Appears in the

Proceedings of the Thirteenth International Conference on Machine Learning (IMLC-96),

Bari Italy, July 1996.

Exploiting the Omission of Irrelevant Data

Russell Greiner
Siemens Corporate Research
755 College Road East
Princeton, NJ 08540-6632

greiner@scr.siemens.com

Abstract

Most learning algorithms work most effec-
tively when their training data contain com-
pletely specified labeled samples. In many
diagnostic tasks, however, the data will in-
clude the values of only some of the at-
tributes; we model this as a blocking process
that hides the values of those attributes from
the learner. While blockers that remove the
values of critical attributes can handicap a
learner, this paper instead focuses on block-
ers that remove only irrelevant attribute val-
ues, Ie., values that are not needed to clas-
sify an instance, given the values of the other
unblocked attributes. We first motivate and
formalize this model of “superfluous-value
blocking”, and then demonstrate that these
omissions can be useful, by proving that cer-
tain classes that seem hard to learn in the
general PAC model — wviz., decision trees and
DNF formulae — are trivial to learn in this
setting. We also show that this model can be
extended to deal with (1) theory revision (i.e.,
modifying an existing formula); (2) blockers
that occasionally include superfluous values
or exclude required values; and (3) other cor-
ruptions of the training data.

1 INTRODUCTION

A diagnostician typically performs only a small frac-
tion of all possible tests; furthermore, the choice of
which tests to perform depends on the results of the
tests performed earlier in the diagnosis session. As an
example: Knowing that a certain positive blood test z;
is sufficient to establish that a patient has diseaseX, a
doctor can conclude that a patient has diseaseX after
performing only test z;, if that test result is positive.
In recording his findings, the doctor will only record
the result of this one test (x1,1) and the diagnosis

Adam J. Grove
NEC Research Institute
4 Independence Way
Princeton, NJ 08540
grove@research.nj.nec.com

Alexander Kogan
Rutgers University

RUTCOR; New Brunswick, NJ 08903

kogan@rutcor.rutgers.edu

diseaseX. N.b., the doctor does not know, and there-
fore will not record, whether the patient has symptoms
corresponding to tests xa,x3,...,2,.

A learner (a medical student, perhaps) may later ex-
amine the doctor’s files, trying to learn the doctor’s
diagnostic procedure. These records are quite “in-
complete”, in that the values of many attributes are
missing; e.g., they do not include the results of tests
zo through z, on this patient. However, within this
model, the learner can use the fact that these at-
tributes are missing to conclude that the missing tests
are not required to reach a diagnosis, given the known
values of the other tests. Hence, these omissions reflect
the fact that the doctor’s classifier (which the learner is
trying to learn) can establish diseaseX and terminate
on observing only that z; is positive.

This paper addresses the task of learning in this con-
text: when each training sample specifies the values
for only a subset of the attributes, together with that
sample’s correct class, with the understanding that the
supplied values are sufficient to classify this sample.
After Section 2 presents our formal model, Section 3
shows how easy it is to then learn arbitrary DNF for-
mulae (as well as decision trees) within this framework.
By contrast, neither of these two well-studied classes
is known to be learnable using completely-specified
training samples. It then presents a variety of exten-
sions to this basic model, to make it both more general
and more robust, dealing with: (1) the theory revision
task (i.e., modifying an existing formula), (2) degra-
dations in the training data (i.e., data which occasion-
ally includes superfluous values or excludes required
values), and (3) other corruption processes, such as
classification noise and attribute noise. The extended
paper [GGK96] presents the proofs of all theorems,
and other related results including a more comprehen-
sive treatment of decision trees. We close this section
by further motivating our framework and describing
how it differs from related work on learning from in-
complete data.

Faculty of Management; Newark, NJ 07102 /

Motivation and Related Work: Most implemented
learning systems tend to work effectively when very
few features are missing, and when these missing fea-
tures are randomly distributed across the samples.
However, recent studies [PBH90, RCJ88] have shown
that many real-world datasets are missing more than
half of the feature values! Moreover, these values
are not randomly blocked, but in fact “are missing
[blocked] when they are known to be irrelevant for clas-
sification or redundant with features already present in
the case description” [PBH90], which is precisely the
situation considered in this paper (see Definition 1).
Towards explaining this empirical observation, note
that a diagnosis often corresponds to a single path
through an n-node decision tree and so may require
only O(logn) tests; in this case there can be as many
as n — O(logn) test values that are simply irrelevant.
Our model of learning can, therefore, be applicable
to many diagnostic tasks, and will be especially use-
ful where the experts are unavailable or are unable to
articulate the classification process they are using.

Turney [Tur95] discusses a model that also assumes
that experts intentionally perform only a subset of the
possible tests. His model allows the system to use test-
cost to decide which tests to omit. By contrast, in our
model, the environment/teacher uses test-relevance to
decide which tests to present.

While there are several learning systems which are de-
signed to handle incomplete information in the sam-
ples (cf., [BFOS84, Qui92, LR87]), they all appear to
be based on a different model [SG96, SG94]. In this
model, after the world produces a completely-specified
sample at random, a second “blocking” process (which
also could be “nature”) hides the values of certain at-
tributes at random. Note that no useful information
is conveyed by the fact that an attribute is hidden in
a particular example.

