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Abstract

Learning belief network structure involves a trade-off between network complexity and goodness of fit.
More complex structures allow for a better fit to the data, but suffer from a decreased ability to generalize
to unseen data. This bias-variance trade-off may be operationalized by a scoring function on structures,
called a model selection criterion. We describe various criteria for model selection: a prequential, or
Bayesian, criterion, 2-fold cross validation, a bootstrap criterion, Akaike’s information criterion, and
a minimum description length criterion. We carry out an empirical comparison of these criteria and
identify differences in how each one handles the bias-variance trade-off. We discuss some of the theoretical
problems and issues involved in model selection.

1 Introduction

Belief networks (also known as Bayesian networks, graphical models) are commonly used to model joint
probability distributions in expert systems. A graph is used to represent all direct dependencies between the
variables. This structure both organizes reasoning and reduces the dimensionality of the parameter space to
the point where it is feasible to estimate parameters from sample data. When network parameters have been
learned from a random sample, those parameters are themselves random variables, adding an additional
level of uncertainty, which may be represented by a posterior distribution over parameter values (Bayesian
perspective) or by the sampling distribution of the unknown true parameters (Frequentist perspective).

The uncertainty in parameters is an issue when learning network structure. One can typically obtain
an improved fit to the data by increasing the complexity of the structure, and thus the dimensionality of
the parameter space; however, this increased representational power comes at a cost: namely the increase in
parameter variance. Finding the appropriate balance between complexity and goodness of fit is a matter of
handling this bias-variance trade-off. The trade-off may be operationalized as a scoring function on network
structures known as a model selection criterion. Various criteria have been proposed for model selection
— among them: Akaike’s information criterion (AIC), cross-validation, bootstrapping, the marginalized
log-likelihood, and minimum description length (MDL).

The choice of a model selection criterion reflects not only a paradigm for inductive inference (Frequentist:
AIC, cross-validation, bootstrap; Bayesian: marginalized log-likelihood; Information-theoretic: MDL), but
also prior beliefs and pragmatic considerations as well. Intuitions about the domain of induction and its goals,
however, are often tacit and consequently difficult to express in the mathematical formalism of an evaluation
function. It is therefore of interest to empirically explore the consequences of applying a particular criterion
to a particular domain, especially in small sample contexts where model selection is so critical. Toward this
end, we compare several model selection criteria (those mentioned above) applied to the task of learning
belief networks. Through this comparison, we hope to shed light on some of the issues involved in choosing
a criterion, and to make clearer the nature of the trade-off embodied in each.

Overview

Section 2 reviews related work and presents our notation. Section 3 introduces belief networks and their
properties — in particular, issues involving parameter estimation and the posterior distribution over the



parameter space. Section 4 introduces the model selection problem and the notion of a model selection
criterion, then presents the criteria under consideration and discusses each one from a theoretical standpoint.
In Section 5 we describe the experimental apparatus used to compare criteria on various model selection
problems. Section 6 describes our results, and Section 7 is a discussion of those results and their implications.
Appendix A gives details of several results that are used in the paper.

2 Preliminaries

Related Work

Early work on induction in AI tended to focus on symbolic manipulation and logical (truth-functional)
representations. Pearl (1988) was instrumental in directing attention to probabilistic methods, and, in
particular, to belief networks. Cooper and Herskovits (1992) established the basic results about the posterior
distribution of belief network parameters, upon which we rely. There is a considerable literature on learning
belief networks, and in particular, on learning their structure; see Heckerman (1995) for a detailed overview
of the subject. Note that many researchers, including Lam and Bacchus (1994) Suzuki (1996), and Friedman
and Goldszmidt (1996) explicitly use the MDL criterion (or something close to it) to evaluate candidate
networks. We explore the behaviour of this MDL criterion, among others. Friedman and Yakhini (1996) carry
out an analysis of the sample requirements for various complexity penalty approaches to belief net learning.
While that work also addresses suitability of various selection criteria, its analysis is theoretical and based
on asymptotic behaviour, and it only considers complexity penalization; by contrast we are empirically
investigating small sample behaviour over a different class of criteria, including Bayesian, bootstrap and
cross-validation criteria.

Linhart and Zucchini (1986) provide an overview of the general problem of model selection, covering
AIC and cross-validation, but not MDL. Rissanen (1989) gives a detailed development of the Minimum
Description Length Principle, which is the information-theoretic view of induction that the MDL criterion is
based on. Schwarz (1978) gives an alternative derivation of the MDL criterion (therein referred to as BIC,
the Bayesian Information Criterion) as a large-sample approximation of the Bayesian posterior criterion.
Bozdogan (1987) gives the derivation of AIC and a discussion of its use. Kearns et al (1997) describe
experiments similar to our own. They make a similar comparison between an MDL criterion and a cross-
validation criterion, and report similar behaviour in a different context: learning a function f : [a,b] — {0, 1}
from noisy examples, under zero-one loss.

Notation

The notation used to express statements about probability distributions and random variables is frequently
a source of confusion. Here we will introduce a notation that deviates slightly from existing conventions for
reasons of clarity.

We need to represent random variables, probability distributions over random variables and the param-
eters of those distributions. Our formulae may be complicated by the fact that variables are often vector
valued (discrete or continuous), and that a parameter may in certain cases be a random variable as well.
Therefore, we will drop the distinction between parameters, variables, and random variables, and simply
denote all variables with names that begin with upper case Roman or Greek letters. The names of symbolic
constants will be in lower case Roman letters or Greek letters. A variable name in bold font will denote the
set of values it may take on. So X is a random variable that takes a value x € X.

We will denote functions as their “signatures” — by an application to variables. Where variables are
replaced by constants, this denotes a new function of lesser arity; obviously a function of zero arity is a
constant. Function parameters may be divided into two groups by the “conditioning bar”, which means
that if all the parameters to the right of the bar are fixed while those to the right are left to vary, then
the function is a distribution. Obviously, where variables are discrete, distributions are probability mass
functions, otherwise they are probability density functions. To illustrate this with an example, suppose
that we have a function P(X,Y | A,B). P(X,Y | a,b) denotes a distribution, and P(z,y | a,b) denotes a
probability (or probability density).
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Figure 1: An example of a simple belief network.

