which can be viewed an input to the non-central -y? function;
we then compare —21In(Ps(S)/Py(S)) with the resulting value X%,Q(A).

The following corollary shows that this result scales up, in several ways:

Corollary 5 Let Gy be a belief net that includes the nodes A and B (and possibly other nodes),
where B’s parents are {A,C1,...,Cy}, and the set C = {C1,...,Cy} range over the r tuple-values,
{¢1,--.,G} = Domain(Cy) X --- x Domain(Cy). (See Figure 2.) Let G4 differ from Gy only by
deleting the A — B link. Then after observing the sample S, containing m = |S| completely-specified
instances (drawn iid, possibly from the Gy distribution), the non-centrality parameter is

. . P(B=b|A=a,C=7)
A = m P(B=b|C=¢)—P(B=b|A=a,C =2)]? -
Zg;( | ) — F( | )] P(B=b|C=2)

Cc

where each P(-) statement is wrt the (LaPlacian-corrected) empirical distribution. The “degrees of
freedom” is r (£ —1)(k — 1).
We can use a similar formula when going from Gy to the smaller G3 means a single child B
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“loses” multiple parents: If B simultaneously loses parents {Ai,...,Ar}, but retains the parents
C={Ci,...,Cn}, then

A=m> Y [PB=b|&)-P(B=blAi=ay,..., Ay =a,C =2)

If r = [l;|Domain(C;)| and = []; |[Domain(A;)|, then the degrees of freedom here is r (£ —
1)(k — 1), where again £ = |Domain(B)|.

Finally, if several different children that each “lose” one-or-more parents (e.g., By loses A1y, Bo
loses {Ag1, A2z, Ags}, etc.), then the required non-centrality parameter corresponds to the sum of
the \;’s associated with each individual deletion, and the degree of freedom is the sum of the d.o.f.’s
associated with the individual transformations.

Use as a Statistical Test: We expect [ to be close to 1 when H holds, and close to 0 otherwise;
hence —2In! =~ —2In1 = 0 when H; holds, and will blow up towards infinity otherwise. Therefore,
we can establish a threshold t,, measure 1 —a = P(x2()\) < tq), and reject Hy with probability
p > aifl <t,. (A potential weakness of this test is that its exact meaning is unclear when neither
H; nor Hy holds; however the heuristic argument as to the behavior of [ is still valid).

4.1.1 Empirical Study

We implemented this tool, and investigated how well it worked, in the context of the simple 2-node
nets presented above. We found it worked very reliably, in that it allowed us to correctly accept
Gy (resp., Gs) where appropriate. For example, G} is the correct model when the distribution is
P(a)=0.5, P(b|a) = 0.55 and P(b|—a) = 0.45. Using the formulas shown above, this correspond
to non-centrality parameter A = 10.1, and n = 1 extra parameter. Below we plot the values of
the x%(10.1), as well as the (differently scaled) empirical histogram over 10,000 trials, where each
trial involved 1000 samples. If we base our decision on the observed empirical score, we will almost
always decide on Gy, as is appropriate.

4.2 Problematic Features

This section also deals with the situation where the two distributions do not correspond, in the
query-free (distribution-only) model — i.e., Pg,(S4) is unacceptably large. Here, however, we
attempt to isolate the problem by considering the possibility that certain features are problematic.

One obvious approach is to compare this Pg(S) score with the scores obtains by deleting (from
both B = Bg and S = S4) some feature X,. That is, given feature Xy, let Sy be the set of samples
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formed by deleting the “Xp-column” from the S data. Similarly let By be the belief net formed by
marginalizing away the X, variable from B — this can involve first deleting this Xy node and all
connecting arcs, and then reconnecting each parent of Xy to each other, and to each child of X,
and finally filling in the appropriate marginalized value, based on all of X’s (former) co-parents.
For example, removing B from produces a network ; note that just deleting
the A — B and B — C arcs would instead produce a network with 3 independent features. (Hence,
removing X does more than just remove each of the arcs connecting X to the rest of the network.)