Although the model in this paper also assumes that
a random process is generating complete tuples which
are then partially blocked, our model differs by deal-
ing with blocking processes that (try to) block only
“irrelevant” values; i.e., attributes whose values do not
affect the instance’s classification. Hence, we do not
lose much information if an attribute is blocked, as its
value is not needed for the classification. In fact, we
can learn a lot by knowing that an attribute is irrele-
vant. Note that this notion of relevance is not absolute:
an attribute may be irrelevant in the context of certain
other attribute values, and relevant in other cases.

The extended paper [GGK96] connects our model
with other notions of “(ir)relevance” [JKP94, Lit88]
and “teachers” [GM93], and differentiates it from
learnability models which either omit the class la-
bel [AS91, FGMPY4], or which change some attribute
values [SV88, Lit91, GS95].

2 FRAMEWORK

Following standard practice, we identify each domain
instance with a finite vector of boolean attributes
= (x1,...,2,); let X;, = {0, 1}" be the set of all pos-
sible domain instances. The learner is trying to learn
a concept ¢, which we view as an indicator function
¢: X, — {T, F}, where & € X,, is a member of ¢ iff
©(Z) = T. We assume the learner knows the set of pos-
sible concepts, C.! A “(labeled) example of a concept
¢ € C” is a pair (&, ¢(&)) € X, x {T,F}. We assume
there is a stationary distribution P: X, — [0, 1] over
the space of domain instances, from which random in-
stances are drawn independently, both during training
and testing of the learning algorithm.

To continue the earlier example, suppose the first
attribute x; in the instance & = (x1,...,24) cor-
responds to the blood test and the subsequent at-
tributes z2, z3 and x4 correspond (respectively) to
particular tests of the patient’s bile, melancholy and
phlegm. Then the instance (0,1,1,1) corresponds to
a patient whose blood test was negative, but whose
bile, melancholy and phlegm tests (z2, 23 and z4)
were all positive. Assume that the concept associated
with diseaseX corresponds to any tuple (z1,...,z4)
where either 27y = 1 or both z9 = 0 and z3 =
1. Hence labeled examples of the concept diseaseX
include ((1,0,1,1),7), ((1,0,0,0),7), ({(0,0,1,1),T),
and ((0,1,0,0), F). Further, P(Z) specifies the proba-
bility of encountering a patient with the particular set
of symptoms specified by Z; e.g., P({1,0,1,0)) = 0.01
means 1% of the time we will deal with a patient with
positive blood and melancholy tests, but negative bile
and phlegm tests.

In general, a learning algorithm L has access to a
source of labeled examples that allows L to draw ran-
dom labeled examples (Z, ¢(Z)) according to the distri-
bution P and labeled by the target (unknown) concept
¢ € C. L’s output is a hypothesis h € 2% (which may
or may not be in C). We discuss below how this model
relates to our model of blocking, and then discuss how
we evaluate L.

Model of “Blocked Learning”: In standard
learning models, each labeled instance (&, (%)) is
passed “as is” to the classifier. In our model, how-
ever, the learner instead only sees a “blocked ver-
sion” of (&, (%)), written “(8(Z),(Z))”. A blocker
B Xn — {0,1,%}" replaces certain attribute
values by the “blocked” (or in our case, “don’t

!To simplify our presentation, we will assume that each
attribute has one of only two distinct values, {0,1}, and
that there are only two distinct classes, written {7, F'}. It
is trivial to extend this analysis to consider a larger (finite)
range of possible attribute values, and larger (finite) set of
classes.

(8(2), o(2))

>

“RealWorld” N .
Sample Generator (#, o(2)) > Blogker
P() ((1100), T)

x

> Learner

((1 % %0), T

O

(Instance Z is unlabeled, unblocked)

Figure 1: Blocking Model

care”) token “¥” but otherwise leaves & and the la-
bel ¢(Z) intact; see Figure 1.2 Hence, a blocker
could map ((1,1,0,1),7) to (B({1,1,0,1)),T) =
((1,%,%,%),T), or (8({0,1,0,1)), F) = ((*,1,0,%), F');
but no such blocker can map ((1,1,0,1),7) to either
((1,0,0,1),7), or ((1,1,0,1),%). Let X;; = {0,1,*}"
denote the set of possible instance descriptions.

This paper considers superfluous-value blockers: i.e.,
blockers that only block attribute values that do not
affect an instance’s classification, given the values of
the other unblocked attribute values. To state this
more precisely:

Definition 1 (“Superfluous™) Let ¢ € C be a con-

cept over attributes {x1,...,2,}. Then:

(1) A subset of atiributes, say {&ms1,...,2Tn}, is su-
perfluous given a particular assignment to the
remaining values {x1 — v, ..., Tm — Uy}
(where each v; € {0,1} is a specified value) iff,
for any assignment Tpyy1 > Umg1 .., T > V!

