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Abstract

Classical concepts, based on necessary and suf-
ficient defining conditions, cannot classify logi-
cally insufficient object descriptions. Many rea-
soning systems avoid this limitation by using
“default concepts” to classify incompletely de-
scribed objects. This paper addresses the task
of learning such default concepts from obser-
vational data. We first model the underlying
performance task — classifying incomplete ex-
amples — as a probabilistic process that passes
random test examples through a “blocker” that
can hide object attributes from the classifier.
We then address the task of learning accurate
default concepts from random training exam-
ples. After surveying the learning techniques
that have been proposed for this task in the
machine learning and knowledge representation
literatures, and investigating their relative mer-
its, we present a more data-efficient learning
technique, developed from well-known statisti-
cal principles. Finally, we extend Valiant’s PAC-
learning framework to this context and obtain
a number of useful learnability results.

1 Introduction

Many reasoning tasks involve “classification” [Cla85] —
i.e., determining whether a particular object belongs to
a specified class, given a description of that object. For
example, a diagnosis process must determine whether a
patient, with a specified set of symptoms, has a particu-
lar disease; a chess player must determine whether a par-
ticular move is appropriate given a board configuration;
and a planner must determine whether to apply a partic-
ular action, given the perceived state. Many classifiers
are based on classical concept definitions (ccds), which
specify necessary and sufficient conditions for concept
membership. While these systems can work effectively
when given completely specified objects (e.g., a complete
description of the patient’s symptoms, etc.), they may
be unable to categorically classify objects that are only
partially described.
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Unfortunately, we may still have to provide a classifi-
cation for such partially-described domain objects. For
example, as doctors seldom have access to every poten-
tially relevant fact about a patient, they usually cannot
rule out all but the one true disease. The patient is usu-
ally better off if the doctor makes a credulous assessment
and suggests some treatment based on what is known,
rather than skeptically withholding judgement.

Notice that the doctor’s diagnosis can change if he
receives further information about the patient. As this
type of nonmonotonic classification behavior cannot be
described in terms of necessary and sufficient conditions,
it cannot be encoded as a ccd. There are, however, for-
malisms designed to classify partial object descriptions.
Default concept definitions (dcds) are a natural general-
ization of ccds, which avoid this limitation by using de-
fault classification rules [Rei87]. These classifiers play an
important role in many expert systems [Cla85, PBH90].

Of course these deds must somehow be acquired
for such applications. As it is often quite difficult
to explicitly extract the knowledge of domain experts,
it makes sense to use machine learning techniques to
automatically acquire the appropriate default concept
based on existing “solved” cases; cf., [PBH90]. Un-
fortunately, the task of learning default concept defini-
tions has received relatively little attention, especially
when compared to the vast literature on the subject
of learning to classify complete object descriptions. To
date, only a few empirical studies have been published
[PBH90, Qui89, BFOS84], and the problem has yet to
receive an adequate theoretical treatment in the machine
learning literature; cf., [Riv87, p.245]. This means there
is no supporting theory that specifies when proposed
techniques can be expected to perform well, or even why
they work when they do.

We attempt to fill this void by studying the prob-
lem of learning accurate default concepts from exam-
ples within a precise mathematical framework. As pre-
liminaries, Section 2 first defines the formal structure
of default concepts and the associated object level clas-
sification task, and Section 3 introduces a probabilis-
tic testing model that incorporates “attribute blocking”.
Section 4 then considers the problem of learning accu-
rate dcds from random training examples: It consid-
ers learning under a relatively benign (resp., completely
general) blocking model, introduces many of the exist-
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Figure 1: Structure of a complete default concept definition

ing learning techniques discussed in the literature, and
considers an alternative procedure (relatively unknown
in machine learning community) that is based on well-
known ideas from theoretical statistics. It also extends
Valiant’s pac-learning framework to the present case:
assessing the effects of prior knowledge on learning effi-
ciency, and determining the difficulty of learning under
different conditions.?

We first close this introduction by tying this research
to existing work: Notice first that, while there is a volu-
minous literature on default and nonmonotonic reason-
ing [Rei87], and even a recent trend towards probabilistic
interpretations of default logics [Pea88, Bac90], the issue
of learning defaults has scarcely been raised. Second,
to avoid possible confusions, it is worth explicitly dis-
tinguishing our “missing attribute” framework from two
other models of learning from the learnability commu-
nity: A system that learns with attribute noise [SV88]
does not know which attribute values have been cor-
rupted; by contrast, we know explicitly which values are
missing. Also, a probabilistic concept [KS90] is a map-
ping ¢; : X,, — [0, 1] from the space of complete object
descriptions X, to probability values; such mappings do
not directly handle missing attribute values.