If we see that By is significantly “closer” to Sp, than B is to S, that suggests that B and S
have different “interpretations” of Xo. Here, we will have to decide which (if either) of B or S best
“understood” Xy — perhaps by asking an Xg-expert.

The challenge is finding an appropriate measure for this comparison. This is complicated by the
observation that Pg,(Sy) can never be smaller than Pg( S ), for reasons independent of the quality
of Xy’s “fit”. (l.e., the probability assigned by the complete belief net B to the complete tuple
s =(80,81,---,5n) 18 Pg(s) = Pg(so|S1,---,8n )PB(S1,---,8n,) = Pg(so|s1,---,5n)Ps,(s-0),
using the observations that By and B will produce the same probability for any tuple that involves
only s_o = ($1,...,8n ). As Pg(so|s1,...,8n) < 1, clearly Pg(s) < Pg,(s-0)-.)

To avoid this degeneracy, we instead first define a new structure B’ that resembles B but replaces
the original X, with a new node — call it Y — and then makes X{j a new child of Y. For example,
this would transform the left-hand structure below into the right-hand one.

1
¥~ 4]
s {

The B’ CPtables are the same as the original B CPtables, just substituting Y for Xj; and setting
X{’s CPtable to make X, =Y. (E.g., cxy=tme = 1 and cx—yme = 0.) If we identify X{ with X,
then clearly B’ will behave exactly like B.

The question of whether X “fits in” now reduces to the question of whether the B’ network
which includes the Y — X link, is significantly better than the Bj, network, which excludes this
link. We can therefore re-use the Likelihood Ratio test, described in Section 4.1, to make this
decision.

Comments: (1) We earlier suggested a simple “cut-then-reconnect approach” to the task of dis-
connecting X¢ from B: just remove the links connecting X, to other nodes, and then connect Xj’s
parents to each other and to Xy’s children. We could not use this approach as our goal was to
pull Xy out “cleanly”, in a way that maintains the same dependencies, and basic parameterization,
amoung the non- X, nodes.

This “cut-then-reconnect” does achieve this goal when X has only a single parent. Otherwise,
when X has more than one parent, the reconnection step (needed to maintain the parent-grandchild
and parent-parent dependencies) can significantly change the parameterization: Suppose in B, X
has k parents and one child, Z, which also has k other parents. For binary nodes, this would require
k + 28 + k + 281 entries. After removing X and reconnecting, Z would have 2k parents, and so
the new belief net would require 2k + 22* parameters, a vastly larger quantity, which means the
new structure could express a much larger space of dependencies than the original B could.

(2) In general, we may want to consider deleting sets of features, rather than just a single
one. While we could write a greedy incremental algorithm that considers features one-at-a-time,
it is probably better to have an expert cluster together associated features (e.g., all of the features
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associated with the electrical system, or those associated with cooling, etc.), and then consider
including, versus excluding, all of this cluster of features — i.e., compare the belief net that includes
the complete cluster, with another that excludes it. (Of course, when this set has several parents
in the remaining structure, we will need to define a set of dummy nodes.)

(3) This task is not interesting in the query-based model: If the query explicitly mentions some
specific feature X, then we clearly cannot answer that query if we eliminate Xy from the belief
net. Alternatively, if the query does not mention Xy, then we get the same answer whether we

e first produce a new smaller belief net Bj, (by marginalizing out Xj) and then answer the query
from this Bj; or

e simply answer that query from the original B.

This is because the computation required to produce this answer, in fact, requires marginalizing
out Xj.

(4) Notice this issue — of detecting and deleting “bad” features — is orthogonal to removing a
tuple from the sample. As mentioned above, it is also a more dramatic step than either removing
or adding a link.

As an elaboration on both of the above points: the expert might decide to exclude some
features from only a subset of the sample — e.g., those instances which really required the single
fault assumption — but leave it in for the others.

5 Conclusion

Correcting the Differences: Our tools provide ways to identify the possible differences between
Bg and I4. So far, we have let the expert in the loop, by allowing him to decide how to fix the belief
net. Alternatively, there are sometimes ways to automate this correction process. For example,
we could produce a new system that would “blur” together the answers produced from Br and
14, perhaps weighting their respective answers by quantities inversely related to their respective
variances (see Section 3). Alternatively, if we had the “priors” for the two source, we could instead
use these as the weights, in a Bayesian manner.