(v, ..) = e(v1, ..., vm,0,...,0).
That s, the values of the superfluous variables do
not affect the classification.

s Umy - -

(2) A function : X, — X is a superfluous value
blocker if it only blocks superfluous atiributes; i.e.,
if B({v1,...,0n)) = (V1,...,Um,*,...,%) then the
attributes {@my1,..., 2.} are superfluous given
the partial assignment { 21 — vy,

For example, 5((1,0,1,1)) = (x,0, 1, %) is allowed only
if all four instances (0,0,1,0), (0,0,1,1), (1,0,1,0),
and (1,0, 1, 1) have the same classification. According
to this definition, a “blocker” which never blocks any
attributes at all qualifies. However, as we see later,
the interesting cases arise where most or all of the
superfluous attributes are in fact blocked.

To motivate our model, consider the behavior of a
classifier d; using a standard decision tree, @ la CART
[BFOS84] or c4.5 [Qui92]. Here, given any instance,
d; will perform (and record) only the tests on a sin-

2This is a slight abuse of notation, as # may be stochas-
tic. This caveat also applies to Definition 1.

T

d b [l e

d b

gle path through the tree. The other variables, corre-
sponding to tests that do not label nodes on this path,
do not matter: d; will reach the same conclusion no
matter how we adjust their values. Section 3 extends
this idea to general DNF formulae.

Performance Criterion: We use the standard
“Probably Approximately Correct” (PAC) crite-
rion [Val84, KLPV87] to specify the desired perfor-
mance of our learners. For any hypothesis h, let
Err(h) = P(z : (&) # h(&)) be the probability that

h will misclassify an instance £ drawn from P. Then,

Definition 2 (PAC-learning) Algorithm L PAC-
learns a set of concepts C if, for some polynomial func-
tion p(---), for all target concepts ¢ € C, distributions
P, and error parameters €,6 > 0, L runs in time at
most p(%, %, l¢]), and outputs a hypothesis h whose er-
ror is, with probability at least 1 — 6, less than ¢; i.e.,

VP € “distribution. on X,”, ¢ €C, €,6 >0,
P(Err(h)<e) > 1-6.

In this definition, |¢| is the “size” of the concept ¢ (de-
fined below), and the probability “P(Err(h) < €)” is
taken over the space of all samples of the appropriate
size, which is simply the product distribution induced
by P(&). Note also that the number of instances seen
by L can be at most L’s running time, and thus is
also polynomial in %, % and |p|. Finally, notice that
the learner is expected to acquire a classifier that has
high accuracy on completely specified instances, even
though it was trained on blocked values. This is rea-
sonable as we are assuming that, after learning, the
classifier (read “doctor”) will be in a position to spec-
ify the tests to be performed.

Notation: Let D./\f]:nys be the set of DNF formulae,
over the n boolean variables x4, ..., x,, with at most s
terms; and let DA F, = Us Dmes be the set of all
DNF formulae over z1,...,2z,. For any DNF formula
¢ € DNF,, we let |¢| be the number of terms in
o. Let k-DNF, be the class of DNF formulae whose
terms include at most & literals. In particular, each
member of O(log n)-DN F, is a disjunction of terms,

5 each of which has only O(logn) literals.

3 RESULTS: LEARNING DNFs

For any target DNF formula ¢ =,V ---V{,, the 8,
blocker does the following:

e Given a positive instance (&,7), f, leaves un-
blocked exactly the variables of one of the terms
in ¢ that & satisfies (i.e., B,(&) returns some t;
such that ¢;(Z) = 1).

e Given a negative instance (Z, F'), 8,(&) is an im-
plicant of =g constructed from . That is, for
each t;, there is at least one unblocked variable
from & in B, (&) that appears with the opposite
sign in ;.

For example, the 8,, blocker for the formula ¢, =
Z1Zowz V x1x2Z4 V xix426, would leave unblocked
the variables of exactly one of these terms for any
positive instance; so here f£,,((1,1,1,0,0,0,0)) =
(1,1,%,0,%,%) (based on the second term). For neg-
ative instances, perhaps B,,((1,1,0,1,1,1,0)) =
(L, %, %, 1,%,0).

Although the notation suggests that 3, is functional,
there might be several distinct terms ¢; that the
blocker could return for a given positive instance z,
whenever Z is implied by several terms in ¢. None of
our later results change if the blocker chooses among
the possibilities stochastically, so long as the choice
process is stationary for positive instances. For nega-
tive instances we do not even require stationarity.

On the other hand, a blocker can also be determin-
istic. For instance, consider a blocker that imposes
a specific order on the terms in the target DNF for-
mula, and also an order on the literals within each
term. Then given a positive instance z, this blocker
examines the DNF terms in the given order until find-
ing one that is satisfied, and then returns this term.
For each negative example Z, this blocker collects lit-
erals by walking through the terms, and for each term,
including the first variable that occurs with opposite
sign to its appearance in Z.