2 Default Concepts

Following standard practice, we consider a set of domain
objects X, = {0,1}", where each object is identified
by a vector of boolean attributes Z = (z1,...,2,). A
(complete) test example is specified by a pair (Z, ¢), con-
sisting of a domain object z and its true classification
c. In standard classification models, this domain object
z would be passed “as is” to the classifier before test-
ing its classification against the correct class ¢. Here,
however we assume the classifier only sees a “degraded
version” of z in which certain attribute values have been
replaced by the “unknown” value *; see Figure 2. We
model this degradation using a (stochastic) blocking pro-
cess 3: X, x {0,1} — {0,1,%}" that may “hide” some
of the attribute values: replacing certain values with *,
but otherwise leaving z intact. Thus, z; = 0 can be
mapped to 2} € {0,*}, and z; =1 to z} € {1,*}. We let
X} ={0,1,*}" denote the set of possible object descrip-
tions. A test exzample (Z*, c) is a (partial) description z*
of some domain object z, along with z’s true classifi-
cation ¢ € {0,1}. The space of possible examples is

denoted X x {0,1}.

!Unfortunately, space constraints preclude presenting
proofs of the results stated in this abstract; see [Sch94].

A classical concept definition (ccd) is a subset of X,
which we represent by its indicator function ¢: X,, —
{0,1}; thus ¢(z) = 1 iff Z belongs to the concept. A
default concept definition (ded) d: X — {0,1}, on the
other hand, takes a description Z* as its input and re-
turns d(z*) = 1 if the object described by #* belongs to
the concept by default, and returns 0 otherwise. Given
a test example (Z*,¢), a ded d makes a correct classifi-
cation if d(z*) = ¢, otherwise it makes an error.

We can represent a dcd d as a collection of rules of
the form z*—c¢ where ¢ € {0,1} and £*—¢ € d means
d(z*) = c. By insisting that for every object descrip-
tion z* € X} either £*—1 &€ d or *— 0 € d but not
both, we are in effect only considering complete dcds
that categorically classify every possible object descrip-
tion, even z* = (,*,...,*).2 To illustrate, consider the
example of a ded on two attributes shown in Figure 1,
where the first attribute is “green”, the second “plant”,
and the class is “photosynthetic”.® Notice this collection
of rules specifies nonmonotonic classification behavior,
as its assessment of concept membership can change as
more attributes are specified. For example, even though
non-green—plants C plants C things, the predicted pho-
tosynthesis properties are 0, 1, 0, respectively. Such a
classifier cannot be specified by a classical concept.?

There are many unexpected similarities between dcds
and existing nonmonotonic knowledge representation
formalisms. For example, Reiter [Rei87] considers com-
monsense concepts like “bird”, “chair”, and “game” and
notes that they do not have classical definitions in terms
of necessary and sufficient conditions. He argues that
these concepts can be better characterized by specify-
ing “default” necessary and sufficient conditions, and
shows that this idea is similar to Minsky’s concept of

2Thus there are 2°" distinct dcds possible on n boolean
attributes. Only some of these have “reasonable” structures,
see Lemma 1 below.

SFach node in the graph represents a rule; e.g., “¢1 — 17
encodes the rule that plants, of unspecified color, are accepted
in the photosynthetic class. An arc descending from node n;
to n2 means the antecedent of ni’s rule is “more general”
than nsy’s antecedent, in that any object that matches n2’s
antecedent will also match nq’s.

* Notice the blocking process 8 introduces only a restricted
form of ambiguity: # may produce descriptions correspond-
ing to disjunctions like 0x = 00 V 01, but cannot produce
a description corresponding to 01 V 10 (this is reminiscent of
[BE89]) — i.e., it cannot express the claim that an object
is “either a non-green plant or a green non-plant”. This will
restrict the type of “reference classes” we must consider when
learning dcds; see Footnote 7 below.



“RealWorld”
Pxc

(27, <) @
Blo;ker Learner

=%

Figure 2: Model of Blocking Process

frames [Min75]: frame selectors can be viewed as “de-
fault” sufficient conditions for the frame concept, and
frame instantiations can be viewed as “default” nec-
essary conditions. These notions of non-classical con-
cepts appear quite similar to the account of deds devel-
oped here. Our acceptance conditions (rules of the form
z*—1) correspond to Reiter’s “default” sufficient condi-
tions (a.k.a. frame selectors). However our rejection con-
ditions (rules of the form #*—0) and Reiter’s “default”
necessary conditions (frame instantiations) are contra-
positives, and do not serve precisely the same function
[Gin87]. Still, the similarities are striking given the far
different motivations behind these formalizations.