For a discrete random variable X, we will use the notation N(X) to denote the number of values X
may take on. Pr[g(X) = z; P(X)] denotes the probability that g(X) = x under the distribution P(X);
in general, any statement is allowed on the left. We will denote the expectation and variance of g(X) with
respect to a distribution P(X) as E[ g(X); P(X)] and Var[ g(X); P(X) ] respectively, with SD[g(X); P(X)]
being the standard deviation. The frequency (number of occurrences) that X is assigned z in a random
sample d will be denoted Fr[ X = z; d]. The conditioning bar will be used to denote conditional sentences
appearing on the left in any of these expressions.

3 Belief Nets

Representation

A belief network is a representation for a joint distribution over a set of random variables {X;...X,}. It
consists of a dependency graph and a set of conditional probability functions. The dependency graph is
a directed acyclic graph, whose vertices are the random variables. This network structure represents the
assumption that the joint distribution can be written as:

P(Xy...X,) =[] Pu(Xi | W)

i=1

where W; denotes the parents of X; in the graph. Formally, the network structure implies that X; is
independent of all non-descendents, given its parents. The resulting set of conditional independencies allows
for a compact representation when the network is sparse.

In the most general case, the network variables may be continuous or discrete, and the conditional
probability functions may be represented in a variety of ways. In this paper we are restricting our attention



to discrete, finite-valued variables, and extensionally represented conditional probability functions, whose
parameters are an exhaustive set of conditional probabilities that may be directly estimated from sample
frequencies. In addition, we will assume that our sample data is composed of complete tuples (all network
variables assigned a value).!

The simplest representation for the conditional probability functions is as CP-tables (see Figure 1). Here
each P;(X; | W;) is represented by a number of rows, P;(X; | w), one for each possible assignment (w) to
W;. In turn, each row is composed of a number of entries P;(x | w), one for each assignment (z) to X;. Each
row thus represents a multi-variate Bernoulli distribution. In some cases, greater economy of representation
can be acheived by marginalizing over rows of a CP-table (Friedman & Goldszmidt, 1996), representing the
conditional distribution as a “decision” tree (actually, a distribution tree, as the leaves are not decision nodes,
but distributions). All of our results hold for any parameterization where each row P;(X; | w) corresponds
to a complete or partial assignment (w) to W;. We then require that conditioning events for all rows be
exhaustive and mutually exclusive. Note that one parameter per row is a pseudo-parameter, as it is a function
of the other parameters in that row. However, it simplifies the presentation if we consider them all to be
parameters of the distribution, and treat the dependency issue seperately.

Parameter Estimation

Learning a belief network from sample data may involve learning both the dependency graph and the
conditional probability functions. There may be additional structure within the conditional probability
functions, as well as numeric parameters. The learning problem may therefore be quite complex. In this
paper we are concerned only with the uncertainty caused by parameter estimation when the network structure
is fixed.

Suppose we are given a random sample d of m i.i.d. instances {(d; ...d,,) from the “true” distribution
P(X;...X, | 6), where § = 6,...6; are the true parameters. The likelihood function is L(d | m,0) =
[1;%, P(d; | ©). Based on our assumptions about the parameterization, we can write this as: Hle 0;%,
where each ©; corresponds to some Pj(x | w), and a; = Fr[ X; = 2, W; = w; d]. Thus, a = (a1...ax) is a
sufficient statistic for ©. . X . A

An obvious estimate for 8 is the mazimum likelihood estimate 6 = (6; ...6), where 6; = Pj(z | w) =
a;/(a; +b;) for b; = Fr[ X; # z,W; = w; d]. However, this is undefined when (a; + b;) = 0; this corresponds
to the case where a particular parental assignment is never observed in the evidence, and thus the parameters
corresponding to the distribution conditional on that assignment must be assigned values in the absence of
evidence (and consequently, without affecting the likelihood function). A natural choice is the maximum
entropy distribution: 1/r for each of the r parameters of the distribution.

Maximum likelihood estimation is the classic Frequentist approach to estimation. The corresponding
Bayesian approach is to use the mazimum a posteriori (MAP) estimate. This is the value for © that
maximizes L(d | m,©)f(0© | a), where f(© | o) is a prior distribution over ®. For a uniform prior the MAP
approach is equivalent to maximum likelihood estimation.

From a Bayesian perspective, however, the MAP model is not necessarily the ideal choice. An alternative
is to use a weighted average over all models, called the predictive distribution. For a fixed network structure
this corresponds to an average over all possible parameter values for that structure. In certain cases, a
model can be constructed such that inferences based on that model are equivalent to inferences based on
the predictive distribution. In fact, for a certain class of priors, belief nets have the nice property that such
a model can easily be constructed. When the prior distribution is a product of Dirichlet distributions (see
Wilks 1962), one for each CP-table row (recall that each row is a multivariate Bernoulli distribution), then
the posterior distribution also has this form, and is given by the simple equation:

_ Ld|m,6)f® | )
O 1ate) = T TiTm,6)7(6 | a) 10

Here a = {ay - .. ay,) is the parameter of the prior distribution — the concatenation of the individual Dirichlet
parameters for each row. Simple updating with the statistic a (a + « signifies vector addition) is sufficient

1Obviously, these are very restrictive assumptions; however, they simplify the analysis and its presentation. Most of our
results can be extended to more general domains.



to specify the posterior distribution, which, furthermore, differs from the prior only in this value, not in
the form of f. This family of distributions is thus conjugate for belief nets, and for some applications we
may prefer to view a belief net not as a model of a data-generating process, but as a representation of the
posterior distribution (by storing Dirichlet distributions in the CP-tables, instead of probability vectors).
Furthermore, if we use the parameter estimates given by:

0; = (ai-i-ai)/(ai +bi+04i+,8i)

where (3; has the analogous interpretation to b;, then inferences based on this model are the same as those
based on the predictive distribution. Consequently, this is the natural estimate from a Bayesian perspective.
Proofs of the above claims, as well as references, are given in Appendix A.

The Posterior Distribution of ©

The posterior distribution of © is given by a product of Dirichlets, one for each row of each CP-table:

fOla+a)= Dir(©1,...0,_1 | a1 + a1,...,ar + ;)
Dir(@H_l, .. .63_1 | Apr41 + Qpg1y...,05 + as)
Dir(@t_H, e, Op_1 | ag41 + Oy, ..,05 + Oék)

where the first row of the first CP-table represents an (r — 1)-variate Bernoulli distribution, the second row
represents an (s — r — 1)-variate distribution, and so on. Notice that the last “parameter” of each row has
been excluded, as it is a function of the others. The posterior distribution contains all the information in the
priors and the sample except the order of the data (which is non-informative, given the i.i.d. assumption).