3.1 THE SIMPLEST CASE

Let LEARN-DNF be the trivial algorithm that, given

the relevant parameters, simply requests
s s
MDNFin,s = —In—

€ 6

samples, then forms a DNF by disjoining the observed
positive samples. Then:

Theorem 1 For any ¢ € DNF,,, any values of
€,6 € (0,1) and any distribution over instances P,
under the BPNF) model, LEARN-DNF(n, s, ¢,6) re-
turns a DNF formula ¢' € DN'F, ; whose error (on
unblocked, unlabeled instances) is, with probability at

Algorithm BUILD-DT(S: set_of_samples): DT _Type
// Builds a tree using labeled blocked samples S
Let NT be a new tree
If (all s€S labeled with same label, £)
or (S is empty) Then
NT.Leaflabel = £ (or “...= F” if |3|=10)
Return(NT)
Let z; = variable that is unblocked for all s€S
Lot 8° = { (3—{z:/0}, £) } | (3,00 €5, z./0€)
s ={ (G-{n/1}, O} | (5,0€S n/ici)
// That is, create S° by assembling instances in S
// which include z; /0 (and then project out ;).
// Similarly, create 8' based on z;/1 instances.
Let NT.InternalNodeLabel = z;
NT.If0 = Bup-DT(s°)
NT.If1 = Bumwp-DT(8')
Return(NT)
End BUILD-DT

Figure 2. BuiLp-DT Algorithm

least 1 —6, at most €. Moreover, LEARN-DNF requires
21n £ blocked, labeled, samples, and will return a DNF
formula with at most |p| terms. Notice LEARN-DNF
uses only positive samples.

By contrast, learning arbitrary DNF formulae in the
standard model is one of the major open challenges of
PAC-learning in general [Ang92].

Many learnability results are expressed in terms of the
size of the smallest DNF formula for a concept. How-
ever, our result deals explicitly with the specific for-
mula that the environment (aka “teacher”) is using,
and hence our results are of the form “the computa-
tional cost is polynomial in the size of the formula
considered”. Unfortunately, this formula could be ex-
ponentially larger than the smallest equivalent DNF
formula. Also, while LEARN-DNF (and Theorem 1)
require a bound s on the size of the target formula,
we can avoid this by using the standard technique of
successively doubling estimates of s [HKLW91].3

Relation to Decision Trees: The correctness of
LEARN-DNF immediately implies that decision trees
are also trivial to learn in our model. In particular, any
decision tree d can be converted into a DNF formula
wq by disjoining the “path-conditions” leading to the
all T-labeled leaf nodes, where each “path-condition”
is the conjunction of the test-results performed on a

?Le., the more general learning algorithm LEARN-DNF’
first draws a set of samples based on the assumption that
s = 1, and calls LEARN-DNF on this set. It accepts the
learned formula has only 1 term; otherwise, LEARN-DNF’
draws a set of samples based on s = 2, calls LEARN-DNF,

and accepts if the formula has at most 2 terms. If not,
it successively tries s = 4, s = 8, s = 16, ..., until it
succeeds.

Algorithm MODIFY-DNF (¢inis :
4r 27

DNF_Type; n,r:

N; a,e,6 €(0,1)): DNF_Type

Draw m, = >Zln = training (blocked, labeled) samples
// Alternatively, if o is not known a priori, we can instead collect 4?Tln = samples
// that @init does not label correctly (i.e., either mislabels, or is unable to label)
Let St = positive samples that @;ni¢ either can’t classify or classifies as F;
ST = negative samples that @;n;; either can’t classify or classifies as T.

Let T=51tU Qinit «

2r

// Le., T includes both un- and mis-classified positive exzamples, and the terms from @iniz.
Remove from 7' any term that is consistent with some term in S .
// E.g., the negative example x1Z2 € S~ will remove from T the terms z1 and T3zs, but not T1zs.

Return disjunction of terms in 7'.
End MODIFY-DNF

Figure 3: The MoDIirY-DNF algorithm for modifying an initial DNF formula

path. The natural decision-tree blocker, 34, for deci-
sion tree d simply returns the tests that are performed
when traversing d in the process of classifying a given
instance. Notice that this means (; returns a term of
wq when given a positive instance, and a term of =4
when given a negative instance, which shows that G,
qualifies as a DNF-blocker for ¢4. Thus LEARN-DNF
can be used, without change, to learn a DNF repre-
sentation of d. However, the BuUiLD-DT algorithm
(Figure 2) learns the decision tree directly (i.e., as a
tree) and does not use the DNF representation even
as an intermediate step. This algorithm is correct,
in the same PAC sense used in Theorem 1, whenever
it is given at least |S| > L (sIn(8n)+In) samples.
(Here, s bounds the number of leaves in the decision
tree.) Thus, this algorithm can be significantly more
efficient than LEARN-DNF if s > n; see [GGK96] for
more discussion.

3.2 THEORY REVISION

In many situations, we may already have an initial
DNF @, that is considered quite accurate, but not
perfect. This subsection describes ways of using a set
of labeled samples to improve @;,;¢; i.e., to form a
new theory @petrer that is similar to pini, but is (with

high probability) more accurate. We let B(T%NF) re-
fer to this model where the TR designates “Theory
Revision”, corresponding to the many existing sys-
tems that perform essentially the same task, albeit
in the framework of Horn-clause based reasoning sys-
tems; cf., [WP93, MB88, OM90, LDRG94].