3 Model: Random Test Examples

We assume there is a “natural” source of random test
examples against which we can evaluate the accuracy of
any classifier. In particular, we assume there is a distri-
bution Px¢ over the space of domain objects and con-
cept labels X,, x {0, 1}, called the domain distribution,
from which random labelled objects are independently
drawn. Before presentation, these labelled objects (z, ¢)
are first passed through a blocking process  to yield
test examples (Z*,¢); see Figure 2. Thus, the domain
distribution Px¢ and the blocking process § induce a
distribution Px=«¢ over the space of possible examples,
called the example distribution. The accuracy of a ded
d, written Px«c(d), is defined as the probability that d
correctly classifies a random test example. Note that in
general a classifier’s accuracy depends on both the do-
main distribution and the blocking process. We say that
any example distribution Px«¢ for which d is optimal
satisfies d.

Lemma 1 For any example distribution Px=c, the op-
timally accurate ded d includes the rule x*—c € d when-
ever Px«c{(z*,¢)} > Px~c{(z*,—c)}. Purthermore, for
any ded d, there is an example distribution Px«c which
makes d non-trivially® optimal.

We can therefore interpret any dcd d as asserting a
collection of inequalities about the underlying example
distribution. Notice the meaning of a rule z*—c de-
pends not only on the (objective) distribution of domain
objects in the world Px¢, but also on the (subjective)
blocking process 3, which specifies how information is
received by the classifier. There are a number of rea-
sonable assumptions one could make about 3, but we
restrict our attention to just two: independent blocking
and arbitrary blocking.

“Here we are ruling out the “pure noise” case where
Px=c{(z*,¢)} = Px«c{(z*,—c)} = 1/2 for each z* € X;

here every dcd is (trivially) optimal.

3.1 Independent blocking

The independent blocking model, By, hides each object
attribute x; with a fixed probability p; that is inde-
pendent of z;’s value and those of the other attributes
zj, 7 # 1. In this model, it turns out the optimally
accurate dcd is determined strictly by the domain dis-
tribution Px ¢, regardless of the specific blocking rates

<p1ap2a . apn)

Lemma 2 Under 8y, for any domain distribution Pxc,
the optimally accurate ded d makes mazimum conditional
likelihood (mcl) classifications under Pxc, given the ob-
served attributes of an object (cf., [DHT3]).

Thus, the structure of an optimal dcd d is determined
solely by the domain distribution, and we can inter-
pret d as a collection of assertions about the domain
distribution Px¢ directly: z* — ¢ € d asserts that
Px-c{{(z*, ¢)} > Px-c{(Z*,—c)}. However, not all of
the possible 23" dcds consistently specify mel classifica-
tions in this manner — only (and all) the ones consistent
with the following “consistent inheritance axiom.”

Definition 1 (Consistent Inheritance) A ded d is
inheritance consistent iff

<z1...o...xn>ﬁcEd}:»m.-.*-

(z7...1...2%)—c€ed ap)—e€d

Theorem 1 Under §r, d is inheritance consistent <=
d is satisfiable by some domain distribution Pxc.

Existing default logics based on e-semantics (e.g.,
[Pea89]) all satisfy the consistent inheritance axiom and
so tacitly assume independent blocking fBr. Here the
meaning of a rule z*—c can be given a “majority” se-
mantics under By akin to that of [Bac90].

3.2 Arbitrary blocking

While 5 is a simple and convenient model, it does not
capture every practical situation; in particular, it cannot
deal with circumstances where our knowledge of an at-
tribute is correlated with its value; e.g., ex-inmates are
unlikely to answer the question “have you ever been in
prison?”. The arbitrary blocking model, 84, can hide ob-
ject attributes z; according to an arbitrary probability
distribution that can be conditioned on the entire object
z and its classification ¢, allowing this model to incor-
porate correlations between hidden attributes and their
values, other attributes, or even concept membership.

Under B4 the structure of an optimal dcd does not
depend solely on the domain distribution Px¢, but also
on the nature of the blocking process . This means
that making mcl classifications according to Px¢ may
no longer be optimal. In fact,

Lemma 3 Under 34, making mcl classifications accord-
ing to Px¢ can yield error rates arbitrarily close to 1/2,
even when the optimum ded has error rate 0.