4 Model Selection Criteria

Most learning problems can be cast in the following form. First, a type of model (such as Markov model,
belief network, neural network, decision tree, etc.) is chosen, based on (often tacit) domain knowledge.
Next, within this model type a structure is chosen. This structure defines a parametric class of models.
Last, the parameters are estimated, or tuned/fit, based on a sample. The problem of choosing the structure,
or parametric class of models, is called the model selection problem. Model selection can be viewed as an
optimization problem where there are two separate issues: (1) how to search the space of structures, and (2)
what function (model selection criterion) to optimize for. Here we explore the second issue: the choice of a
model selection criterion.

A standard approach to parameter estimation is to maximize the likelihood of the data. Applying this
principle to model selection, however, tends to result in the phenomenon of overfitting. A more complex
model allows for a tighter fit to the data, thus increasing (up to some absolute maximum that depends on
the data) the mode of the likelihood function over the parameter space, but also increasing the variance
in the parameter estimates. There is a direct trade-off between representational power and the power to
generalize to unseen data. This is called the bias-variance trade-off. More complex models can represent a
wider range of data-generating processes, but require more data to learn. Thus, given a limited sample it is
imperative to choose the appropriate model structure, to minimize the error of the model.?

Error Functions

A standard measure of training error is the negative log-likelihood:

DL(d,0,h) = —log L(d | m, 8, h)

2Qverfitting avoidance is generally not justifiable unless one has a prior expectation of simplicity. For a large class of
problems there are no distinctions between algorithms that avoid overfitting and those that don’t, independent of prior beliefs.
In practice, however, avoiding overfitting is usually desirable, perhaps because the choice of model type reflects a prior belief
that a parsimonious representation exists for this type. See Wolpert (1996a, 1996b) for more on this topic.




where d = (d; . ..d,,) is a sample of size m, h is a model structure, 6 is the parameter vector for that model,
and L(d | m, 6, h) is the likelihood function.> We denote it as DL because it is the description length of the
data given an optimal code based on P(X |6, h). When d is an i.i.d. sequence of values d; . ..d,, then:

DL(d,0,h) = = _log P(d; | 6, 1)

i=1

KL-divergence (due to Kullback & Leibler, 1951; see also Cover & Thomas, 1991) is a standard measure
of true error for distribution learning. If P(X | 6, g) is the “true” model, and P(X | 6, h) is a hypothesized
model, then the KL-divergence of P(X | 0, h) from P(X | #8,g) is given by:

5 P(X190,9)
Ert[P(X |0,9); P(X | 8,h)] =S P(X |0,g)log —— 179
[P(X | 6,9); P(X [6,h)] ;( 10, 9) 8 (X | d.0)
This is the expected cost of encoding instances from P(X | 6, g) using a code based on P(X | 8,h). Note
that it can also be written as:

Err[P(X | 6,9); P(X | 6,h)] = E[DL(X, 8, h)] — E[DL(X, 6, )]

where the expectations are taken under P(X | 0,g). The second term is the entropy of P(X | 6,9). As

it does not depend on P(X | 6, h), the first term alone is sufficient to compare models. We can form an
estimate of this first term:

Fit(d, 0, h) = %DL(d,é,h)

The problem, however, is that if we use d to estimate 6 then @ depends on d and so Fit(d, é, h) is a biased
estimator, underestimating E[DL(X, 6, h)]. As h grows more complex, the dimensionality of 6 increases and
the more it can be tuned to d, increasing the bias in Fit(d,é, h). Note that there are two different kinds
of bias involved here: as models become more complex, they become less representationally biased (they
can represent a larger class of distributions), but their parameters have higher variance under sampling, and
so Fit(d, 8, h) becomes more biased as an estimator of E[DL(X, 6, h)]. Model selection criteria attempt to
correct for this bias or avoid it altogether.

Complexity Penalty Criteria

One way to (attempt to) correct for the bias in Fit(d,8, k) is to add a complexity penalty to the function.
The major difficulty here is determining what an appropriate penalty is. One cannot determine a priori how
much bias there is in Fit(d, 8, h), as this depends on P(X | 6,g) as well as P(X | 6, h). For each structure,
there exists a continuum of possible biases in Fit(d, é, h), from zero, when the true model has zero entropy
and zero variance, on up to some maximum value, when the true model has maximum entropy. Therefore,
one cannot justify a complexity penalty simply on the grounds that it is a bias correction; one must appeal
to other considerations.

There are several well-known penalty functions, each motivated by different theoretical considerations.
The Minimum Description Length (MDL) criterion is based on an information-theoretic view of induction
as data compression; see Rissanen (1989) for a detailed development. It is equivalent to the Bayesian
Information Criterion (BIC), which was introduced originally by Schwarz (1978) and given a Bayesian
interpretation. The information-theoretic interpretation of the MDL criterion is as the length of an encoding
of the sample as a two part code. The model defines a code for the sample, and one encodes the sample by
first encoding the model, and then encoding the data using the optimal code given by the model.* If the
model captures significant features of the data, this encoding will be considerably smaller than the original
encoding of the sample. On the other hand, if the model represents too much about the sample, the encoding
size will increase (Linhart & Zucchini, 1986). This trade-off is similar to the bias-variance trade-off.

3We leave the estimation of § as a black box for the time being — we return to this at the end of the section.
4Every probability distribution has an associated optimal code (Cover & Thomas 1991).



The MDL criterion we will use is given by:

klogm
2m

MDL(d, h) = Fit(d, 0, h) +

where k is the dimension of §: the number of free parameters of h. Recall that m is the sample size. This
version differs from the standard form in that we have normalized everything by 1/m so we can compare it
across sample sizes and with other criteria. Some low order terms (all positive) have been dropped as well
(from the MDL criterion given by Rissanen; the BIC is exactly what we have above). It will be seen that
this omission has no negative impact on the criterion.

Akaike’s Information Criterion (AIC) comes from a different theoretical perspective. It is an explicit at-
tempt to correct the overfitting bias. See Bozdogan (1987) for the derivation of the criterion. The complexity
penalty is considerably smaller than MDL’s. Our version of AIC is given by:

kloge
m

AIC(d, h) = Fit(d, 6, h) +

where e is the base of the natural logarithm, and loge converts from nats to bits.