There are several obvious advantages to theory revi-
sion over the “grow from scratch” approach discussed
in the previous section. First, notice from Theorem 1
that the number of samples required to build a DNF
formula is proportional to the size of the final formula,
which can be exponential in the number of attributes.
So, given only a small number of labeled samples, we
may be unable to produce an adequate theory, much
less the optimal one. We show below that this same set

of samples may, however, be sufficient to specify how
to improve a given initial theory. Another advantage
of the theory revision approach is that it facilitates
“learning while doing”. That is, we could use the ini-
tial po = @iniz to classify (unlabeled) instances as they
are seen. If p(’s label is found to be incorrect, we then
consult an expert who provides the correct label, pos-
sibly after asking for (and receiving) the values of the
critical attributes that ¢g had inappropriately judged
to be superfluous. The learner can use this informa-
tion to form a new formula, call it 7, which it then
uses as its classifier. The theory revision process then
iterates: consulting the expert if ¢; produces an incor-
rect label, and using that new information to produce
a newer, better @2, and so forth. Here, the total num-
ber of expert consultations could be much less than if
we began with an empty tree.

Stated more precisely, we assume our initial
theory @ini: € DN F, has classification error a =
Pr(¢init A @eor), Where @0 is the correct target the-
ory and ©;nit A @cor 18 the set of instances on which
winit and .o disagree; that is, it is the symmet-
ric set difference between instances satisfied by the
two concepts. Our goal is to produce a new theory
¢' € DNF, whose error is, with probability at least
1 —46, at most € x a. We want to do this using a num-
ber of samples that is polynomial in 1/e, 1/¢, In(1/6)
and in some measure of the “difference” between our
current theory and ... For this purpose, we use the
measure:

r(ﬁpcor; ‘Pznzt) = |<Pcor _‘pinitl + |‘pinit_‘;0cor|

which is the syntactic difference between @;ni¢ and @eor
— 1i.e., the total number of terms that must be either
added to, or removed from, @;,;; to form the desired
©Veor.t Here, we assume that each complete sample is
drawn at random from a stationary distribution, then

tOf course, this “@cor — @init” is the set-difference be-
tween the set of terms in cor and the set in @in;:. We will
often view a DNF formula as a set of its terms.

“RealWorld” (%, p(&)) _ | Blocker

Degrader (v(B(%)), (%))

Y
=

P() {((1100), T)

> Learner

v ((*1 % 0), T)

Figure 4: Blocking, then Degradation, Model

blocked according to the §,,,, blocker (i.e., the blocker
based on the target ¢, formula).

We can achieve this task using the MoDIFY-DNF al-
gorithm shown in Figure 3:

Theorem 2 Given any target s-term DNF formula
Yeor € DNFyn s, let ping € DNF, be an ini-
tial formula whose syntactic difference is r =
"(Qeor, Pinit) and whose classification error is a =
Pr(ocor A@init) > 0. Then, for any wval-
ues of €,6 € (0,1) and any distribution P, under
the BPNE) ‘model using the Bee., blocker, MODIFY-
DNF(@init, n, 7, o, €,8) will return a formula ¢' €
Dan,sM; whose error (on unblocked, unlabeled in-
stances) is, with probability at least 1—6, at most o x €.
Moreover, MoDIFY-DNF requires O(L In %) blocked
labeled samples.

Note that MoDIFY-DNF’s sample complexity does not
depend on s, but rather on r, which could be much
smaller than s. On the other hand, MoDiFY-DNF’s
computational complexity does depend on s, as it has
to consider all of ;,;:’s terms, and there could be as
many as s + r of these.

If we do not know r in advance, we can use the stan-
dard iterative doubling technique to find an appropri-
ate value. But in this case, it may make sense to run
this MoDIFY-DNF algorithm in parallel with LEARN-
DNF, and stop as soon as either algorithm finds an ac-
ceptable candidate theory. The sample complexity of
the resulting pair-of-algorithms is linear in min{r, s},
which is an advantage if, for example, r is in fact expo-
nentially larger than s. This allows us to avoid wasting
many samples “unlearning” @ins;.

The formula ¢’ returned by MobpIFY-DNF has the
property that it agrees with each training sample seen;
ie., if it used the sample (&, T), then ¢'(&) = T, and
if it used (z, F), then ¢'(Z) = F.

Finally, notice that Theorem 2 assumes that each in-
stance is blocked by the blocker 3, .. [GGK96] mo-
tivates and discusses other meaningful blocking mod-
els, and also connects this theory revision idea with
the notions of “on-line algorithms” and “anytime al-
gorithms” [DB88]. Finally, it also presents algorithms
for modifying decision trees.

Classifier

3.3 TRAINING-DATA DEGRADATION

So far our B(PNF) model has assumed that the blocker
removes all-and-only the superfluous attribute val-
ues. There may, however, be cases where the envi-
ronment/teacher reports an irrelevant value, or fails
to report a relevant one. In general, we can model this
by assuming that a “degradation module” can interfere
with the blocked data, degrading it before presenting
it to the learner. This subsection presents a range
of results that deal with several types of degradation
processes. In all these results, we assume blocking is
done with the standard BPN¥) model. Furthermore,
we continue to use the PAC criterion for evaluating
learning algorithms. In particular, we judge success
by performance on complete (unblocked, undegraded)
instances even though training is done with blocked
and possibly degraded samples.