Of course, other classifiers, which can exploit correla-
tions between missing attributes and object classifica-
tions, can do much better in these situations.



4 Learning Accurate Default Concepts

We now consider the task of learning an accurate ded
from random training examples. We assume the learner
L receives a sequence of random training examples drawn
from a training distribution, from which it must produce
a ded, which is then tested on random test examples
drawn from a test distribution. The learner’s goal is to
produce an accurate dcd with as few training examples
as possible. We can consider a number of distinct learn-
ing problems, based on our assumptions about the form
of training examples and the type of blocking process.
Here, we focus the two types of blocking introduced in
Section 3, and on the following two types of training
examples.

The incomplete training example model, xr, assumes
training examples are generated by the same example
distribution that generates test examples. This is a nat-
ural model for many practical settings where we do not
have access to complete object descriptions, even for
training examples. One benefit of training on partial ex-
amples is that learner is exposed to the natural blocking
process operating in the domain.

The complete training example model y ¢, on the other
hand, assumes training examples are generated by the
same domain distribution Px¢ underlying the process
that generates incomplete test examples. Here, how-
ever, some teacher has “filled in” the proper value of
each attribute of each training example. Even though
our goal is to learn classification rules that classify in-
complete examples, we can still consider learning from
complete examples. This situation that can easily arise
in practical situations; e.g., a medical student may be
trained to diagnose the presence of a particular disease
given fairly complete descriptions of all relevant patient
data, and yet as a doctor, be expected to produce diag-
noses without the benefit (and cost) of performing every
available diagnostic test. Furthermore, we intuitively ex-
pect an advantage in training on complete examples as
they appear to provide more information than incom-
plete examples. We will see below that this intuition is
only sometimes correct.

4.1 Learning under Independent-Blocking

We first consider learning under the independent block-
ing model §;. This is the simplest and arguably most
natural blocking model, where the fact that an attribute
is missing provides no information about the underly-
ing values or object classifications. Lemma 2 showed
that under 87, the structure of the optimal d,,; depends
solely on the domain distribution Px¢, regardless of the
blocking probabilities (p1,...,pn). In particular, dops’s
classifications depend on the most probable class (under
Pxc¢) given the observed (non-x) attributes of a descrip-
tion z*; i.e., if Poyx(c|obs(2*)) > Pejx(—c | obs(z*))
then z*—c € d,p;. Hence, under fr, learning an accu-
rate ded requires only determining whether Pex(c =
1| obs(z*)) > Poix(c = 0] obs(2*)) for each object de-
scription z*, based on observing a sequence of training
examples.

4.1.1 Estimating Most Likely Classifications

Complete training examples: Here the learner
is given a sequence of random training examples
({Z1,¢1), ..., (Tm,cm)) (drawn independently from the
domain distribution Pxc — the same domain distribu-
tion that will be used to generate pre-blocked test ex-
amples), from which it must decide whether to use the
classification rule z*—1 or z*— 0 for each description
z*. Here, it seems reasonably obvious that this decision
should be based on the observed classification frequencies
among all training examples Z that match a description
z*, as specified by the following learning strategy.
MLC (Maximum Likelihood (Complete)) For description
z*, predict the most frequent class among all train-
ing examples whose domain object matches z*.

This simple strategy turns out to have the following
rather remarkable optimality property.

Theorem 2 For any learner L® that produces the opti-
mal rule x*—c for some * with higher probability than
MLC, given some Px¢c and sample size m, there is an-
other domain distribution P’y for which L produces a
ded d with accuracy < 1/2 with probability > 1/2.

Thus, no learner can outperform MLC on any non—pure-
noise domain distribution (i.e., where Px-c{{(Z*,¢)} #
1/2 for some &*), and object description.

Incomplete training examples: Here the learner
is given a sequence of random training examples
((z7,¢1),...,(Z},, em)) (drawn independently from the
same example distribution Px«¢ used to generate test
examples), from which it must decide whether to use
classification rule 2*—1 or 2*— 0 for description z*. As
before, the optimal classification rules are determined
by the underlying domain distribution Px¢, and so the
general idea is to gain as much information as possible
about Px¢ from the random training examples; the dif-
ficulty here is that many of the training object attributes
will be blocked. The challenge, therefore, is to extract as
much information as possible from the object attributes
that are actually observed.