Validation Criteria

An alternative approach is to use part of the data to estimate the parameters and the rest of the data to
estimate the error of the resulting model. There are drawbacks to this approach, however. There is a bias
toward simplicity in the model, because the criterion estimates the error for a model with parameters based
on a smaller sample than will ultimately be used.® Also, there will be increased variance in the criterion,
as opposed to the naive Fit(d, é, h), because of the smaller sample size used to estimate the error. So this
train-test validation trades the bias of the naive criterion for another bias and increased variance.

Cross-validation (Stone 1974) is a more sophisticated approach which seeks to alleviate these concerns. In
cross-validation every datum in the sample is used both for training and testing. The sample is partitioned
into r subsamples, each of which is used once for testing and (r — 1) times for training. Each subsample is
tested on the model that results from training on the remaining (r — 1) subsamples. This is called r-fold
cross validation. The most extreme case is m-fold (leave-one-out) cross-validation. We will use the simplest
version, 2-fold cross-validation, which is given by:

XV(d,h) = % [DL(, 6(d"), ) + DL, 0(d), h)

where d' and d" partition d into two equal-size subsamples, and é() denotes the parameter estimated from
the data given in the parentheses.

Cross-validation has its problems as well. First of all, the meaning of the criterion is not explicit — it is
an average of many individual estimates which are not independent if r > 2. Leave-one-out cross-validation
is not asymptotically minimal: in the limit of sample size it may not prefer the simplest unbiased hypothesis
(Stone 1977). Worst of all, it may be very expensive to compute, and time is at a premium when searching
a large space of structures.

Bootstrap Criteria

Bootstrap methods are similar to validation methods, but instead of withholding data from the original
sample, a training or test sample is generated by resampling (Efron 1982). The idea is that, by adding noise
through resampling, the variance of the original sampling process is simulated. One problem with the non-
parametric bootstrap is that the empirical variance of the bootstrapped sample tends to be lower than that
of the original sample — if the bootstrap is recursively applied over and over, with asymptotic probability
1 it will result in a homogenous sample. Another problem is that the empirical distribution in the sample

5When a structure has been chosen, all available data is used to estimate the parameters of the final model.



will differ from the true distribution, and thus will have a different variance under sampling.® The formula
below shows the bootstrap criterion we will be using, where the training sample has been bootstrapped and
the original sample is used for testing.

Boot(d, k) = Fit(d, 6(d'), h)

Here d' is a sample of size m, generated from d by resampling with replacement.

A Bayesian Approach?

Overfitting results from the naive maximum-likelihood approach because the likelihood of the data is based
on a single (maximum-likelihood) model in the model space for each structure. As this space increases, the
mode of the likelihood function cannot decrease, and tends to increase. The Bayesian approach to prediction,
by contrast, involves averaging over all models according to the posterior distribution over models. For a
given structure, one can compute the marginal likelihood of the data by integrating over the parameter
space. The integral under the likelihood function (coupled to the prior distribution over models), rather
than its mode, may thus be used as a way to evaluate structures.” This mitigates the effects of increasing
complexity: as complexity increases the likelihood function becomes more peaked, increasing its mode but
potentially decreasing the integral underneath after a point. The bias-variance trade-off is handled implicitly
— it is reflected in the shape of the likelihood function.

This, however, is a Frequentist justification for a putatively Bayesian procedure. The notion of overfitting
is not really defined in the Bayesian paradigm: upon seeing the data, you simply compute the posterior
distribution over models and use this to carry out inference. A possible Bayesian approach is to parameterize
the model space by first defining a hyper-parameter that ranges over structures; then the marginalized
likelihood is the data-dependent part of the posterior distribution over structures. Ideally, prediction would
involve marginalizing over all structures according to this posterior, but for pragmatic reasons one could
approximate this by choosing the structure with the maximum posterior probability, given the data. (See
Heckerman 1996.)

The use of a hyper-parameter ranging over structures, however, must be viewed simply as a device to
define the prior over models. The model class for the most complex structure contains every possible model,
and so “structure” is a superfluous syntactic notion. A uniform prior over structures, coupled with a uniform
prior over the parameters for each structure, results in a very non-uniform prior over the space of models,
favouring those models which appear in more structures (exactly those representable in simpler structures).
Perhaps this is desirable, being a reflection of the intuition behind choosing a particular model type and
representational framework. But it is open to the criticism of being ad hoc, as well as the classic objection
to Bayesian methods as being subjective — because many incompatible uniform priors may be proposed as
representing identical states of ignorance (see Howson 1997).

One could carry out a Bayesian analysis of model selection as a decision problem, where the objective is
to minimize expected loss. Where KL-divergence is the loss function, and f(©,G | d) is the posterior over
models, the problem reduces to computing;:

argming ;. fo o [Zx P(X | ©,G)log P(X | ©,G) — P(X | ©,G)log P(X | 6, h)] - £(0,G | d)
= argming, [, |2y P(X10,G)log P(X | ©,G) — Y P(X | ©,G) 1ogP(X|é,h)} - £(0,G | d)
= argming, fo |~ Tx P(X|@,G)1ogP(X|é,h)} - f(©,G | d)
= argming, - Yx [ Jo.u P(X10,6)£(0,G | d)] log P(X | 4, h)

Based on a fundamental result of information theory due to Shannon (see Cover & Thomas 1991), a minimum
is attained at the entropy of the predictive distribution when:

P(X|é,h)=/@GP(X|@,G)f(®,G|d)

61t might be possible to correct for some of these problems by measuring and correcting for the difference in variance between
the two samples.
"Prior distributions are implicit where not mentioned.



Thus, choosing the predictive distribution is the Bayes-optimal strategy for minimizing KL-divergence.

This is a sort of “no free lunch” theorem (Wolpert, 1996a) for model selection, as it follows that any
attempt to avoid overfitting reflects a prior bias toward simplicity. For example, if one’s prior belief is
reflected by a uniform prior over all possible models, one ought to use the most complexr structure, with a
uniform prior over its parameter space, and then take the average model from the posterior that results from
Bayesian updating, which is the predictive distribution for this prior. Of course, one might be interested in
other properties of a learning algorithm besides expected loss (like minimax properties, for example).