Note also that many of our tools assume human guidance, e.g., to suggest which specific links
to consider adding or deleting. We suggested above some heuristics to help guide this search; we
are currently investigating their effectiveness.

Computing Error-Bars, in General: Section 3 presents a technique for determining the “vari-
ance” around the answer returned by a belief net, as a function of the samples used to instantiate
the net’s CPtable. This assumes that the net’s structure is known and fixed. We did not consider
the challenge of determining the variance around those answers when the samples were also used
to learn the structure, as this variance clearly depends on the particulars of the structure-learning
algorithm.

5.1 Contributions

Clearly, a DSS should work as well as possible; this become crucial when considering safety-critical
situations. We should therefore use as much information as possible when building and debugging
the DSS. This report considers the situation where a knowledgeable, but imperfect, expert has
produced a tentative system, and wants to improve it using information from another source. As
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that other information is also imperfect, we therefore provide the expert with a battery of tools,
to help him isolate where his system and the external source differ, and to determine when those
differences are significant. In particular, we provide a way to determine whether the observed
differences between the responses provided by his system, and another source, are statistically
significant. If so, he may want to scrutinize his belief net. We next provide some tools to help
perform this investigation, by determining where the belief net and the other source differ (i.e.,
which nodes, or which links). We also provide preliminary empirical evidence that these tools do
work effectively.

These tools used a non-central x?-test to compute the relative likelihood of two similar belief
nets, and a sensitivity analysis that provides the “error-bars” around the answers returned by a
belief net, as a function of the samples used to learn this belief net. We anticipate that these
techniques will have other independent applications.
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1 Proofs

Proof of Lemma 1: (from [GGS97)):

Given any belief net G, we can write

P(B) = Eq’eQ,r’ERP(BaQ:q,aR:rI)
— Syeorer ABIQ=¢, R=r) (Q=¢|R=r) P(R=r)
= PB|Q=¢,R=r) (Q=¢q|/R=r)P(R=r)
+Zq’€Q,q’;ﬁq,r’€R,r’;ﬁr P(B|Q:ql, R:rl) P(Q:qI|R:TI)P(R:rI)

(Here, we use P(x) to represent the value the belief net G would return for this query — Pg(x).)
Note that e;, = P(Q =¢|R =r). Hence,

0Pz(B)  0Pg(B)

9 eqlr ~ 0Pz(q|R) Pe(B|Q=¢,R=r) Pg(R=r)

Using this, and a similar expression for

P(A,B) = P(AB|Q=qR=r)P(R=r)
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we can compute the derivative of Po( A |B) = Pg( A, B)/Pgz(B), with respect to this CP-table

entry e, = Pe(Q = q| R = r): (To simplify the notation, we let g (resp., r) abbreviate Q = ¢
(resp., R=r).)
dP(A|B) _ P(B)P(AB|q¢r)P(r) — P(AB)P(B|gr)P(r)
Jegir P(B)?

= 55y [P(A,B|g,r)P(r) — P(A|B)P(B|g,r)P(r)]

)
= m[P(A,B,q,r)— P(AlB)P(Baqar)]
L [P(A,q,x|B) — P(A|B)P(q.x|B)

The penultimate line is obtained by multiplying both numerator and denominator by ey, and
reducing.

Note that this quantity is 0 if B d-separates A from ¢, r, just as you would expect. I

Proof of Theorem 4: The distributions over A and B, in G, require only Kk —14£—1 parameters;
in G, with the A — B link: k — 1 + k(¢ — 1) parameters. So we need k = (k — 1)(£ — 1) new
parameters; these are the “degrees of freedom” for the x? distribution. Our new parameterization
for G} will therefore consist of the ¢, = P(A=«a), ..., px-1 =P(A=k—1)andp; = P(B=1),
.., @—1 = P(B = £—1) parameters required to specify G, plus the new parameters 6;; = P(B =
i|A=j)—P(B=i),fori=1.4—1and j=1.k—1.
In general, we can recover

pi + 6ij ifi<l&j<k
. . B pi—(zj/<n91jlqjl)/P(A=l<;) ifi<l&j=k
PB=ilA=j) = 1= colpir + 0i5) ifi=0&j<kK