A number of techniques have been proposed in the ma-
chine learning literature for determining the most likely
classification of a description from a collection of incom-
plete training examples. Surprisingly, none of these tech-
niques appear to make the most efficient use of the avail-
able training data. This leads us to investigate a simple
statistical principle, relatively unused in machine learn-
ing, that appears to be far more efficient for this purpose.
We first briefly survey the existing proposals and point
out the intuitive source of inefficiency in each.

The first technique ignores the fact that training de-
scriptions are independently blocked versions of com-
plete descriptions, and simply gathers separate statistics
for each description z*; effectively treating “+” as a third
attribute value.

SGiven the benign assumption that L’s guesses for a de-
scription Z* are conditionally independent of the training la-
bels of domain objects £ that do not match z*.



THV (Three-valued) [Qui89] For description z*, predict
the most frequent classification among training ex-
amples of the form (z*, ¢).

THV clearly does not make the most effective use of the
available training data, given that attributes are blocked
independently of their values. In particular, it ignores
more specific training patterns that might match the de-
scription z*, which is ineffective as these patterns can
provide additional information about the prevalence of
a particular classification among objects matching z*.
The next refinement is a technique that takes just this
information into account.

LEM (Local error minimization) For description z*, pre-
dict the most frequent class among all more specific
training patterns that match z*.

By considering more specific training patterns, LEM
makes more efficient use of the training data than THV.
However, it turns out that even LEM does not fully ex-
ploit all of the relevant information that can be gleaned
from the training examples. In fact, there are situations
where we ought to incorporate statistics from more gen-
eral descriptions than z*. To illustrate this, imagine a
simple setting where domain objects are described by
a single bit, so any dcd for this domain will consist of
three rules: { (0)—cq, (1)—ec1, (*x)—cs } where each
each ¢; € {0,1}. Now, imagine a collection of training
examples where

#((0),0) =2 #((1),0) =
#((0),1) =1 #{{1), 1) =1 #{{x), 1)
{0

Here, since #((0),0) > #((0), 1), it appears (0)— 0 would
be the optimal rule for (0); similarly #((1),0) > #((1),1)
suggests (1)— 0. Notice, however, that all 14 of the (x)
observations belong to class 1, and each of these must
have actually been a domain ob]ect with attribute value
(0) or (1). So there is overwhelming evidence that at
least one of the two attribute values (if not both) should
be classified 1 rather than 0. This is a clear case where
the statistics from a more general description should
override those of the more specific.

A learning technique that attempts to do just this has
been proposed in the philosophy of statistics literature
— namely Kyburg’s proposals for choosing the best ref-
erence class on which to base statistical judgements.

REF (Reference class) [Kyb83, Kyb91] For description
z*, first select a “reference-class” description Zj
(either Z* itself, or possibly a more general de-
scription), then predict the most likely classification
given all training descriptions that maich the refer-
ence class description ).

#((x),0)

The idea is to select a sufficiently general description
z; so that our choice of classification rule z*—c for z*
is based on “adequate” statistics. Kyburg suggests the
following reference class selection procedure: For each
incomplete description z*, compute a 90% (say) confi-
dence interval about the probability of observing classi-
fication ¢ given all training descriptions that match z*.
Then employ a conflict resolution strategy (which trades-

off interval bias and width) to decide whether to adopt,

for this z*, the classification associated with successively
more general reference classes [Kyb91].”

Although the REF strategy can override the predic-
tions from specific descriptions with those from more
general descriptions, it is not clear that it does so in
the best conceivable way. The strategy is fundamentally
ad hoc (in particular by incorporating an arbitrary pa-
rameter in the confidence intervals), and is not based
on any real principles beyond “intuition” to adjudicate
between candidate reference class descriptions. Further-
more, there is no empirical data to support the efficacy
of this approach.

It is often stated that the crux of this type of statistical
reasoning is the problem of “choosing the right reference
class” [Bac90, BGHK92]. However, this premise might
actually be leading us away from the most effective learn-
ing approaches here. Fundamentally, our goal should be
to preserve all available statistical information, rather
than throwing away statistics from one class in favor of
those from another. The best approach should involve
combining all of the available statistics in a principled
way. Here we note that a well-known idea from theo-
retical statistics is applicable: namely, first determine
the mazimum likelihood distribution that accounts for
all the data, then perform inferences according to this
distribution [LR87]. This approach yields an effective
method for determining the most likely classifications
given incomplete training examples.