It is interesting to note that the marginalized likelihood has an interpretation as a validation criterion.
For belief networks the marginalized likelihood is given by (see Appendix A):

ML(d | m, h) :H/GP(d,» | ©,h)f(© | h,dy...di1)
=1

This prequential criterion (Dawid & Vovk, 1999) involves iteratively computing the probability of each datum
given those already seen by marginalizing over the parameters using the current distribution over parameter
space, then updating that distribution with the current datum. Each datum is used once for testing and
once for training, but the testing precedes the training, so each datum’s error score is based on parameters it
has not been used to estimate, as in validation criteria. For belief networks, because using the average model
under the posterior distribution is equivalent to integration over the parameter space (again, see Appendix A
for details), it may be efficiently computed. We use the following form as a model selection criterion:

m

Preq(d, h) = % > —logP(d; | 6(ds ...d; 1),h)

i=1

where é(dl ...d;—1) is the mean parameter vector after updating with d; ...d;_1.

KL-Divergence and 0

KL-divergence does not lend itself to maximum-likelihood methods. As we have seen, it is minimized by the
predictive distribution, not the MAP hypothesis. More importantly, using maximum-likelihood parameters
virtually guarantees infinite KL-divergence for all but the simplest models. It is therefore unrealistic to use
maximum-likelihood estimates when comparing criteria under the KL-divergence loss function. Therefore,
in our experiments we will use the the average model (predictive distribution) for each structure, under
uniform priors. In other words: 6; = (a; + 1)/(b; + r) for all i, when §; = Pr[X; = 2 | W; = w] and X;
ranges over r values. One consequence of using this parameter estimation method is that the asymptotic
arguments used to justify the AIC and MDL criteria no longer strictly hold; the AIC is designed to correct
the bias in maximum-likelihood estimates, while the MDL criterion is based on optimizing the precision in
the parameters, assuming maximum-likelihood estimation. Another consequence is that Fit(d, 0, h) is not
necessarily monotonically decreasing as model complexity increases — using the average model instead of
the ML-model has a smoothing effect which avoids some overfitting automatically. In certain cases, as we
will see, this is sufficient to remove the bias in Fit(d, 8, h).

5 Empirical Study

We carried out a series of experiments where we chose a true model, drew a sample from it, and evaluated the
criteria across a set of hypothesis network structures. We also computed the true error of each structure with
the parameters estimated from the sample. This allowed us to compare the behaviour of the criteria across
a range of situations, by comparing their evaluations to the true error function (in particular, comparing the
minimay).

Criteria

We compared the following criteria described in the previous section:



The “Bayesian” prequential criterion (Preq).

2-fold cross-validation (XV).

A bootstrap criterion (Boot).

Akaike’s information criterion (AIC).
e The Minimum Description Length criterion (MDL).

Each criterion takes a hypothesis structure and a sample of m data as input, and returns a real number being
the estimated error per datum. Each uses m training iterations and m testing iterations, where a training
iteration is Bayesian updating with a single datum, and a testing iteration is computing the negative log-
likelihood of a single datum. Thus, all required the same amount of computational resources, and each
assumed that the average model (predictive distribution) would be used for each structure.

True Models

We considered the following domains:

e Random networks: We generated networks on 10 binary variables with 10, 20, and 30 links. In each
case, we generated the parameters from a uniform distribution over the parameter space.

e The Alarm network (Bienlich et al 1989): This is a benchmark network commonly used in empirical
studies on belief networks, constructed by medical experts for monitoring patients in intensive care
units. It has 37 variables each with 2-4 possible values, 46 links (very sparse), and 509 parameters.

e The Insurance network (Binder et al 1997): This is another widely used benchmark network. It
represents car insurance risks. It has 27 variables, 52 links and over 1400 parameters.?

Hypotheses

For each true model, we generated sets of hypotheses as follows. Each set of hypotheses was a sequence of
network structures that included the true structure. Starting from the simplest network, with no links, each
hypothesis in the sequence was constructed from the previous by adding a link. Eventually the true structure
appeared, followed by progressively more complex networks with “redundant” links. (We constructed these
sequences from the true structure by randomly deleting and adding links.) By construction, the model class
defined by each hypothesis properly contained the model classes of all preceding hypotheses. Thus, the bias
with respect to the true model was decreasing up to the point where the true structure appeared, and after
that all error could be attributed to variance. We did this so that we could observe the behaviour of the
criteria as bias decreased and variance increased.

Experimental Design

Each experiment consisted of the following steps:
1. Fix a true model.
2. Generate a sequence of candidate network structures.
3. Generate a sample from the true distribution.
4. Evaluate the criteria on that sample, across all structures.

5. Compute the sample error, Fit(d, 6, h), and the true error E[DL(X, h, é)] for each structure.

8The Alarm and Insurance networks are available at the UCI machine learning repository.
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Figure 2: Random Network Case Study: ¢t = 20, m = 50

We looked at individual experiments as well as gathering summary statistics from large numbers of
experiments — the case studies allowed us to identify patterns of behaviour; the comprehensive studies
allowed us to quantify some aspects of those patterns. Since we were only interested in the issue of the
criteria used for model selection, not the search strategy, we based our comprehensive results on selecting
the structure that minimized each criterion, then comparing the true error of those preferred structures.

6 Results

Figure 2 shows an experiment on a randomly generated true model, for a sample of size 50. Here the true
distribution was represented by a 20-edge dependency graph on 10 binary variables, where each conditional
distribution was randomly generated from a Beta(1,1) (uniform Beta) distribution. The z-axis shows the
complexity of the hypothesis networks in terms of number of links, while the y-axis shows the error in terms
of bits. The entropy of the true distribution has been subtracted from all y-values to scale them down and
to allow for comparisons between different true distributions.? In each graph all criteria are plotted, as are
the true error (Err) and the sample error (Fit).

From left to right across the graph, the hypothesis complexity is increasing, and the true error decreases
until it reaches a minimum near the true structure (¢ = 20), where it begins to climb back up. We can observe
the bias-variance trade-off in action: bias decreases until the 20-link network, while variance is increasing
continuously. The sample error (Fit), here shown as the dashed line, continues to fall past the true structure,
showing that a naive maximum-likelihood approach to choosing a structure would lead to overfitting here.
By observing the criteria across the range of hypotheses, for different sample sizes (m = 50, 100, 150), we
can get some idea of how they are handling the bias-variance trade-off. Figures 3 and 4 show the same
experiment when the sample size is increased to 100 and 150 data, respectively.