3.3.1 Attribute Degradation

The 'yﬁ‘g degrader randomly degrades each blocked
training instance, on an attribute-by-attribute basis:
If the blocker passes unblocked the attribute #; (i.e.,
views z; as relevant), then the 73? degrader will, with
probability p;, reset z;’s value to *; and with proba-
bility 1 — p;, simply pass the correct value. Similarly,
if the blocker has set Iz)mttribute z; to * (i.e., views z;

as irrelevant), the 'yg‘ﬁ degrader will, with probabil-

ity v, reset @; to its unblocked value; otherwise, with
probability 1 — v;, 1t will simply pass z; = *. Notice
the values of p; can differ for different ¢’s, as can the
values of v;. It is important to realize that this degra-
dation process never changes 1 to 0 or 0 to 1; the only
“noise” it introduces concerns whether an attribute is
relevant or not.

For any p,v € [0,1], we say a learning algorithm
can learn with (p,v) attribute degradation if it can
: AD

PAC(e, 6)-learn given any vz degrader, where each
wi < pand v <w.

The previous sections all implicitly used the 'yg‘é) de-
grader, to show that we can learn with p; = v; =0. It
is easy to show that there are some upper bounds on
the amount of degradation we can tolerate.

Proposition 3

1. Learning DN'F, ; with (0, 1) attribute degrada-

tion is as hard as learning D./\ff/:nys in the stan-

Algorithm LEARN-DNF*(n,s,k: N €,6 €(0,1)): DNF_Type
Draw myu, = 8 (log 1)(%£21n £2)***! training (blocked, degraded and labeled) samples

€] €
Let ST be the first at most 855 +

Let ST be all the negative samples seen.
Let C be set of all size-2k subsets of ST.
Initialize T' = .
For each c= {cV,...,*®} e C:
// Propose a candidate t = (t1,. ..
For each t=1...n

4s

num;(c, +) = |{C(J) . ng) = “47

Let numi(c, =) = [{9) : ng) _ «_»
num(c,*) = |[{c9) : CEJ) = “x7}]
Let t; = argmax{ num;(c,x):x € {1,0,*} }
// Decide whether to accept term t = (t1,. ..

els™|
40|

If t contradicts at least

Add t to T'.
Return the disjunction of terms in 7.
End LEARN-DNF#*

In =* positive samples seen.

,tn) by component-wise voting

}H
|

,tn>

of the terms in S,

Figure 5: The LEARN-DNF#” algorithm for (1/8n'/% 1/8n'/* ¢/(8m,,), 1) degradation.

dard model (with complete attributes).

2. Learning DN'F, , with (%, %) attribute degrada-
tion is as hard as learning D./\ffms in the stan-

dard model.

3. It is impossible to learn DN'F, s with (1,0) at-
tribute degradation.

There are, however, algorithms that can learn with
small amounts of degradation. First, it is relatively
easy to learn from positive examples alone, with up
to O(Inn/n) degradation of either single type, alone.
In each case, given this degradation we can expect to
see the important terms in the DNF formula at least
once, and identify them as such (rather than as de-
graded terms). Below, we consider y and v less than
min{k'22 0.5} for some constant k. (The actual al-

gorithms appear in [GGK96].)

Theorem 4 It is possible to PAC-learn DNF, ;
with (O,klnT") attribute degradation (resp., (k’lnT", 0)

sn2k

€

attribute degradation), using O(

(resp., 0(322%
tiwe examples.
Moreover, it is possible to PAC-learn (clogn)-DNF
with (u,0) attribute degradation, using positive ezam-
ples alone, for any (known) value of p bounded away

from 1.

In$) examples

In £) examples), and using only posi-

Finally, we can also learn with both types of degra-
dation. To see this result in its best light, it is useful
to distinguish between the degradation rate for posi-
tive instances and negative instances. In particular,

the 7?(2),17(+),;1(—),17(—) degradation model will apply

(i), 7)) attribute degradation to each positive in- 7

stance, and apply (ji{=), 7(~)) degradation to negative
instances: Hence, given an instance ((1,0,%,1),T), it
will change #; = 1 to * with probability ,u(1+), and
change 23 = * to (say) 1 with probability I/§+). But
given the instance ((1,0,%,0), F'), it will change #; =1
to * with probability ,u(l_), and change 23 = * to (say)
1 with probability 7). As we see shortly, i(~) degra-

dation can be very disruptive. In contrast, our next
result is unaffected by arbitrary 7(~) degradation.