MLI (Maximum Likelihood (Incomplete)) [LR87] First,
determine the domain distribution PR that max-
imizes the likelihood of the observed training ex-
amples. Then, for description z*, predict the most
probable classification according to P&, given £*’s

observed attributes.

Notice that this approach never “throws away” an ob-
servation; instead, it seeks the best model that accounts
for all of them. The statistics for all relevant descrip-
tions, both more general and more specific than z*, are
combined in a principled way to yield a classification.

Based on the preceding discussion it seems intuitive
that MLI should be more efficient than the other learning
strategies, i.e., we expect that MLI should produce more
accurate classification rules, given fewer training exam-
ples. Although an optimality result akin to Theorem 2
has not yet been proven, it is fairly easy to demonstrate
the superior efficiency of MLI empirically.

To support this point, consider the results of the fol-
lowing simulation study: Each of the four techniques was
implemented and tested in the simple domain where do-
main objects are described by a single bit (as before).
We then tested the techniques on random domain distri-
butions and blocking rates, and recorded the accuracies

7 Philosophical discussions often mention the difficulty in
choosing the candidate reference classes to participate in any
conflict resolution procedure (cf., [Bac90, Chapter 5]). Ky-
burg simply adopts the reference classes considered here, and
ignores other “disjunctive” classes (cf., Section 2) by fiat.
However, there is a principled argument behind ignoring dis-
junctive classes, based on the observation that they do not
correspond to any possible “partial states of knowledge” one
can have about a domain object, cf., Section 2.
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of the classification rules produced by each strategy. The
graphs in Figure 3 plot the average accuracy obtained by
each learner (resp., how often each learner returned the
optimal ded), as a function of training sample size; aver-
aged over 10,000 trials. It is clear that, for a given num-
ber of training examples, MLI both attains the highest
average accuracy levels, and also identifies the optimal
ded with the highest probability, ¢f., Theorem 2.

4.1.2 Scaling Up

As efficient as the previous estimation techniques appear
to be (particularly MLC and MLI), they cannot be applied
“as is” to any real learning task. The problem, of course,
is that these estimation techniques simply do not scale
up. This is because determining the appropriate clas-
sifications for arbitrary object descriptions z* can, in
general, involve the simultaneous estimation of an expo-
nential number of parameters (in n). For example, there
are ([n72]) descriptions containing [n/2] #’s, and most
of the observations for one such pattern does not match
any of the others. None of the estimation techniques
generalize between these patterns.

This is a well-known issue in machine learning:
to achieve reasonable performance with reasonable
amounts of data, we will eventually have to introduce
some form of prior knowledge to constrain our learn-
ing systems. This points to the necessity of bias. In
any successful application, the learning system must be
constrained to search a restricted space of appropriate
classifiers, which here are deds.®

Following the methodology pioneered by Valiant
[Val84], we consider how learning performance scales as
a function of prior knowledge. Here we quantify bias by

87HV and MLI are particularly well suited to incorporating
background knowledge; as demonstrated for THV in many
decision-tree applications [Qui89, BFOS84], and for MLI by
applications of the EM algorithm to parameterized domain
distributions [LR&7].

its measurable effects on the quality of learning that can
be guaranteed. A la Valiant, we consider prior domain
knowledge that can be expressed by a restricted set of
dcds D, which is known to include the optimal ded. The
difficulty of learning a set of dcds D is then measured
by the number of training examples needed to reliably
guarantee a near optimal hypothesis; in the worst case
over all possible example distributions satisfying some

ded d €D.

Definition 2 (Paco-learning) ° A learner L PACO-
learns a class of deds D under 1 blocking given m(e, )
X-type training ezamples (x € {xc,xr}), if Ye > 0,V6 >
0, and ¥ domain distributions Px¢c consistent with some
dopt € D, L outputs a ded dp € D whose accuracy is
within € of this dopy, with probability at least 1 — 6.

To investigate scaling, we consider parameterized classes
D,, defined on n attributes for n =1,2,....

Definition 3 (Feasible-learnability) A parameter-
1zed class of deds Dy, n = 1,2,... 15 said to be feasibly-
learnable if there exists a polynomial function poly(---)
and a learner L that PAcO-learns each D1,Ds, ... with
sample size m(e, 8) = poly(lg, %, n).