Ideally, we would like a criterion to have the same shape, or at least the same minimum, as the true error
function. By observing how the criteria differ from this unrealizable ideal, in different learning contexts, we
get an idea of how they handle the bias-variance trade-off.

Both the MDL and AIC criteria tend to underfit at first, and then converge on the true network as
more data are provided. MDL, in particular, has a strong bias for simplicity that requires a lot of data to
counteract. In addition, a small number of additional data can radically change the evaluation of a structure

9Note that this makes some of the scores negative, as the empirical entropy tends to underestimate true entropy, but this
does not affect our comparisons.
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— notice the difference in the AIC scores from Figure 2 to Figure 3.

The bootstrap criterion, by contrast, tends to overfit, a tendency which does not diminish as sample size
increases. This is because it appears to be determined more by the sample error than by the true error.
Here we should mention that the bootstrap criterion plotted here is less “smooth” than the other data-
dependent criteria; this is due to the fact that we generated a new bootstrap sample each time we evaluated
a hypothesis, and thus the difference in the score between two points depends not only on the structure, but
also on the training sample generated. The general pattern of behaviour is clear, however: the bootstrap
criterion is more reflective of the sample error than the true error.

The prequential criterion and 2-fold cross-validation give very close evaluations, across the range of
hypotheses and sample sizes. They also match best with the shape of the true error function, having minima
and maxima at identical or nearby structures. The prequential criterion appears to be slightly less sensitive
to underlying fluctuations in the true error.

In addition to randomly generated distributions, we considered “natural” distributions defined by bench-
mark networks. Here we give results on two widely used benchmarks: the Alarm and Insurance networks.
The former has 37 variables and 46 links; the latter 27 variables and 52 links. Figures 5 and 6 show the
pattern observed on the Alarm network, while Figures 7 and 8 show the same results for the Insurance net-
work. First of all, note that the sample error (Fit) is not monotonically decreasing as hypothesis complexity
increases. If § was a maximum-likelihood estimate, then Fit would necessarily be monotonic, because by
construction each successive hypothesis structure defines a class of models which contains the model class
of all predecessors. The effect observed here is due to the smoothing effect of choosing the average a pos-
teriori model within each class, instead of the mazimum a posteriori (or maximum-likelihood) model. This
is interesting because many papers have been published describing results of structure-learning experiments
on the Alarm and Insurance networks, where various methods were used to avoid overfitting, (see Liu et al,
1998, for example) when in fact it is virtually impossible to overfit on these networks.'® We believe that the
difference observed here between the random networks and these benchmark networks is due to the fact that
the benchmark networks are locally low entropy — the conditional probability distributions for each node
tend to be highly skewed. On these networks all the data-dependent criteria worked fairly well, including the
bootstrap, because its determination by the sample error was not a deficit. The complexity-penalty criteria
underfit; again, the MDL criterion was much slower to converge than AIC.

In our comprehensive studies we attempted to measure the difference in error that would result from using
each criterion to pick a structure. We carried out experiments of the form described above, but instead of
plotting the criteria across all hypotheses, we used each criterion to select a hypothesis by taking its argmin
across the hypotheses under consideration. We then compared the true error of this preferred hypothesis
(for each criterion) with the minimum true error obtained by any hypothesis (the ideal criterion, of course,
being the true error). The additional true error of the preferred hypothesis was our dependent variable. On
random networks we carried out experiments for several combinations of truth complexity (t) and sample
size (m). For each assignment to ¢t and m we carried out 30 experiments, generating a new true model and
hypothesis sequence each time. We summarize these experiments by giving the average additional true error
for each criterion. Table 1 displays our results for random networks; Tables 2 and 3 present our results on
the Alarm and Insurance networks; where we carried out identical experiments to those described on random
networks, except of course that the true model was fixed. Again, each cell represents 30 experiments.

7 Discussion

Model selection involves dealing with fundamental aspects of inductive inference. The no free lunch theorems
show that there is no justification for avoiding overfitting that is independent of prior beliefs and /or pragmatic
considerations. In other words, we avoid overfitting either because we have prior beliefs that the truth tends
to be simple, or because we prefer simpler models for pragmatic reasons — they are easier to remember,
explain and reason with. Ideally, we could pose model selection as a Bayesian decision problem — in the
first case our bias for simplicity would be reflected in the prior; in the second case our bias for simplicity
would be reflected in the loss function. However, it is often the case that we have no clear idea of how to

10This also demonstrates the perils of over-reliance on benchmark problems.
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Table 1: Results for Random Networks

t m Fit Preq XV Boot AIC MDL
10 50 | 0.673424 0.045774 0.085914 0.526975 0.087324 0.253013
10 100 | 0.547661 0.005703 0.025173 0.454687 0.017614 0.130488
10 150 | 0.487156 0.007373 0.016239 0.363291 0.008755 0.047132
10 200 | 0.453187 0.003962 0.007292 0.311022 0.003405 0.020010
20 50 | 0.524959 0.058641 0.104019 0.390290 0.479635 0.765795
20 100 | 0.451487 0.020641 0.037211 0.352972 0.157028 0.643342
20 150 | 0.432322 0.015944 0.020506 0.304437 0.093406 0.486259
20 200 | 0.370868 0.003800 0.017478 0.305357 0.061886 0.317950
30 50 | 0.255416 0.047017 0.101118 0.177463 0.765639 0.981904
30 100 | 0.259497 0.016463 0.021493 0.173163 0.598727 0.969809
30 150 | 0.244873 0.008740 0.027909 0.158132 0.455095 0.889597
30 200 | 0.223711 0.008547 0.016779 0.163472 0.357849 0.866408
Table 2: Results for Alarm Network

m |  Fit Preq XV Boot AIC MDL

50 | 0.002055 0.002055 0.002055 0.130730 3.386938 9.996832

100 | 0.007444 0.000000 0.000473 0.094789 0.000000 4.657260

150 | 0.008488 0.000608 0.002463 0.045147 0.000608 0.000000

200 | 0.003116 0.000000 0.000582 0.033719 0.000000 0.000000

Table 3: Results for Insurance Network

m | Fit Preq XV Boot AIC MDL

50 | 0.190568 0.171794 0.126868 0.273680 4.692191 4.768936

100 | 0.010237 0.025124 0.024360 0.086121 1.243281 6.565789

150 | 0.000000 0.167360 0.129376 0.057607 0.669900 3.597372

200 | 0.010371 0.243592 0.147450 0.071585 0.512019 3.464004
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represent our intuitions in the prior or loss function. For this reason, it is of interest to consider properties
of various proposed model selection criteria, to see how well or how poorly they capture our intuitions.