Here, this result shows that, if we receive both pos-
itive and negative examples, we can deal with pos-

itive degradation of order O(n_%), for arbitrary k.
This degradation is sufficiently large that we may
not ever see an entirely correct (i.e., completely un-
degraded) term, within polynomially many samples.
However, we can recover terms by collecting all (;1)
subsets of size 2k positive samples, and “voting”
(see [KMR*94]). That is, we construct a term from
each size-2k subsample by considering each variable z;
in turn, and setting it to 0, 1, or * according to which
value is given most often to z; in the subsample. Even
if a term is unlikely to ever appear without any degra-
dation, this voting procedure can recover it. Of course,
the procedure will also generate terms that should not
be included in the learner’s hypothesis; we use the neg-
ative examples to filter out these inappropriate terms.
Unfortunately, we can tolerate much less degradation
for negative examples. The following result requires
=) < €/(8my,), where my, is the (polynomial size)
quantity given in Figure 5.

Theorem 5
The LEARN-DNTF# algorithm (Figure 5) can learn

DN F, s with (n=*%/8, n"% /8, €/(8myy), 1) attribute
degradation, using O(%(ln %)(% In %)2’“‘“) examples.

3.3.2 Adversarial Degradation

The previous section considered probabilistic degrada-
tion, of the sort that might arise from a noisy commu-
nication channel. A different model regards the degra-
dation process as a malicious adversary, who knows
the DNF formula, the sample distribution, the blocker
and even our specific learning algorithm, and has some
(limited) power to alter examples in an arbitrary fash-

1011.

The 'y,(cA’ tinst) adversary can change up to k attributes
in each instance, for some constant k. That is, for each
such attribute, the adversary can reveal any of 0, 1, or
%, no matter what the actual value is, or whether it
was originally blocked. Unfortunately:

Proposition 6 It is impossible to learn DN'F,, ; with

adversarial degradation 'ygA’ tinst)

The less powerful ’y](cA’ tinst) (resp., 7,(;4’ _m”)) de-
grader can only degrade positive (resp., negative) sam-
ples.

Theorem 7 It is possible to learn DNF, , under
'y](cA’ﬂmU degradation, for any constant k. This holds
even if there is also (n_%/B, n_%/S, e/(8myy), 1) at-
tribute degradation.

It is possible to learn DN'F, under %EA, ~inst) degra-
dation, for any constant k. This holds even in the
presence of (0,0(Inn/n), 1,1) attribute degradation.

A quite different type of degradation occurs if an ad-
versary can arbitrarily change instances [KL93]. How-
ever, we assume that the adversary has to pass a
certain fraction of instances unchanged; i.e., on each
instance the adversary will, with probability 1 — 7,
show the learner exactly the appropriate blocked in-
stance. However, with probability 7, the adversary
can replace the instance with anything else, as long
as the same class label is unchanged. (E.g., if the
target concept is ¢ = z1zy and the blocked labeled
instance is (z122, T'), the adversary may replace this
instance with say (Zizg, T, even though the correct
label for 129 is not T. It cannot, however, replace this
(z129, T) with (Z129, F), nor even with (z22, F).)
Under 7,(7A’ +samp) (resp., 7,(7A’ _samp)) degradation, the
adversary has the power to change positive (resp., neg-
ative) examples in this fashion.

Proposition 8
It is possible to PAC-learn DN'F, ; with 77(7A7+5<1mp)

degradation for any constant n < 1. This holds even 8

if there is also (n_%/& n_%/& €/(8myy), 1) attribute
degradation.

It is possible to PAC-learn Dmes with ygA’_samp)
for any constantn < 1. This holds even in the presence
of (0,0(Inn/n), 1,1) attribute degradation.

The extended paper [GGK96] also proves it is possible
to learn Danys with:

e classification noise of o < 0.5 (i.e., stochastically
changing the label of an instance with probability
bounded by «),

e attribute noise of p < n_%/16 (i.e., stochastically
changing the value of an attribute with some prob-
ability bounded by p).

It also discusses when we can learn in the presence of
combinations of various degradation processes.

4 CONCLUSION

Most learning systems are designed to work best
when the training data consists of completely-specified
attribute-value tuples. To the extent that the issue has
been considered, missing attribute values have gener-
ally been regarded as extremely undesirable. The main
point of this paper is that sometimes the opposite is
true. Sometimes the fact that an attribute is missing
is very informative: it tells us about relevance. This
information can be so useful that very hard problems
become trivial.

Moreover, this exact situation, where missing infor-
mation can be useful, can occur in practice. Most
classification systems perform and record only a small
fraction of the set of possible tests to reach a classifi-
cation. So if training data has been produced by such
a system — as in our motivating example of a student
examining medical records — our model of superfluous
value blocking seems very appropriate.

This paper provides several specific learning algo-
rithms that can deal with the partially-specified in-
stances that such classification systems tend to pro-
duce. We show, in particular, that it can be very
easy to “PAC learn” decision trees and DNF formulae
in this model — classes that, despite intense study,
are not known to be learnable if the learner is given
completely-specified tuples. We then show how these
algorithms can be extended to incrementally modify
a given initial DNF formula, and finally extend our
model to handle various types of “corruption” in the
blocking process (so that a missing value is an unre-
liable indicator of irrelevance), as well as noise pro-
cesses.