Intuitively, we expect the difficulty of learning a set
of deds D to depend on the “complexity” of D, i.e.,
more complex Ds are harder to learn. The question
is: what precise complexity measure (effectively mea-
suring the “amount” of prior knowledge encoded by D)
actually determines the difficulty of PAco-learning a de-
fault concept class D7 It turns out the appropriate
complexity measures can be based on the notion of the
Vapnik-Chervonenkis dimension of a set of deds D, writ-
ten VCdim(D).1°

Learning performance also clearly depends on the pre-
cise learning model under consideration (e.g., 5r block-
ing and either x¢ or x7 training examples). For f; block-
ing and complete training examples, we have been able
to identify precise conditions on the complexity of D,, (as
a function of n) that determine whether D,, is feasibly
learnable.

Lemma 4 Under B; blocking, D, is feasibly-learnable
from complete training examples <= Vs C {1,...,n},
VCdim(Dy) = poly(n) (where D;, is the set of ceds in-
duced by Dy, on attribute subset s).

In the case of learning from incomplete training exam-
ples, a much stronger condition can be shown to be suf-
ficient for feasible-learning.

Lemma 5 Under f; blocking, VCdim(D,,) = poly(n)
—> D,, is feasibly-learnable from incomplete examples.

?For “Probably Approximately Class Optimal”. Our goal
differs slightly from standard PAC-learning, as we are forced
to seek near-optimal rather than near-perfect classifiers, since
with blocking no classifier can attain perfect accuracy in gen-
eral. Notice also that we are only addressing the sample com-
plexity of learning, not computational complexity.

19This is the same measure used when learning ccds. See
[BEHWS89] for a precise definition of VCdim and its appli-
cation to determining the difficulty of learning sets of ccds.



Combining these lemmas yields the intuitive result that
learning from complete training examples is easier than
learning from incomplete examples:

Corollary 1 D, is feasibly-learnable under (Br,xr)
= D, is feasibly-learnable under (Br,xc).

However, the converse (i.e., is there a class D, that is
is feasibly-learnable from complete but not incomplete
training examples) remains an open question.

4.2 Learning under Arbitrary-Blocking

We now consider the arbitrary blocking model £4. In
this model, the fact that an attribute is missing from
an object description can be correlated in various ways
with the attribute values and the object’s classification.
In effect, no reliable information can be obtained about
the value of missing attributes under 4. Here, learn-
ing an accurate ded amounts to determining whether
Peix«(c = 1| 2*) > Pex-(c = 0] z*) for each object
description z*, given training examples.

4.2.1

As in Section 4.1.1, we can consider the problem of esti-
mating the most likely classification of a description z*
from both complete and incomplete training examples.
The relative merits of the various learning techniques dis-
cussed in Section 4.1.1 change dramatically under these
alternative learning conditions.

Estimating Most Likely Classifications

Complete training examples: Notice that complete
training examples provide no information about the
blocking process that will be applied to future test ex-
amples. By observing complete training examples, the
learner can only estimate properties of the domain distri-
bution Px¢, and not the test ezample distribution P x«¢
(generated by a blocking process over Px¢). There-
fore it is fundamentally impossible to estimate whether
Peix«(c = 1|Z*) > Peix«(c = 0| Z*) for arbitrary
blocking processes just by observing complete training
examples. Lemma 3 exploits this fact to show that even
given exact knowledge of the domain distribution Px¢,
any classification rule produced by a learner can still
have an arbitrarily high error rate on incomplete test
examples for some example distribution Px=¢c. There-
fore no learning strategy can reliably estimate the proper
classification of an incomplete test description z* from
complete training examples.

Incomplete training examples: Given incomplete
training examples, however, the learner is directly ex-
posed to the natural blocking processes operating in the
domain. Under these conditions it is possible to esti-
mate whether Peix«(c = 1]2*) > Pex+(c = 0| z*) for
a description z*, simply by applying the THV strategy of
determining whether #(z*, 1) > #(z*,0).

The various learning techniques discussed in Subsec-
tion 4.1.1 have different relative merits under the dif-
ferent learning conditions: We saw in Subsection 4.1.1
that LEM and MLI were more efficient than THvV under
fBr blocking. In general, maximum likelihood estima-
tion (MLC, MLI) appears to be the superior technique for
estimating the most probable classifications under fy,
regardless of whether complete or incomplete training

examples are available. However, since these techniques
base their judgements directly on estimated properties
of the domain distribution Px¢, Lemma 3 shows that
their classifications can have arbitrarily high error rates
under 34. In contrast, THV is the only provably effec-
tive technique for learning under G4, given incomplete
training examples, and so clearly dominates in this case.

