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Abstract. We investigate the problem of using function approximation in rein-
forcement learning where the agent’s policy is represented as a classifier mapping
states to actions. High classification accuracy is usually deemed to correlate with
high policy quality. But this is not necessarily the case as increasing classification
accuracy can actually decrease the policy’s quality. This phenomenon takes place
when the learning process begins to focus on classifying less “important” states.
In this paper, we introduce a measure of state’s decision-making importance that
can be used to improve policy learning. As a result, the focused learning process
is shown to converge faster to better policies1.

1 Problem Formulation and Related Work

Reinforcement learning (RL) [11] provide a general framework for many sequential
decision-making problems and has succeeded in a number of important applications.
Let S be the state space,A the action set, andD the start-state distribution. A policy is
a mapping from states to actions:π : S 7→ A. The state- and action-value functions are
denoted byV π(s) andQπ(s, a), respectively [11]. The quality of a policyπ is measured
by policy value[10]: V(π) = Es0∼D V π(s0). A RL agent attempts tolearn the optimal
policy with maximal value:π∗ = arg maxπ V(π). The corresponding optimal state-
and action-value functions are denoted byV ∗(s) andQ∗(s, a), respectively.

In this paper, we focus on classification-based RL methods where a policyπ is rep-
resented as a classifier labeling states with actionπ(s). Then learning a policyπ is
reduced to learning a classifier [4, 6, 7, 12]. Recent implementations of this idea have
demonstrated promising performance in several domains by learning high-quality poli-
cies through high-accuracy classification. It should be noted, however, that in sequen-
tial decision-making the classification error isnot the target performance measure of a
reward-collecting agent. Consequently, increasing classification accuracy can actually
lower the policy value [9]. An intuitive explanation is that not all states are equally
important in terms of preferring one action to another. Therefore, the classification-
based RL methods can be improved byfocusing the learning process on more important
states. The expected benefits include faster convergence to better policies.

We examine the so-calledbatch reinforcement learningin which the policy learning
occursoffline. Such a framework is important wherever online learning is not feasible
(e.g., when the reward data are limited), and therefore a fixed set of experiences has

1 Due to space limitation, only deterministic policy with binary actions are discussed. Details
and extensions can be found in [9].
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to be acquired and used for offline policy learning [2, 8]. In particular, we are inter-
ested in a special case where the state space issparsely sampledand the optimal ac-
tion values for these sampled states are computed or at least estimated. The sampled
states together with their optimal action values form the training data for batch learn-
ing: TQ∗ = {〈s, a,Q∗(s, a)〉|s ∈ T ⊂ S, a ∈ A}, whereT is the sparsely sampled
state space. The assumption of knowing the optimal action values may at first seem un-
realistic. However, a technique calledfull-trajectory-tree expansion[5, 8] can be used
to compute or estimate such values. This technique is especially useful in domains
where good policies generalize well across problems of different sizes: the agent can
first obtain a good policy on problems with tractable state space where the technique is
applicable, and then generalize the policy to larger problems.

With the training dataTQ∗ , the optimal actions can be computed:∀s ∈ T , a∗(s) =
arg maxa Q∗(s, a) and the training data for learning a classifier-based policy are formed:
TCI = {〈s, a∗(s)〉|s ∈ T }. Finally, the optimal policy is approximated by minimizing
the classification error:̂π∗CI = arg minπ̂∗

∑
s∈S I(π̂∗(s) 6= π∗(s)), whereI(A) = 1

if A is true and0 otherwise. The subscriptCI (cost-insensitive) is in contrast to its
cost-sensitivecounterpart that will be introduced in the next section.

2 Batch Reinforcement Learning with State Importance

In contrast to the cost-insensitive algorithm outlined in the previous section, a novel
RL algorithm based oncost-sensitiveclassification is proposed, which uses the state
importance values as misclassification costs. As a result, the learning process focuses
on important states thereby improving the convergence speed as well as the policy value.

Intuitively, a state is important from the decision-making point of view if making a
wrong decision in it can have significant repercussions. Therefore, theimportanceof a
states, G∗(s), is defined as:G∗(s) = Q∗(s, a∗(s)) − Q∗(s, ā(s)), wherea∗(s) is the
optimal action and̄a(s) is the other (sub-optimal) action2. Similarly, theimportance of
states under policyπ, G∗(s, π), is defined as:G∗(s, π) = Q∗(s, a∗(s))−Q∗(s, π(s)).
Clearly, if π(s) = a∗(s), thenG∗(s, π) = 0; otherwise,G∗(s, π) = G∗(s).

It is desirable for the agent to approximateπ∗ by agreeing with it at important states.
One way is to use the state importance values as the misclassification costs:π̂∗CS =
arg minπ̂∗

∑
s∈S

(
G∗(s) · I(π̂∗(s) 6= π∗(s)

)
. Then learning the policy is reduced to

cost-sensitive classification wheres is the attribute,a∗(s) is the desired class label, and
G∗(s) is the misclassification cost. Thus, given the training dataTQ∗ , the agent can first
computeG∗(s) for all statess ∈ T to form a training set:TCS = {〈s, a∗(s), G∗(s)〉 |
s ∈ T }, and then computêπ∗CS using cost-sensitive classification techniques.

A question of both theoretical and practical interest is whether it is preferable to
solveπ̂∗CS as opposed tôπ∗CI. It is shown [9] that: (i) the policy value is lower-bounded in
terms of the cost-sensitive classification error ofπ̂∗CS; however, (ii) if the cost-insensitive
classification error of̂π∗CI is not zero, then no matter how small the error is, the resulting
policy can be arbitrarily close to the worst policy in terms of policy value. Empirical
support was gained from experiments on a series of 2D grid-world domains.

2 NB: Such a definition ofG∗(s) is similar to theadvantageintroduced by Baird [1].
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3 Summary and Future Work
Classification-based policy acquisition is an interesting development in RL that at-
tempts to gain a better policy by increasing the classification accuracy. However, the
correlation between policy value and classification accuracy is non-monotonic as the
states are not equally important. We then proposed a measure of state’s decision-making
importance and outlined a way to utilize such values in a class of RL problems. Advan-
tages of such a method are supported both theoretically and empirically. The promising
initial results open several avenues for future research. First, when computing resources
are limited, it is possible to focus learning only on the more important states by ignoring
the others. However, the extent to which such ana priori pruning may lead to overfitting
needs to be explored. Another area for future research is an investigation of the extent
to which this approach depends on the cost-sensitive classifier. In particular, it would
be interesting to investigate the benefits of applying modern cost-sensitive classifica-
tion techniques (e.g., cost-proportionate example weighting [13] and boosting [3]) in
focused learning.
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