From our observations, we conclude that the MDL and AIC criteria display a strong bias for simplicity
that may require considerable data to outweigh. This is particularly true for MDL. The amount of data
required is much more than the amount of data required by other criteria to get a good estimate of the
true error of the structure by other criteria. Also, a small amount of additional data can radically affect the
evaluation of a structure, and it is impossible to predict in advance how much data is required to evaluate
a given structure (as this depends on the true distribution).

In defense of the MDL criterion, however, it was not derived specifically to avoid overfitting (although
that is a benefit frequently claimed for it), but simply to implement the MDL principle, which takes an
information-theoretic view of induction orthogonal to the Bayesian and Frequentist paradigms.!! Further-
more, it was designed with asymptotic consistency and minimality in mind, not small sample behaviour.
Nevertheless, one should be aware when applying the MDL principle in this context that one may end up
seriously underfitting the data.

The prequential criterion and 2-fold cross-validation displayed similar behaviour to one another. Both
converged quite rapidly in shape to the form of the true error function. This makes them good functions
to optimize for if one’s goal is minimizing expected error and one’s prior expectations of simplicity are
modest. The bootstrap criterion, by contrast, proved to be a better estimator of sample error than true
error. Perhaps our formulation was naive and a better one could be obtained (for minimal additional
computation?), however, we would not recommend the use of a bootstrap criterion based on these results.

Aside from the behaviour of particular criteria, we observed some interesting phenomena relating to
the general problem of model selection in belief networks. Very little data seems to be required to get a
good evaluation of a network, even if the true distribution is reasonably complex; for example, a sample
size of less than 50 was sufficient to get a good evaluation of structures for the Alarm network, which has
37 variables and 46 dependencies between them. This is surprising, given that recent work in the area of
learning belief network structure (see Liu et al, 1998, for example) uses as many as 10,000 data to learn
this network. As search spaces for model selection are very large, one could probably do much better by
evaluating more networks on fewer data. Also, we noted that the practice of taking the average model (which
is Bayes-optimal within a fixed model class) handles overfitting to some extent. In fact, although the Alarm
network has been used in several studies of structure-learning, using the sample error of the average model
to choose a structure results in no overfitting for this learning problem. This is explained by the smoothing
effect of the prior, which increases as the model complexity increases.

We cannot conclude from this research that any one criterion is better than another, unless we specify
exactly what loss function and prior beliefs we have. We can suggest caution in applying complexity-penalty
criteria such as MDL and AIC (particularly MDL), as they may lead to underfitting the data — they
appear to be risky criteria. In some situations they are dominated by the complexity penalty, and thus
almost independent of the data. This is probably not desirable in most learning contexts. The bootstrap
criterion, on the other hand, seems to lead to overfitting, as it is governed more by the sample error than
by the true error. The prequential criterion and 2-fold cross-validation seem to be relatively risk-free and
assumption-light criteria suitable for a wide range of problems.

It might be possible to rehabilitate the complexity penalty criteria or the bootstrap criterion by a more
careful formulation. Recall that we were not using maximum-likelihood parameter estimates because this
almost certainly guarantees an infinite KL-divergence for more complex hypotheses. We used the predicitive
distribution instead, which is the Bayes-optimal model within the model class for each structure. The
MDL and AIC criteria were designed for maximum-likelihood estimates (although this is a subtlety that is
frequently ignored). On the other hand, these criteria cannot be viewed as correcting bias anyway, for it
is impossible to predict, a priori, the bias in sample error as an estimate of true error. (This can only be
established asymptotically, which, as we have seen, is a rather meaningless assertion, especially when we
can derive two different criteria this way.) Our bootstrap criterion also might be improved, by correcting
somehow for the expected reduction in the empirical variance of the bootstrapped sample. These would
merely be attempts to make these criteria more like the cross-validation and prequential criteria, however,
so the value of this exercise is not clear.

1We can criticize it as the BIC, however.
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Future Work

There are many avenues for future research. It would be interesting to consider other loss functions, other
representations for belief networks, other model types such as Markov models or decision trees, and additional
criteria. The experimental framework we have developed could be used to explore these and other issues.
As well, we would like to carry out a more thorough theoretical analysis of the model selection problem in
general. There are other interesting properties of learning algorithms besides expected error. We would like
to compare these criteria in terms of asymptotic consistency, minimality, and convergence rates. Minimax
properties are another interesting basis for a comparison: if an adversary could choose the true model,
knowing your model selection strategy, how could you minimize the expected error? (Assuming, of course,
your adversary chooses the model that maximizes your expected error under the sampling distribution of that
model.) It would be worthwhile to complement the perspective taken here by these alternative theoretical
perspectives.

8 Conclusion

The paradox of model selection remains. Why should we choose simpler models? For apparently benign prior
assumptions the Bayes-optimal model is the predictive distribution for the most complex belief network. Yet,
this is somewhat like throwing salt into the sea. Are “natural” distributions low-entropy? Do they have
simple representations in our favourite encoding schemes? What do we believe? And what do we want our
models to do, anyway?

From our empirical study we draw the following conclusions. First, we can arrange the criteria under
consideration in order of their bias toward simplicity: MDL, AIC, XV, Preq, Boot, and (Fit). We noted
that the MDL and AIC criteria displayed a bias for simplicity that was of an entirely different form from
that displayed by the data-dependent criteria: it grew exponentially and thus was largely determined by the
complexity penalty when the structure was large and the sample was small. We saw that it was difficult
to predict the behaviour of these criteria on a given problem, as they were quite sensitive to the amount of
data provided. In addition, we noted that the bootstrap criterion that we used seemed to be determined
more by the sample error than the true error, and consequently did little to avoid overfitting. Another
interesting aspect of our empirical study was the way that the Bayesian practice of using the average model
for each structure, rather than the maximum-likelihood model, made the sample error non-decreasing in
hypothesis complexity, and for the benchmark networks we considered, the sample error was a reasonably
good criterion for model selection. We also noted that very modest-sized samples were sufficient to get good
evaluations of these networks, as well as our random networks. This has implications for model selection
search strategies, where there is a trade-off between getting a good evaluation of candidate structures and
visiting more structures. It suggests that evaluating on a subset of the data might be very effective.