These theoretical observations can actually help ex-
plain some of the results obtained by recent empirical
studies: Quinlan [Qui89] compared applications of the
LEM and THV techniques (along with some other ad hoc
approaches) to decision-tree learning, and found that no
single technique dominated the others over the set of
test problem he considered. The preceding theoretical
results, however, clearly demonstrate that the relative
effectiveness of particular learning strategies strongly de-
pends on the nature of the blocking process involved; an
observation that can be applied in practice. For exam-
ple, if blocking is known to be (more or less) independent
(Br), then MLI should outperform the other techniques,
however, if blocking were known to be strongly corre-
lated (54), then THV should dominate.

4.2.2 Scaling Up

As in Subsection 4.1.2, we can determine what con-
straints on prior knowledge (expressed as a parameter-
ized class of deds D,,) are sufficient to permit efficient
learning, as we scale up in n.

Lemma 6 Under a4, D, is feasibly-learnable from in-
complete examples <= VCdim(D,,) = poly(n).

Notice that although complete training examples actu-
ally make learning easier under fr, they make learning
tmpossible under B4. This is because complete exam-
ples provide information only about instance distribu-
tion, but supply no information about the blocking pro-
cess that will be applied to future test examples. While
this is not a problem under B (where the optimal clas-
sifications are determined strictly by the instance distri-
bution Px¢), this issue is fatal under 84; cf., Lemma 3.

Lemma 7 No non-trivial set D of default concepts is
PACO-learnable under (Ba,xc).

As expected, the feasible learnability of a parameter-
ized class of deds D,, depends on the specific conditions
in which learning takes place. Here we compare the rel-
ative difficulty of learning under the various conditions.

Lemma 8 D, is feasible-learnability under (8a,x1)
— D, is feasible-learnability under (Br,x1)
= D, is feasible-learnability under (Br,xc ).

The first inclusion is strict, as

Lemma 9 There are parameterized classes D, which
are feasibly-learnable under (Br,xr), but not feasibly-
learnable under (Ba,x1).

Hence, learning under (8r,xr) is fundamentally easier
than learning under (5a,xr), as it can require exponen-
tially fewer training examples in some cases.



5 Conclusions

This work constitutes a start on the general problem of
acquiring default knowledge from empirical observations.
Of course, much remains to be done. One of the more
immediate concerns is to develop an efficient implemen-
tation of the MLI strategy for useful forms of bias. We
are also beginning to examine many extensions to better
cope with practical problems. For example, many appli-
cation domains like medical diagnosis have the property
that missing attribute values actually give useful infor-
mation — namely that the missing attributes are irrel-
evant to the classification, given the known attribute
values [PBH90]. Notice that 8 is overly restrictive and
B4 1s too underconstrained to adequately model such
tasks; [GHR94] provides an initial analysis of this situa-
tion. We are currently investigating other intermediate
blocking models that can more accurately model such
domains and (we hope) lead to better empirical learning
performance.

Other interesting research directions involve alterna-
tive generalizations of standard classification learning:
This work has assumed that default definitions cate-
gorically classify every description, no matter how in-
complete. An interesting direction is to consider partial
default definitions that sometimes say “I don’t know”
d la [RS88]. Such classifiers could prove useful in do-
mains where the consequences of an incorrect classifica-
tion sometimes outweigh those of remaining silent.

Another interesting extension is to consider active
classifiers. That is, we have assumed that classifiers pas-
sively observe test examples and play no role in deter-
mining which attributes are observed. It would be inter-
esting to consider learning classifiers that actively decide
which attributes to test, and when there is sufficient in-
formation to posit an accurate prediction (i.e., learning
to diagnose). This raises the issue of how best to trade
off the number of tests required against the accuracy of
the classifier.

Contributions: We formulated and studied the prob-
lem of learning “default concepts” (dcds), which can
then be used to classify incomplete object descriptions.
After formally defining the structure and function of
deds, we modelled the classification (performance) task
as a random example generator that passes examples
through a “blocking process” that hides object attributes
from the classifier. We then addressed the task of learn-
ing deds from random examples — first discussing many
of the standard techniques for this problem, and then ex-
plaining why MLI is more effective than many standard
learning techniques under the (87,x1) model. We also ex-
tended Valiant’s PAC-learning framework to the problem
of learning dcds: assessing the effects of prior knowledge
on learning efficiency, and determining the difficulty of
learning under different conditions. By providing a the-
oretical understanding of many empirical observations
in the literature, we hope that our results will lead to
the development of more effective learning procedures
for practical problems that involve missing data.
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