Acknowledgments

Note that this is an extended version of the paper,
“Dealing with (Intentionally) Omitted Data: Exploit-
ing Relative Irrelevancies”, which appears in working
notes of the 1994 AAAI Fall Symposium on “Rele-

vance”, New Orleans, November 1994.

We gratefully acknowledge receiving helpful comments
from R. Bharat Rao, Tom Hancock, Dan Roth, Dale
Schuurmans and George Drastal.

References

Ang92] D. Angluin. Computational learning the-
g g g
ory: survey and selected bibliography. In STOC-92,
pages 351-369. NY, 1992.

[AS91] D. Angluin and D. Slonim. Learning mono-
tone DNF with an incomplete membership oracle.

In COLT-91, p. 139-146, 1991.
[BFOS84] L. Breiman, J. Friedman, J. Olshen, and

C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, 1984.

[DB88] Thomas Dean and Mark Boddy. An analysis
of time-dependent planning. In AAAI-88, p. 49-54,
August 1988.

[FGMP94] M. Frazier, S. Goldman, N. Mishra, and
L. Pitt. Learning from a consistently ignorant
teacher. In COLT-94, p. 328-339. ACM, New York,
1994.

[GGK96] Russell Greiner, Adam Grove, and
Alex Kogan. Knowing what doesn’t mat-
ter. Tech. report, Siemens Corp. Res., 1996.

ftp://scr.siemens.com/pub/learning/Papers/
greiner/superfluous-journal.ps

[GM93] S. Goldman and D. Mathias. Teaching a
smarter learner. In COLT-93, p. 67-76. ACM, New
York, 1993.

[GS95] S. Goldman and R. Sloan. Can PAC learning
algorithms tolerate random attribute noise? Algo-
rithmica, 14(1), 1995.

[HKLW91] D. Haussler, M. Kearns, N. Littlestone,
and M. Warmuth. Equivalence of models for polyno-
mial learnability. Inform. Comput., 95(2):129-161,
December 1991.

[JKP94] G. John, R. Kohavi, and K. Pfleger. Irrele-
vant features and the subset selection problem. In

IMCL-94, p. 121-129, 1994.

[KL93] M. Kearns and M. Li. Learning in the presence
of malicious errors. SIAM J. Comput., 22:807-837,
1993.

[KLPV87] M. Kearns, M. Li, L. Pitt, and L. Valiant.
On the learnability of boolean formulae. In STOC-
87, p. 285295, 1987.

[KMR*t94] M. Kearns, Y. Mansour, D. Ron, R. Ru-
binfeld, R. Schapire, and L. Sellie. On the learnabil-

ity of discrete distributions. In STOC, p. 273-282,
1994.

[KR93] E. Kushilevitz and D. Roth. On learning visual
concepts and DNF formulae. In COLT-93, p. 317-
326. New York, 1993.

[LDRGY94] P. Langley, G. Drastal, B. Rao, and
R. Greiner. Theory revision in fault hierarchies. In
Workshop on Principles of Diagnosis, New Paltz,
1994.

[Lit88] N. Littlestone. Learning quickly when irrel-
evant attributes abound: A new linear-threshold
algorithm. Machine Learning Journal 2:285-318,
1988.

[Lit91] N. Littlestone. Redundant noisy attributes,
attribute errors, and linear threshold learning using
Winnow. In COLT-91, p. 147-156, 1991.

[LR87] J. Little and D. Rubin. Statistical Analysis
with Missing Data. Wiley, 1987.

[MB88] S. Muggleton and W. Buntine. Machine inven-
tion of first order predicates by inverting resolution.
In ICML-88, p. 339-51. Morgan Kaufmann, 1988.

[OM90] D. Ourston and R. Mooney. Changing the
rules: A comprehensive approach to theory refine-
ment. In AAAI-90, p. 815-820, 1990.

[PBHY0] B. Porter, R. Bareiss, and R. Holte. Con-
cept learning and heuristic classification in weak-
theory domains. Artificial Intelligence, 45(1-2):229—
63, 1990.

[Qui92] J.R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1992.

[RCJI88] K. Ruberg, S. Cornick, and K.A. James.
House calls: Building and maintaining a diagnos-
tic rule-base. In 3rd Knowledge Acquisition for
Knowledge-Based Systems Workshop, 1988.

[SG96] D. Schuurmans and R. Greiner. Learning
to classify incomplete examples. In Computational
Learning Theory and ‘Natural’ Learning Systems,
1V, MIT, 1996.

[SG94] D. Schuurmans and R. Greiner. Learning de-
fault concepts. In CSCSI-94, p. 519-523, 1994.

[SV88] G. Shackelford and D. Volper. Learning k-DNF
with noise in the attributes. In COLT-88, p. 97-103,
1988.

[Tur95] P. Turney. Cost-sensitive classification: Em-
pirical evaluation of a hybrid genetic decision tree
induction algorithm. Journal of AI Research, 2:369—
409, 1995.

[Val84] L. Valiant. A theory of the learnable. Com-
munications of the ACM, 27(11):1134-42, 1984.

[WP93] J. Wogulis and M. Pazzani. A methodology
for evaluating theory revision systems: Results with

Audrey II. In IJCAI-93, p. 11281134, 1993.