L= celpir — (XjcpOrjigi)/P(A=k)) fi=L&j=kK

We will write this “table” using the d;; = 0(B =1i) d(A = j) function, which is 1 iff both the
r.v. B has the value 7 and also the r.v. A has the value j; and otherwise is 0. Hence,

Vi<t j<r ij [Pi + 0ij]
+ Yicedin pi — (S5 0irgy) /P(A = 5)]
T Yjen e[ = Xico(pr + 0i5)]
+ dek[l = Xi(pr — (Xj<nOpjray) /[ P(A = K))]

As an example, if we are considering A € {«, 3,7} and B € {1,2, 3}, [call this G3x3] we would
use 4 new parameters:

P(B=i|A=j) =

1o = P(B=1|A=a) — P(B=1)
b = P(B=2|A=a) — P(B=2)
by = P(B=1|A=§) — P(B=1)
6os = P(B=2|A=p3) — P(B=2)
to augment ¢, = P(A = a), g = P(A =), pr = P(B =1) and pp = P(B = 2). This

produces the 8 parameters totals, which is the same as would be required using the typical encoding:
P(A=a), P(A=p) and

a| P(B=1|A=a) P(B=2|A=a)

a Dia P2a
B P1B P2p
v D1y D2y
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We would then write

P(B|A) = dio[P(B=1) + b14]
4+ dy[P(B=2) + 0]
+ dza[l = (P(B=1)+ P(B=2)) — (010 + 624)]
+ dig[P(B=1) + 61p]
+ dy[P(B=2) + O]
+ dsg[l — (P(B=1)+ P(B=2))— (613 + 05)]
+ diy[P(B=1) — (61090 + 015 95) /9,
+ doy[P(B =2) — (020 9a + 025 45)/¢,]
+ ds,[(1—P(B=1)—P(B=2))+ (01 + 020)qa + (015 + 025)45] /2]

where ¢, = P(A =7v) =1— go — g, of course.
We next need to take the derivatives of P(B|A), wrt each 6,. In general,
0lnP(B,A) OlnP(B|A) 1 [ Di ]
gaiL,4) _ 9RAPIA) g+ —d 4.2y
80@' 892] P(B|A) ij + 6 e K + ann
(The first equality uses the observations that P(B,A) = P(B|A)P(A) and P(A) does not
depend on 6;;.)
Continuing with the G3x3 example, we have

alné}f"“) = P(BI‘A) [dm + —dsa + —diy I+ d373_:]
OMPBA) A [dea + —dsa + —day® 4 dyy ]
Do) = oy [dis + —dss + —diZ + dgyZ]
81“59(2?”4) B\A [dzﬁ + —dzs + —d273 + d3’7q_ﬂ]

We next have to take the [(k—1)(£—1)]? second-derivatives, w. The diagonal elements
ij O

are relatively easy:

0*’InP(B,A) -1 Qi \9
: = dij +dg; =)*[d; d
96, ;2 P(B[A)? [[ ij + dej] + (qn) [di e + dix]
This follows from the observations that exactly one of the d;;’s is 1, and the others are 0, which
means each cross-term d;; dy,y, is 0, and d%j = d;j.
For off-diagonal elements, corresponding to (4,7 ) and (#', '), the expression will be
-1
m ;dr Cij Cz"j’

where the sum is over all terms d, that appear in BOTH %?A) and % (recall that
(3 ’L'j'

each cross-term is 0); and c;; (resp., ¢y;r) is the coefficient for this term. Hence, for G353 situation,
the associated matrix of all 16 2nd-derivatives is P(B_7|1A)2 X