It is certainly desirable to base one’s choice of criterion on an understanding of the issues and trade-offs
in model selection, and on how various criteria differ in their approach to handling these trade-offs. Through
an empirical comparison of model selection criteria, we have shed light on the behaviour of a broad class of
criteria, spanning a range of different paradigms of inductive inference.
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A Properties of f(© |a+ «)

Here we demonstrate some important properties of the posterior distribution f(© | a + «), which follows
Bayesian updating of the prior distribution. In particular, we claim the following properties:

e Each row of a CP-table is independently Dirichlet-distributed in the posterior distribution.

e The model in which each ; is the mean of the posterior distribution is the average model: inferences
based on this model are equivalent to those based on the predictive distribution.

We prove these properties here for the special case where all network variables are binary, and CP-tables are
complete; the generalization to n-ary variables and marginalized CP-tables is conceptually straightforward,
but the notation becomes cumbersome. See also Cooper and Herskovits (1992) who make these claims
without proof (their proofs are available in a technical report). Dawid and Lauritzen (1993) present more
general results. We present these results here to make the paper self-contained.

First we derive the likelihood function L(d | m,©). Because d is a sequence d; ...d,, of i.i.d. instances
of X ...X,, we can write:

L(d | m,0) = HPd | ©)

And, because we interpret our model as a conditional factorization of a joint probability distribution, we can
write:

P(d; | ©) = HP (w35 | wij)

where z;; is the assignment to X; in d;, and w;; is the joint assignment to W; in d;.
Since Pj(z; | wsj;) is a network parameter, or pseudo-parameter, we can rearrange the factors as:

L(d|m,®) = H@az

where a; (as previously defined) is the observed frequency in the sufficient statistic for ©.
Next we derive the posterior density function for ©. Baye’s theorem gives us:

L{d|m,0)f(©]a)

HO@la+a) =T m 6)/(0 | a) 40

We can take the parameters to be jointly Beta-distributed in pairs, (0;+1 = 1 — ©; when 4 is odd) and given
our previous equality for the likelihood function, write the posterior as:

@1a1®2a2Be(®1 | al,(lz) @kflak_IGkakBe(kal | ak,l,ak)
f f @1111 92”2Be(®1 | Otl,Oéz) @k,la’“*@k“’“Be(@k,l | ak,l,ak) d01 s dﬂk,l

fO]a+a)=

Using the definition of the Beta distribution, and our assumptions about the form of ©, we can write each
@iai @j+1ai+1 Be(@z | o, Oéz'+1) as @iai (1—("),5)%"'1(‘)1'0”71(1—®i)ai+171D(Ozz’, az’—{—l); and thus as: @iai+ai71(1—
0;)%+1+ei+171 D(q;, a;41). We can then cancel the Dirichlet integrals in the top with those on the bottom,
and factor out the integration to get:

@uta=l(] _ @)atar-1.. .@Z’i—11+a’“_171(1 — Op_q)utor—l

fOla+a)=
| fol ®1a1+a1—1(1 _ (,_)1)ag+a271 d(")l . fgl @kilak—1+ak—1—1(1 _ ®k—1)ak+ak71 d(")k—l

and since the integrals in the denominator are equal to Beta functions (Dirichlet integrals with two param-
eters) it follows that:

fO|a+a)=Be(O; |ar +ai,az +as) --Be(Or_1 | ap—1 + ap_1, a1 + o)
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a product of independent Beta distributions, one for each row of a CP-table (0;,0;41) (for i odd), as claimed.
Furthermore, the posterior parameters are updated by just adding the statistic a to the prior parameters,
a. This proves the first claim.

The second claim follows easily from the first. The predictive distribution is given by:

QX1 Xn | &) = [ PO X, ©)7(0 | ) do

where we use the notation & to denote the sufficient statistic a + . Our second claim is that:
Q(X1,...,Xn| &) =P(Xy...X, | 6)

where 6 is the mean of the posterior distribution, given by 6; = d /(d; + B;) Note that, for a particular
full instantiation zy ...z, P(z1 ...z, | ©) depends on at most one parameter per CP-table row. So the
predictive distribution is given by a product of n independent factors of the form:

04 (1-0)% 1 o D(ai+1,4)
D@wf) ' Dlasf)

_ D(a; + DT (B;)T (¢ + /Bz) _ (@)T(a)T(a; + Bi) Gy

/ 0;Be(0; | &y, ;) dO; = /

T(i + B; + DO(@)T(B:)  (du+ Bo)T(cs + Bi)T(cs)  d + fi
as claimed.
We can also define a predictive likelihood function PL(d; ...d, | m,a):

PL(d|m,&) = [II, P(di| ©)f(©] &) de
[T e f©|ade
J©:11(1 — ©1)"Be(0, | éu, 41) dOy

[ O =1 (1 - Ok_1)"*1Be(O_1 | cg_1,Br_1) dOk_1

where the dotted a and b are the observed frequencies in d, and where, as previously, we take each pair of
parameters, (0;,0;+1) (i odd) to be jointly Beta-distributed. Then, for each i simple algebra gives us:

@idi+d571(1 _ @z)brl'ﬁz*l D(dl =+ di, bz + /B’l)
D(éi, Bs) D(&, B:)

_ T(as + a)T(bi + Bi)T (64 + 5z) _ @i+ 6 — 1)@l (d)(bi + Bi — 1) --- BT (B)T (i + Bi)

[ o1 0 Be(o | ai, ) do; = [ a0; =

T(a; + éi + b + B)T(6)T(Bi) (i + di + bi + i — 1) - - (6 + Ba)T (6 + B:)T(6)T(Bi)
(@t b= 1) (b A= 1)y
(@i + i+ bi+ Bi —1) -+ (& + Bs)
And we can see from this that the predictive likelihood is given simply by iteratively calculating the prob-
ability of each instance of the sample, then updating the parameters, and repeating the process using the

resulting model (as we can rearrange the factors on the top and bottom of the fraction above to be in the
appropriate sequence).
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