diq + d3a + (%)2[‘117 + d3’y] d3o + (ZT) [d3’y] ngg [dl’y + d3’y] qaqﬁ [d37]
dsa + (2_3)2[‘13'7] dao + d3a + (q_:) [d2'7 + d3'¥] qzqﬂ [d3'y] qaqﬁ [d27 + d37]
L ldiy + dsy] te[ds, ] dip + d3p + (qﬁ )?[diy + d3s] d3ﬁ +(£)%[ds]
27 [ds)] a (2 + da»] dsp + (Zf) [ds,] dop + d3p + (f,f) [d2y + d,]
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We then use this to compute the M matrix, whose (ij) — (i'j') entry is

o ?InPy(S)
121 _ — “an an
MIED, @1 = ~Beam 5559,

over the sample S = {s,}. Note In P,(S) = InJ[,cq Ps(s) = |S|InPy(s), as S is a set of iid data.
To illustrate the general idea, consider the diagonal (ij) — (ij) entries:

M](i4), (i)] *InPy(B|A)

5] = han T
N 2 P((B = ba| A= a))g [dz’j +dgj + (L )2(dy, + d(in]]
ac{a,B,....k}, be{1,2,....0} - = "
N %P(B:b|A:a)|:d”+d£J+(qn) [dm‘l‘dlin]
= P(A=i) P(A=r) (P(Azi)>2 PA=i) . PA=¢)

Hence, in effect, we replace each d;; in the M[z,y| entry by %. There are corresponding

terms for the off-diagonal elements are well.

We now show that A = ©OT M © will include the term |S|(P(B = i) — P(B = i|A =
J ))2% for each 1, j. To simplify our notation, we will ignore the |.S|, which multiplies each
term.

Case 1: i </, j < k: Note the d;; term only appears in the 6;, #;-2nd-derivatives, and so the
P(B=i)
P(B=iTA=) |
in the  caleulation will be 0;; x M) (1j)0i, which is (P(B = i) — P(B =i| A = j))? il

as desired.

term only appears in the (ij) — (ij) diagonal position. The corresponding term from

Case 2: 1 =/, j < k: For each j, notice dy; will appear in each first-derivative of the form
%ﬁ‘m, and so the dy; term will appear in each 2nd derivative formed from any pair of these;

2
i.e., in each of the (k — 1)? terms %W. (See, for example, where ds, appears in the G3x3
i i',j

matrix.)

In the A computation, we will therefore see % multiplied by (e, 0-1 0;,;). Now
observe that > ey, ,-130i; = XiceP(B=ilA=j)-P(B=1i) = (1-PB=/{|A=
j)—(1—-—P(B={¢)) = P(B={)—P(B=/{|A=j), as desired.

Case 3: 1 < ¢, j = k: For each 7, notice d;, will appear in each first-derivative of the form
%ﬁ‘“ (multiplied by g—i), and so the d; ,, term will appear in each 2nd-derivative formed from
any pair of these; i.e., in each of the (£ — 1)? terms W. (See, for example, where do,
1, i
appears in the G3x3 matrix.)
In the A computation, we will therefore see % multiplied by r = (¥ jeq1,... -1} g2 0ii) -

Now observe that 3-;c (1, 1} 4j0ij = Xjcn@(P(B =1 A= j) P(B=1i)) = (L P(B=

i A=7)) - (Ejwq P(B=1)) = (P(B=1i)-P(B=iAd=k)-2jP(B=1iA=
j)—(1—-—P(A=k)P(B=1i) = ¢P(B=1) — P( = 4, A = k) which means r =
[qin(q,iP(B:i) — P(B=i,A=k))?=(P(B=1i) — P(B=1i|A=k))? as desired.
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Case 4: i = {, j = x: Notice the dy ,, term appears in EVERY first-derivative, %ﬁ,‘fl), in each

case multiplied by g—i — see d3y in G3x3. Therefore each (ij) — (¢'4') entry in the M will include
the term q;%"' %. Hence, in the A computation, this % will be multiplied by
(& izt 501 459:)? = (T2 (B =i) = P(B=i|A=k)])? = ((1-P(B=¢)) — (1-P(B =
L|A=k))2=(P(B=1{) — P(B=/{|A=k))? as desired. (The first equality uses the result
from Case3.)

To finish the proof, we need only observe that this enumeration covers all-and-only the terms

involves in the A computation. i
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